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Peer-to-peer systems have been proposed for a wide variety of applications, such as file-sharing,
distributed storage, and distributed computation. These systems seek the benefits of a decentralized
design—chiefly, the ability of a system to self-scale as new participants join, since participants are
motivated to contribute resources that o�set the added workload they generate. Decentralization
also o�ers improved fault-tolerance and user privacy, because no central authority is responsible for
orchestrating or recording peer interactions.

However, these beneficial system properties are at risk from selfish participants. While many
peer-to-peer systems provide incentives for encouraging participation, past work has shown that
these mechanisms can be gamed by selfish peers that consume resources while providing little or
none in return. For example, the pairwise reputation scheme used by BitTorrent applies only in the
short term of a single download; new peers must be bootstrapped by altruistic service.

A currency-based accounting system provides fungible, long-term incentives for participation
that persist beyond the limited scale of a single download or pairwise interaction. However, currency
raises a number of privacy and systems concerns arising from the infrastructure required to support
it. For example, a “bank” must check and count currency, which presents a potential performance
bottleneck and privacy concern. In the digital world, the privacy of peer interactions can be preserved
through the use of anonymous, cryptographically secure electronic cash (e-cash).

This thesis shows that e-cash is a practical technique for ensuring fairness, robustness, and
better long-term incentives in decentralized systems. It investigates how to build systems that
anonymously account for three di�erent resource types—bandwidth, storage, and computation—
through the application of protocols for cryptographic fair exchange and e-cash, and how to mitigate
the overhead involved in doing so. As a proof of concept, this thesis introduces Cashlib, an open-
source library for e-cash; ZKPDL, a programming language that speeds both the performance and
development of cryptographic implementations; and FairTrader, a currency-based file sharing system
that uses e-cash to provide long-term, reliable service for users.
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Chapter 1

Introduction

The past decade has witnessed an explosion in the popularity of peer-to-peer systems, driven
by increased global Internet connectivity and rising end-user bandwidth capacities. These
P2P systems in general eschew the traditional, centralized client-server model of providing
a network service in favor of the decentralized exchange of resources between end systems,
or “peers.”

Peer-to-peer systems have been designed and deployed for a wide variety of applications—
such as content distribution, distributed storage, and distributed computation—and today
account for a significant fraction of Internet tra�c, largely from file-sharing systems sys-
tems such as BitTorrent. Their decentralized nature provides many advantages, chiefly the
ability to self-scale: new participants are motivated to contribute resources that o�set the
added workload they generate. Decentralization also o�ers improved fault-tolerance and
user privacy, since no central authority is responsible for orchestrating or recording peer
interactions.

However, these beneficial system properties are at risk from selfish participants. While
many peer-to-peer systems provide incentives for encouraging participation, past work has
shown that these mechanisms can be gamed by selfish peers that consume resources while
providing little or none in return. For example, the pairwise reputation scheme used by Bit-
Torrent applies only in the short term of a single download; new peers must be bootstrapped
by altruistic service.

A currency-based accounting system provides fungible, long-term incentives for partic-
ipation that persist beyond the limited scale of a single download or pairwise interaction.
However, currency raises a number of privacy and systems concerns arising from the in-
frastructure required to support it. For example, a “bank” must check and count currency,
which presents a potential performance bottleneck and privacy concern. In the digital
world, the privacy of peer interactions can be preserved through the use of anonymous,
cryptographically secure electronic cash (e-cash).

1.1 Thesis statement
This dissertation investigates the following thesis:

E-cash accounting techniques are practical and well-suited for providing fairness,
robustness, and better long-term incentives in decentralized systems.

1



1.2 Contributions
This dissertation presents system designs and key primitives that enable the e�cient use
of anonymous e-cash to to account for three di�erent resource types—bandwidth, storage,
and computation—through the application of protocols for cryptographic fair exchange and
e-cash. Specifically, these contributions are:

• FairTrader, a peer-to-peer file-sharing system that anonymously accounts for band-
width through the use of protocols for cryptographic fair exchange and e-cash.

• ZKPDL, a programming language and interpreter for zero-knowledge proof protocols
designed with the goal of mitigating the performance overhead and implementation
di�culty of e-cash protocols.

• Cashlib, a software library implementation for endorsed e-cash that allows systems to
be built that buy and barter for resources through the exchange of coins, keys, and
contracts describing those resources.

• DPDP, a protocol that a user paying for a remote storage service could use to verify
that her data had not been tampered with, using a concise proof of possession that
e�ciently supports updates to the outsourced data.

• A model of a system using currency incentives for outsourcing computational tasks,
and an analysis of how to control malicious behavior in such a system.

1.3 Thesis outline
The remainder of this thesis is organized as follows. An overview of the BitTorrent peer-to-
peer system [55], and previous work related to this thesis on incentives in BitTorrent and
other distributed systems, is provided in Chapter 2. Chapter 3 presents a general design
for using currency in distributed systems, introduces cryptographic electronic cash (e-cash),
and the protocols, system entities, and a set of protocols using endorsed e-cash [42] that
allow peers to buy and barter for resources.

This design is further refined for di�erent resource types over the following three chap-
ters. Chapter 4 deals with accounting for distributed computation systems, motivated by
concerns for the scalability of the e-cash bank. Chapter 5 describes a scheme for concise
proofs of data possession, which provide probabilistic guarantees to a consumer of storage
outsourcing services like those provided by P2P backup networks or Amazon’s S3. In Chap-
ter 6 we present the design and implementation of FairTrader, a currency-based file-sharing
system based on BitTorrent that uses e-cash to provide long-term, reliable service for users.

In Chapter 7 we deal with the practical considerations of implementing computation-
ally expensive e-cash protocols, and introduce Cashlib, a software library which implements
e-cash, and ZKPDL, a programming language and interpreter for zero-knowledge proof
protocols that speeds both the performance and development of cryptographic implemen-
tations. Finally, Chapter 8 concludes the thesis and considers future work.
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Chapter 2

Background and related work

This chapter provides an overview of peer-to-peer systems, the popular file distribution
system BitTorrent [55], and surveys related work on providing incentives in distributed
systems.

2.1 Peer-to-peer systems
The Internet has always supported “peer-to-peer” communication—indeed, communication
between pairs of hosts has always been the primary means by which data is transferred over
the Internet—but in the past decade the term peer-to-peer (P2P) has come to refer to a
new, popular category of distributed systems. In this context, P2P refers to system designs
which, in general, delegate the task of serving an end system’s request for resources not to
centralized entities, but rather to a much larger set of other end systems, or peers.

This principle of decentralization sets P2P systems in contrast with earlier protocols
and architectures based on the popular model whereby many clients connect to a relatively
smaller set of (often high-powered) servers. The client-server model is widely prevalent
today, with perhaps its most prominent example being the world web web. While the
HTTP protocol (which underlies each web request) is employed by billions of users today,
the overwhelming majority of users of HTTP clients do not also run HTTP servers.

However, two major trends have driven the rise of decentralized systems and P2P net-
works online: an increase in both the number of Internet users globally, and the average
bandwidth rates experienced by those users. As the number and speed of consumer Inter-
net end-systems have grown, it has become simply more feasible for tasks such as content
distribution, storage, computation, and lookup to be delegated to the millions of users who
have historically been labeled as “clients” in conventional architectures.

P2P networks exploit these trends to provide decentralized services that organically self-
scale as more users participate. An ideal peer-to-peer system design contains no centralized
bottleneck limiting the ability of the system to provide service to new users. Decentralization
also o�ers better fault-tolerance and attack resistance (since no single point of failure exists
that can take down the whole system), low barrier to deployment (since less dedicated
infrastructure is needed to deploy a P2P service), and enhanced user privacy (since no
single entity is able to record every event that occurs between peers) [155].

The history of peer-to-peer systems began in 1999, with the release of three influential
systems: the Napster music-sharing client, the Freenet anonymous data storage network,
and the SETI@home distributed computing project [155]. Since then, the concepts intro-
duced by these systems have been widely deployed in systems ranging from the popular
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file-sharing protocol BitTorrent [55] to the Skype video and phone service, which routes
calls through other users of Skype to their destinations [15]. The computing resources
provided by these three initial systems—bandwidth, storage, and computation—are each
considered in turn in Chapters 4, 5 and 6 of this thesis.

2.2 BitTorrent
BitTorrent [55], introduced by Bram Cohen in 2001, is the most popular peer-to-peer file-
sharing system in use today. One measurement study in 2009 found, for example, that data
transferred via the BitTorrent protocol accounts for roughly half of Internet tra�c in some
areas of the world [95]. Another study from 2010 reported that one-fifth of Internet tra�c
(and nearly half of consumer upstream tra�c) in North America was due to BitTorrent [158].
Our focus on BitTorrent is motivated by its popularity, and we aim to show that the
techniques presented in this thesis are applicable to the patterns of BitTorrent usage most
common today.

2.2.1 System overview
A BitTorrent download begins with a metadata file, or torrent, listing the name and size of
the file(s) for distribution, the hash value of each data block (typically sized 64KB–2MB)
needed to assemble the file(s), and the address of a tracker assigned to manage the swarm
of participants. A node enters the network by announcing itself to the centralized tracker
server. The tracker’s reply provides the Internet addresses of a random subset of active
nodes.

Using this list, a node makes neighbors by attempting to directly connect to other nodes.
Upon connecting, neighbors start to exchange block-availability advertisements and issue
block requests, using a local “rarest-first” heuristic designed to improve data availability.
Nodes typically maintain many neighbor connections, but at each round upload requested
blocks only to a small fixed-sized set of unchoked neighbors, selecting those that have
recently provided the fastest rate of service. The rest are choked until the next round,
typically ten seconds later, when they will be re-evaluated for reciprocation.

2.2.2 Incentives
BitTorrent relies on a tit-for-tat bandwidth reciprocity mechanism whereby cooperative
nodes are rewarded for uploading by their neighbors, who unchoke them. Thus nodes
are encouraged to upload to their neighbors, since doing so o�ers the possibility of faster
download rates. While the designer of BitTorrent describes this mechanism as a tit-for-tat
scheme [55], Levin et al. [111] observe that the unchoking mechanism—which awards the
next round’s upload slots to the best peers from the last round—is best modeled as an
auction, and suggest a modified sharing strategy to reflect this.

Whether an auction or tit-for-tat, BitTorrent presents many opportunities for selfish-
ness [146, 116] and free-riding [100, 119]. For example, In search of ever-better neighbors,
nodes also select two peers at random for optimistic unchoking every three rounds; this also
helps to bootstrap new users, who may not have enough data to reciprocate. Once a down-
load is complete, nodes receive no benefit from participating, and most depart [146]; nodes
that persist become altruistic seeders. By providing unaccounted service, both optimistic
unchoking and seeding may potentially enable free-riding.
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The tracker has limited ability to perform resource accounting: when nodes periodically
re-announce themselves (e.g., to check for new nodes), they report the total amount of
data uploaded and downloaded for the torrent so far. Online communities have emerged
around registration-only trackers that enforce sharing ratios by totaling user activity across
multiple torrents, leading to increased seeding activity [5]. These communities are discussed
further in Section 2.2.6.

2.2.3 Fairness and performance
Studies have found the tit-for-tat choking mechanism highly e�ective in discouraging free-
riding, encouraging the clustering of similar-bandwidth peers, and fully utilizing partici-
pants’ uplink bandwidth.

Legout et al. [110] highlight these properties through experiments on PlanetLab, lim-
iting each node’s maximum upload rate to define di�erent classes of participation. Their
measurements show that, in a “flash crowd” scenario with a fast seed, nodes are more likely
to exchange data with neighbors of their own class, forming similar-bandwidth clusters.
This follows from the intuition that, to a faster node, a slower neighbor’s unchokes are less
useful, so are less often reciprocated. As a result, higher-class participants are rewarded
with faster downloads. The simulation-based study of Bharambe et al. [23] also finds the
choking mechanism e�ective in fully utilizing upload bandwidth.

However, both studies also provide evidence that high uplink utilization (and the resul-
tant fast average download times) comes at the expense of fairness: fast nodes typically
contribute much more data than they upload. In [23] the authors find that in heteroge-
neous settings, some high-bandwidth nodes upload more than seven times more data than
they download. The experiments of [110] also observe similar unfairness, and show it is
exacerbated as clustering breaks down in the presence of a slow seed. Piatek et al. [146]
observe and model unfairness as altruism—their term for any data uploaded in excess of
that downloaded—which they exploit with a selfish client implementation.

Unfairness can be partially explained by the slow search process nodes undertake when
looking for better neighbors, with optimistic unchokes occurring only once every 30 seconds.
Converging on a set of similar-bandwidth peers in a large, high-churn torrent may take a long
time (or forever), and along the way many high-capacity nodes provide unmetered service
to slower neighbors [146]. In response, [23] considers modifying the tracker, allowing
it to induce clustering by matching similar-bandwidth nodes. The authors report that
reducing bandwidth-mismatched pairings leads to improvements in both uplink utilization
and fairness.

This has led some researchers to design alternate choking mechanisms that provide
stronger fairness to participants. A strict block-level tit-for-tat choking policy, bounding
the number of excess blocks transferred to a neighbor without reciprocation, is considered
as a replacement for the default rate-based policy in [23]. It is shown to reduce unfairness
at the expense of lower average upload utilization, slowing overall performance (though its
performance fares better in conjunction with a bandwidth-matching tracker, or at high node
degree). Fan et al. [72] present an analytical model characterizing the design space of rate
assignment strategies in BitTorrent-like systems, demonstrating a fundamental trade-o�
between optimal performance and fairness.

5



2.2.4 Free-riding
The ease of free-riding in BitTorrent arises from the problem of bootstrapping new peers
and new peer-to-peer connections. Altruism is required when peers first enter a swarm;
since these new arrivals have no data to reciprocate, they must rely on uploads from seeders
or from the optimistic unchokes of fellow downloaders to receive an initial set of data blocks
and begin exchanges with others.

Optimistic unchokes are performed between peers which have had no history of past
contact. The repeated game performed by peers as they seek ever-better neighbors requires
an initial trial period (usually lasting 30 seconds) during which upload bandwidth is provided
to a new neighbor in hopes of reciprocation. In a large swarm, however, many hundreds
or thousands of neighbors might be considered in this manner before settling on a set of
neighbors that o�er satisfactory reciprocal benefits, wasting much bandwidth in the process.

Altruistic behavior can be gamed by selfish participants, and research implementations
of BitTorrent have been developed that successfully take advantage of the altruistic behavior
of typical BitTorrent users to provide better performance [146] or even to obtain downloads
without providing any reciprocative uploads at all [119].

2.2.5 Multiple swarms
Finally, BitTorrent’s tit-for-tat scheme provides incentives based on local reputations that
are limited in scope to single swarms only; i.e., a user’s activity in each swarm is considered
completely in isolation. As a result, users engaged in multiple concurrent swarms cannot
use uploads, reputation, or credit in one swarm to improve performance in another. This
poses a problem, because users are often engaged in multiple swarms at once, and not just
in single-swarm “flash crowds.”

This problem also extends to a user’s activity over time. Under the current scheme, a
new peer starts “from scratch” each time it enters a new swarm; this is true even if that
user performed admirably by providing altruistic service a day or an hour before beginning
the new swarm.

2.2.6 Ratio trackers
A variety of popular web-based communities surrounding BitTorrent trackers have prolif-
erated in recent years. These communities, which often focus on a specific genres (such as
music, television shows, content in specific languages, etc), o�er primarily search services,
but also provide user registration, discussion fora, and collect user statistics.

Some trackers use these statistics to implement additional incentive mechanisms, such
as imposing minimum ratio requirements or upload/download credit systems, in order to
motivate to seed torrents after they have completed downloading and provide them with
fair rewards proportional to their e�ort. Recent measurement studies [5, 128, 50] describe
a wide variety of incentive systems, minimum ratios, and credit schemes that have been
developed by administrators of these communities. Meulpolder et al. report that despite
these di�erences, “Apparently, it is most of all important that there is a ratio enforcement
mechanism in place; the precise rules matter less.” [128].

These schemes allow ratio tracker communities to provide tremendous performance gains
over trackers that do not institute ratio requirements. Download performance, average
seeding duration, and content availability all increase by orders of magnitude; peers continue
seeding content for days, rather than minutes, enabling these trackers to o�er a library of
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content available at any time for peers to download directly from seeders, rather than just
a snapshot of those files popular at the moment. As Meulpolder et al. summarize:

We conjecture that ratio enforcement mechanisms are the primary cause of the
high numbers of seeders in the private communities, and in the end render
BitTorrent’s tit-for-tat reciprocity mechanism virtually irrelevant in such com-
munities. [128]

There are strong similarities between these trackers and the currency-based accounting
system proposed in this thesis. Kash et al. provide an economic analysis of one such ratio-
tracking site, describing how users employ strategies to (in their words) “earn money,” seek
out torrents with high earning potential, and respond to economic forces and other system
events such as “free leech” periods (during which administrations suspend the ratio system,
alleviating unmet demand from users who want files they cannot normally a�ord) [103].
These BitTorrent economies provide a model for the currency design (Chapter 3) and Fair-
Trader system (Chapter 6) proposed here.

However, ratio trackers rely on self-reported client statistics that can be easily manipu-
lated: the BitTorrent specification [54] requires only that the total number of bytes uploaded
and downloaded be reported to the tracker periodically (as a base-10 integer). While huge
distortions in these figures could be detected automatically, more modest inflations of these
statistics in busy swarms are less likely to be detected by tracker administrators, and proxy
software is available for selfish users to do so [90]. Ratio tracking sites also weaken user
privacy, as site administrators must retain data on every swarm that each user has joined—
especially if they want to check for ratio manipulators—and summarize those statistics
when computing ratios.

In contrast, a currency-based accounting system that uses e-cash o�ers both strong se-
curity properties (as upload credit cannot be forged) as well as strong privacy-preserving
properties. A comparable minimum ratio requirement could be enforced by simply impos-
ing minimum balance limits for each user’s e-cash bank account. The credit earned and
deposited with the e-cash bank would not be linkable by anyone to user activity, and site
administrators would have no need to record or retain user activity.

2.3 Related work
This thesis is not the first to propose currency-based approaches to resource allocation
in distributed systems. Previous work has seen currencies used to allocate resources in
grids [96] and sensor networks [52], pay for distributed storage [93], and optimize queries in
distributed databases [166]. Game-theoretic analyses of peer-to-peer currency systems and
associated equilibria are detailed in [87, 76, 102].

Systems based on Byzantine fault tolerance (BFT) [1] provide safety and liveness guar-
antees given a certain tolerable fraction of malicious users; typically at least two-third of
participants must act correctly. In BAR [1], the system is able to tolerate any number of
rational (i.e., selfish) users, as it creates incentives for even the most self-serving of peers
to behave in a manner that is fair. BAR gossip [114] provides incentive-compatible BFT
primitives to extend these guarantees to both altruistic (i.e. correct) and rational nodes that
may deviate from suggested protocols in pursuit of greater utility. A high degree of fault
tolerance is guaranteed even in the face of a high proportion of completely self-serving, or
even malicious peers. Like these approaches, we also aim to incentivize rational nodes, but
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do not assume a quorum of correct nodes; instead we focus on incentives and probabilistic
guarantees on accuracy that apply for varying fractions of altruistic and malicious users.

2.3.1 P2P currencies
In the file-sharing setting, a number of other systems have attempted to use currency to
provide incentives. Mojo Nation [175] (incarnated later as Mnet) used currency, called
Mojo, to incentive users to upload content, much as we do in FairTrader, but without the
privacy-preserving guarantees. (A former employee of Mojo Nation, Bram Cohen, drew
much inspiration from the block-exchange file-transfer mechanism used by that system in
his later design for BitTorrent.)

In academia, Karma [172] describes a P2P currency built atop of a DHT to avoid
centralization; this places the responsibility of maintaining each peer’s bank account and
transaction history with a “bank-set” that consists of randomly-chosen nodes from the
DHT. As with Mojo Nation, however, the currency used does not provide any privacy
for the system’s users. This decentralization makes it di�cult to e�ectively manage the
currency (see Section 3.5.2), requiring O(N2) messages.

In Dandelion [165], users are again awarded credit when they share content with au-
thorized users. The transaction protocol, however, requires server interaction every time
(which we avoid by using o�-line e-cash) and thus has limited privacy guarantees and the
potential to run into problems with scalability. Finally, BitStore [150] also o�ers currency
incentives for peers to store and upload files in an e�ort to solve what they call the Blocked
Leecher problem. As with the other systems, their currency is not privacy-preserving and
their incentive mechanism does not reward behavior across swarms. Though these systems
provide useful examples of currency-based design, they do not address issues of privacy and
security that we consider essential for adoption in peer-to-peer systems.

There has been fascinating work by game theorists that model and analyze theoretical
peer-to-peer currency systems and associated economic equilibria [87, 76, 102]. Kash et al
have analyzed P2P systems consisting of agents which exchange a “scrip” currency with
other agents in return for service [76, 102]. Their analysis provides many useful insights on
the behavior of selfish agents in a P2P currency economy [76] and how a currency system’s
bank might manage the currency to avoid inflation and monetary crashes [102]. These
analyses describe systems very similar to those proposed by this thesis.

2.3.2 Reputation systems
Beyond currency-based incentive mechanisms, reputation systems, both local and central-
ized, have also been used to provide incentives in peer-to-peer systems [177, 124, 147]. Some
systems even quantify local reputation values in terms of credit [133] or currency [3], thus
extending the barter economy by identifying chains of indebted nodes that can be used for
transitive exchanges.

In one example, Scrivener [133], a structured lookup service allows peers to maintain
an “account balance” with neighbors they know. Local reputation is represented as a
non-fungible currency in Scrivener, requiring peers to have balanced behavior over short
time periods. Piatek et al. [147] rely on highly-connected peers to maintain reputation
information and act as intermediaries; this causes the system to rely on a relatively small
number of super-users for its e�ectiveness, and poses potential problems similar to those
existing already in BitTorrent.
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However, reputation schemes are less e�ective when discredited pseudonyms can be shed
easily, thus limiting their applicability in privacy-enhancing peer-to-peer systems [123] or
anonymous networks such as Tor [64]. Friedman and Resnick [77] call this the “social cost of
cheap pseudonyms” and show that in this environment, participants must distrust new users
until they have earned enough reputation; this inevitably yields problems with e�ciency at
the start of sessions.

The currency-based described in this thesis, unlike these reputation systems, can be
thought of as providing fungible reputation independent of identity-based observations,
thus making it well-suited for systems with high churn, or ones that use pseudonymous or
anonymous identities.

2.3.3 Distributed computing and grid resource sharing
The growth in the number of computers connected to the Internet, in the size of feder-
ated resource-sharing clusters spanning di�erent administrative domains (such as Planet-
Lab [51]), and in demand for distributed computation on these platforms have led to interest
by researchers on market-based approaches to resource allocation.

Resource-sharing cluster systems such as Spawn [173], Popcorn [152], and Tycoon [108]
focus on the e�cient allocation of grid resources by providing auction mechanisms which
award distributed resources to the highest bidder. Auctions provide a way to stem de-
mand as computation becomes more expensive. However, these systems typically assume a
federated—and friendly—environment where many parties wish to share a pool of trusted
resources. Once awarded, resources are assumed to be available for use by the winner,
without concern for malicious entities.

The outsourced computation system described in Chapter 4 is similar to public-resource
computing systems such as Distributed.net [67] and BOINC [29], which parcel and distribute
computation to vast armies of volunteer users. BOINC provides scientific projects such
as SETI@Home [163] and Rosetta@Home [156] with computational resources drawn from
the idle CPU cycles of its users’ home PCs, and its projects have attracted millions of
participants. Greater participation is incentivized through a point system that rewards
users who complete more work units with higher status on “leaderboards” published on the
web.

BOINC’s credits are not fungible—they are useful only for social status—yet even this
incentive has greatly motivated participation, leading some to develop their own clients in an
e�ort to claim more credit [171, 131]. In one case, a SETI@Home user developed an “opti-
mized” client which returned outputs irreproducible by the o�cial client, yet were otherwise
indistinguishable. In another case, a patched client was released that simply performed no
computation, returning bogus results [131, 144]. These examples and others provide inspi-
ration for our model, which aims to address the problem of malicious and “corner-cutting”
contractors who seek greater rewards by deviating from o�cially-sanctioned methods.

2.3.4 Cryptographic programming languages and libraries
The work presented in Chapter 7, which enables the implementation zero-knowledge proofs
and e-cash protocols using a new programming language and interpreter, bears many simi-
larities to FairPlayMP [22] (and its predecessor, FairPlay [122]), which provides a language-
based system for secure multi-party computation. These protocols allow multiple parties to
jointly compute a function on private inputs while revealing nothing but the resulting value.

9



At the heart of FairPlayMP is a programming language, SFDL 2.0 (short for Secure Func-
tion Definition Language), that allows programmers to specify a multi-party computation.
The authors provide a compiler that transforms SFDL programs into boolean circuits, and
an engine that securely evaluates these circuits and distributes the resulting values among
the involved parties. Although this is a very useful tool, it uses generic circuit techniques,
and thus from an e�ciency standpoint it is often more desirable to develop a multi-party
computation scheme specific to the intended application.

IBM’s Idemix project [34, 24] has independently developed a library for zero-knowledge
proofs and anonymous credentials using Java; their library provides a system for obtain-
ing, proving, and verifying anonymous credentials for use in a privacy-preserving identity
systems. While Idemix and ZKPDL/Cashlib both provide implementations of anonymous
credentials and CL signatures, our focus on e�cient, repeated executions of e-cash transac-
tions has led us to pursue our language-based strategy and develop a performance-optimized
interpreter, unlike the Idemix implementation. The CACE project, independent of our ef-
forts, has also designed a high-level language for zero-knowledge protocols; their work has
focused on a compiler that can output implementation and LATEX code from these descrip-
tions [12, 11], and automatically check the soundness of compiled protocols using theorem
proving techniques [2].

There are also compilers available [26, 14] for the generation of proofs of security and
correctness for cryptographic protocols. While this is an interesting and important area of
research, these tools largely focus on static analysis of protocols rather than performance.
Perhaps more similar to ZKPDL, the languages Cryptol [112] and Stupid [109] provide a
simple interface for developing low-level implementations of cryptographic primitives (such
as hash functions) which can then be analyzed and translated into native code on di�erent
platforms.

10



Chapter 3

Currency for P2P systems

This chapter focus on how to design a peer-to-peer system that uses endorsed e-cash. The
main application considered here is how peers might use e-cash to buy and barter for blocks
of data in a file-sharing system like BitTorrent. However, e-cash accounting techniques are
more widely applicable to other distributed systems, and this chapter also outlines how
endorsed e-cash may be applied to applications such as distributed lookup, computation,
storage, and onion routing.

This chapter is organized as follows. Section 3.1 reviews the requirements on a P2P
currency and introduces endorsed e-cash. The application of endorsed e-cash to BitTorrent-
like systems is described in 3.2. Protocols for buying and bartering data are presented in
Section 3.3. In Section 3.4 practical measures are described to mitigate the performance
costs of e-cash, with preliminary simulations to measure their e�ectiveness. Economic issues
introduced by our currency-based design are discussed in Section 3.5. Other applications
of e-cash to distributed systems are described in Section 3.6.

3.1 Currency requirements
First, an appropriate currency to incentivize peer-to-peer systems must be chosen. The
currency must be fungible: a user must be able to be paid for service and spend this payment
for service from any other user. The payment protocol should ensure a fair exchange of
money for the content: either the seller gets paid and the user gets the content, or neither
of them gets anything. Users should be able to spend the currency anonymously: there
should be no way to link an e-coin to the user that spent it, even if the bank colludes with
all sellers. The currency must also be unforgeable: users should not be able to forge money
(or at least be caught and punished when they try). Finally, we want this currency to be
e�ciently implementable.

One currency that satisfies all these requirements is e-cash [45, 46], which o�ers the
following properties:

• Anonymity. E-cash ensures that it is impossible to trace an e-coin to the user who
spent it, even when the bank colludes with all the sellers. It is not even possible to
tell if two di�erent e-coins were spent by the same user. The only exception is if a
user tries to double-spend an e-coin. In this case, the bank can learn the identity of a
cheater (and in some cases even trace all e-coins the dishonest user ever spent), and
punish him accordingly.
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• Unforgeability. A dishonest user might try to spend the same e-coin more than once.
The simplest solution to this problem is to use on-line e-cash: the seller consults the
bank during every transaction to ensure the promised e-coin is new. However, this
approach places a heavy burden on the bank and compromises the privacy of the
user (if a fair exchange fails, new e-coins can be linked to old ones), and thus is not
preferable.
In o�-line e-cash, a buyer and seller perform a transaction without consulting the
bank. At some later point, the seller can deposit all of the coins he has received.
The bank will then check whether any of these coins have been spent before. If a
user spends the same e-coin more than once, the bank can use the forged e-coin to
identify the user. Note that, at this point, the user has already carried out multiple
transactions and obtained more content than to which he is entitled. It is up to the
system to devise a punishment su�cient to deter forgery.
The bank can limit the ability of dishonest users to forge e-coins indefinitely, by
publishing an Authorization List of users who are permitted to spend money o�-line.
The list would in reality be condensed to single value, called an accumulator [39].
Users can prove that they are in the accumulator without revealing their identities.
As long as sellers receive frequent updates to the Authorization List, a user would not
be able to double-spend many times. If a user double-spends, the bank can simply
remove him from the accumulator and punish him (e.g., by banishing his account).

• Fair exchange. To be useful, an e-cash scheme must enable users to perform a fair
exchange of e-coins for digital content. All fair exchange protocols require a trusted
third party (TTP) that is responsible for resolving disputes. Here, we refer to the TTP
as the arbiter, to emphasize its potential di�erence from the bank. In an optimistic
fair exchange protocol, the arbiter is only involved when one party cheats. There has
been extensive prior work on fair exchange, however none of the existing protocols is
su�cient for file-sharing applications.
We need to provide a protocol for exchanging an e-coin for a file. Jakobson [98] and
Reiter, Wang, and Wright [153] provide protocols for exchanging e-coins for data.
However, these protocols are not truly fair exchanges: with both the user loses his
e-coin if the exchange fails. Asokan, Shoup and Waidner [7] provide a protocol which
allows a user to reuse his e-coin after a failed exchange, but unlinkability is no longer
guaranteed for the reused coin: it is possible for a merchant to identify that the same
coin is being respent in a second transaction. Furthermore, these protocols all require
that e-coins be withdrawn one by one from the bank.

3.1.1 Endorsed e-cash
The best solution that satisfies these requirements is Camenisch et al.’s endorsed ecash [42],
which allows users to withdraw and store many coins at once, and to respend coins after
failed exchanges with the guarantee that these coins will still be unlinkable. However, this
protocol has the disadvantage that in case of a conflict, the arbiter must download and
verify an entire file. Thus in Section 3.3.3 we modify this protocol so that the arbiter only
has to examine a short proof provided by one of the parties.

As generating e-coins is somewhat expensive, we also wish to provide a more e�cient
protocol for bartering files. There is no existing protocol that addresses this situation. Bao,
Deng, and Mao [13] provide protocols for fair exchange of signatures, but not of other forms
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of data. Asokan et al. [7] provide a protocol for fair exchange of data, but they assume
that there is an online verifier who verifies each block of an encrypted file and provides a
signature on that file. We provide an e�cient protocol which allows two users to exchange
files given only that both know the correct hashes on those files in Section 3.3.

In endorsed e-cash, a central bank maintains an account for each user. Users can with-
draw a wallet of multiple e-coins from the bank in one e�cient operation. Users can spend
their e-coins anonymously by performing an e�cient fair exchange of e-coins for digital con-
tent. However, users must deposit e-coins they have earned back into their bank accounts
before spending them again.

Overview An endorsed e-cash transaction proceeds as follows: to spend an e-coin, the
buyer chooses a random value, called the endorsement, and uses it to encrypt the e-coin
to get coinÕ. The buyer gives the seller coinÕ, but retains the endorsement. The seller
verifies that (1) coinÕ is a valid unendorsed e-coin and (2) the buyer knows an endorsement
that will decrypt the e-coin. Once the seller is satisfied, the buyer and seller perform a
fair exchange of the endorsement for the content. It is possible to simultaneously exchange
several e-coins for multiple goods and services. If a fair exchange fails, the buyer re-encrypts
the e-coin with a new randomly chosen endorsementÕ. The new coinÕÕ cannot be linked to
the original coin, the previous coinÕ, or the user, unless the coin is double-spent.

Fair exchange Endorsed e-cash allows us to perform an e�cient optimistic fair exchange
on e-coins, which is the unique feature of endorsed e-cash. We used endorsed e-cash to create
two new fair exchange protocols, for buying and exchanging files, that place a significantly
smaller load on the arbiter than prior work. To ensure fairness, the arbiter needs to (1)
download the unendorsed e-coin (this requires it to download just one integer) and (2)
verify that the seller’s supplied content is correct. In the case of the buy protocol, the
arbiter randomly tests parts of the file to verify correctness. In the case of the barter
protocol, the aggrieved party supplies the arbiter with a short proof that a segment of the
file is corrupted. The details of this new, e�cient fair exchange protocol using endorsed
e-cash is given in Section 3.3.

Enforceable contracts Each endorsed e-coin is explicitly associated with a contract.
Only the owner of the e-coin can create the contract. The buyer gives the contract to
the seller along with the encrypted coinÕ. The seller can either accept the terms of the
contract and initiate the fair exchange protocol, or reject the contract and simply terminate.
Endorsed e-cash [42] primarily use the contract to provide some necessary randomness for
the e-coin. In this work, we explore how to use this contract to explicitly ensure fairness,
via the arbiter. Two new fair exchange protocols in Section 3.3 use specially structured
contracts to allow peers to buy and exchange files. In Section 3.6, we explore how to use
contracts to enforce fairness in distributed look-up, distributed storage, and distributed
computation.

3.2 System design
We now describe a peer-to-peer content distribution system that uses e-cash to provide
strong accountability. We draw inspiration from BitTorrent, but strengthen its loose barter
accounting with two new protocols allowing a node to buy and barter encrypted data blocks

13



from its neighbors. These protocols, detailed in Section 3.3, enable these transactions
through the fair exchange of decryption keys for e-coins, or for other decryption keys.

3.2.1 Bank and arbiter
Our design requires the existence of two trusted entities: a bank, which provides secure
resource accounting, and an arbiter, which ensures the fair exchange of e-cash for data.
These nodes are trusted to be fair, but otherwise are not trusted with private information,
and may operate separately.

The bank maintains each user’s bank account, handling and validating deposits and
withdrawals. The centrally-administered bank is also responsible for administering mone-
tary policy, which we discuss in Section 3.5.2. For our application, a user’s accumulated
savings represents the amount of data uploaded in excess of that downloaded; it also bounds
the maximum number of simultaneous buying and bartering transactions a user may un-
dertake. Like the tracker, the bank cannot link activity between peers. The application of
unlinkable currency makes BitTorrent’s design—while not originally privacy-preserving—no
less private by e-cash.

The arbiter protects the fair exchange of keys for e-coins by resolving aborted transac-
tions in cases of node failure or intentional misbehavior. (We expect the prospect of future
exchanges, especially in a system like BitTorrent that prizes high-bandwidth neighbors so
highly, to be a strong incentive against the latter.) The arbiter seems well-suited for distri-
bution: distributing it would require only the system’s escrow key and a put/get database,
similar to the design the email postage system DQE [174].

The introduction of these two centralized entities, required by our goals of secure ac-
countability, may seem to contradict the fully decentralized nature of some peer-to-peer
systems. But it fits our goal of enhancing the scalability of these systems with proper ac-
counting. We note that previous work on incentives and accountability in P2P systems have
also relied on centralized entities, whether by providing a central reputation service [25] or
employing trusted agent(s) to punish misbehavior [114, 129]. BitTorrent also uses a trusted,
centralized tracker to coordinate peer activity. These systems reinforce the view that the
value of P2P design is in its scalability, not necessarily in its decentralized nature.

3.2.2 Users
Each user must establish an account with the bank before she can withdraw and deposit
e-cash. Rather than provide new users with a starting balance, we look to social networks:
new users are invited by friends with existing accounts, who transfer some e-cash from
their own bank account to the invitee’s account. This technique limits the utility of Sybil
attacks [69]; we discuss bootstrapping new users further in Section 3.5.1.

Our protocols require users to deposit each earned coin before it can be re-spent, pre-
senting a potential performance bottleneck. The computational requirements necessary for
our cryptographic protocols may weigh heavily on both users and the bank; we describe
practical approaches to lessening this burden in Section 3.4.

3.2.3 Obtaining blocks
Suppose Alice requests a block from Bob. Bob encrypts the block using a randomly chosen
key, and sends the ciphertext to Alice. Alice responds with an unendorsed e-coin and a con-
tract describing the file she wants. Having spent bandwidth on transferring the ciphertext,
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both parties now have an incentive to perform an optimistic fair exchange of the decryption
key for the e-coin’s endorsement. If Alice tries to avoid paying Bob, then Bob can give his
key to the arbiter and prove that it decrypts the ciphertext correctly, as specified by the
contract. The arbiter would endorse the e-coin for Bob. If Bob fails to give Alice a proper
key, then neither Alice nor the arbiter will endorse the e-coin.

Alice and Bob may also barter blocks when mutual coincidence exists, e.g., when each
has received the other’s encrypted blocks. To begin, they exchange unendorsed e-coins,
along with the coins’ endorsements encrypted under escrow. They can now perform fair
exchange for decryption keys indefinitely, with the escrowed coin as collateral. Details on
both protocols are provided in Section 3.3.

These two protocols are designed to correspond with the unbalanced and balanced ex-
changes used in a system like BitTorrent. We envision their use as follows: instead of relying
on altruism, nodes buy blocks at the outset, and later switch to bartering once they have
acquired enough data to participate fully in the torrent. We describe in Section 3.4 how the
performance benefits of bartering over buying provide sharing incentives. After completing,
nodes may continue to sell blocks to earn credit for concurrent or future torrents.

Key to the suitability of our protocols for this use is how our design decouples data
transfer from accounting: nodes download encrypted blocks and pay for decryption keys
later. This allows us to accommodate the “optimistic” behavior inherent in BitTorrent’s
choking protocol, since a node may optimistically send neighbors encrypted blocks and
reasonably expect to be paid for their keys later. A pair of nodes might delay reckoning
debts some number of rounds in order to wait for reciprocation and bartering opportunities,
or to improve performance by paying for multiple keys with higher-denomination coins.
Section 3.4 examines this further.

3.3 The buy and barter protocols
In Section 3.3.1, we present a fair exchange protocol that lets Alice buy a block of a file
from Bob. In Section 3.3.2, we present a fair exchange protocol that lets Alice and Bob
trade two blocks; we call this process bartering. In both protocols, when users are honest,
the arbiter will never be involved. If something goes wrong, the aggrieved party asks the
arbiter to resolve the dispute. In the barter protocol, this process is straightforward. The
buy protocol conflict-resolution is more involved and we describe it in Section 3.3.3.

We minimize the amount of work the arbiter performs so that a few malicious users
cannot overload it. Our buy protocol improves on the e-coin fair exchange protocols in
Camenisch et al. [42] and Asokan et al. [7] because the arbiter never has to download the
entire block (nor the encryption of it). Instead, the arbiter uses the VerifyKey protocol
in Section 3.3.3 to randomly test the correctness of the block. Our barter protocol also
improves on the Asokan et al. [7] digital content exchange protocol, which requires some
trusted party to verify that each block is correct and to sign the encryption of each block
together with the commitment to the encryption key. Our protocol only assumes that both
parties know the desired hash of each block; thus no trusted signer is required. The arbiter
never has to download the block; instead, Alice and Bob bring the arbiter a short proof
that the block they got does not match the desired hash. The barter protocol assumes that
Alice and Bob maintain a continuous relationship; as a result, Alice and Bob only have to
create one e-coin each to initiate a relationship, and can reuse the e-coins indefinitely.

Our protocol requires a symmetric block cipher: we write Enc
K

(block) to denote en-
crypting block with key K; Dec

K

(ctext) means decrypting ctext using key K. We assume
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that a block is large enough to be divided into chunks and Enc
K

(block) encrypts each chunk
separately. We also use verifiable escrow [43]: Escrow

Arbiter

(buydata, contract) this encrypts
buydata under the public-key of the arbiter. The decryption key to the escrow is a combi-
nation of the arbiter’s secret-key and the contract; this lets the arbiter ensure he decrypts
the escrow only when the terms of the contract have been fulfilled. Anybody who knows
the arbiter’s public-key and the contract can verify that the escrow is valid. Finally, write
Commit(buydata) to denote a commitment that can only be opened to buydata. In practice,
these would be implemented as Pedersen commitments [145].

We use Merkle hash trees [127] to create short descriptions of a block (or ciphertext).
We write MHash(block) to denote a Merkle hash of block. A person who knows the entire
file can publish (chunk, proof , MHash(block)) to prove that chunk is in (or is not in) block;
proof is short, e�ciently calculated, and includes the position of the chunk in the block.
(We require a collision-resistant hash function h.)

3.3.1 How to buy data
Retrieve metadata from the tracker Alice queries the tracker about a particular file.
As in BitTorrent, the tracker provides her metadata describing this file, in the form of
hashes for each block of data and a list of users who are interested in the file. The tracker
adds Alice to its user list.

Select a neighbor Alice contacts Bob and they determine whether either one has a file
the other wants. This is done using the same technique as BitTorrent.

Block acquisition Alice now decides she would like to buy a block of a file from Bob.
Assume Alice has acquires bhash = MHash(block) from a trusted authority (i.e. tracker).
Alice and Bob will agree on a timeout by when Bob must provide Alice with the block. The
protocol proceeds as follows:

1. Bob chooses a random key K and sends ctext = Enc
K

(block) to Alice.

2. Alice constructs an endorsed e-coin (coinÕ, endorsement). Alice calculates chash =
MHash(ctext), chooses a random value r and calculates the exchange ID v = h(r).
Alice sets contract = (bhash, chash, timeout, coinÕ, v). She escrows the endorsement
under the arbiter’s public-key: escrow = Escrow

Arbiter

(endorsement, contract). Alice
sends Bob (coinÕ, contract, escrow).

3. Bob verifies that (coinÕ, contract, escrow) is formed correctly. If he is satisfied, he
establishes a secure connection to Alice using standard techniques and sends the key
K. Otherwise, Bob terminates.

4. If Alice receives a K that lets her decrypt ctext correctly before timeout, she responds
with endorsement. Otherwise, Alice waits until timeout and then calls AliceResolve(r)
on the arbiter, as in Algorithm 3.3.1.

5. If Bob does not receive a correct endorsement before timeout, he calls BobResolve(K,
escrow, contract) on the arbiter, as in Algorithm 3.3.2.
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Security We sketch why our protocol ensures a fair exchange. Suppose Alice wants to
avoid paying. If Bob calls BobResolve before timeout, he is guaranteed to be paid, as long as
the unendorsed e-coin is valid (recall that Alice cannot abort the protocol before timeout).
If the unendorsed e-coin is invalid (either badly formed coinÕ or incorrect contract), Bob
would not accept it and terminate in step 4 without giving Alice the key K.

Suppose Bob wants to avoid giving Alice a correct key. If he calls BobResolve after
timeout he will not get paid. If he calls BobResolve before timeout, due to the contract
associated with the escrow, he can only get paid if he deposits the correct key K. Alice can
then retrieve K at her convenience.

3.3.2 How to barter for data
We present a protocol that lets Alice and Bob perform a fair exchange of two files. The
exchange proceeds in two phases. First, Alice and Bob give each other an unendorsed
e-coin and an escrow of the endorsement. This establishes a collateral that an aggrieved
party can collect if something goes wrong. In the second phase, Alice and Bob perform a
fair exchange of the file. If the exchange fails, the wronged party can ask the arbiter to
endorse the e-coin. As long as Alice and Bob are honest, they can continue in a bartering
relationship indefinitely using the same e-coin as collateral.

Suppose Alice has block
A

and she wants block
B

which is owned by Bob. They both
get hash

A

= MHash(block
A

), hash
B

= MHash(block
B

) from a trusted authority (i.e. the
tracker). They perform the exchange as follows:

1. Alice chooses a new signing key (skA, pkA) and gives pkA to Bob. Bob does the same,
responding with pkB.

A æ B : pkA

B æ A : pkB

2. Alice creates an endorsed e-coin (coinÕ
A

, endorsement) and calculates

escrow
A

= Escrow
Arbiter

(endorsement, contract),

where the contract states that the arbiter can endorse coinÕ for anyone who presents
some contract Õ that is (1) signed by pkA and (2) whose terms are fulfilled. Alice gives
(coinÕ

A

, escrow
A

) to Bob, who performs the corresponding operation and gives Alice
(coinÕ

B

, escrow
B

).
A æ B : (coinÕ

A

, escrow
A

)

B æ A : (coinÕ
B

, escrow
B

)

3. Alice calculates a ciphertext ctext
A

and a commitment to the decryption key K Õ
A

=
Commit(K

A

). Alice gives (ctext
A

, K Õ
A

) to Bob. Bob similarly computes (ctext
B

, K Õ
B

)
and gives it to Alice.

A æ B : (ctext
A

, K Õ
A

)

B æ A : (ctext
B

, K Õ
B

)

4. Alice and Bob both compute

contract Õ = (pk
Arbiter

, pkA, K Õ
A

, MHash(ctext
A

), hash
A

, pkB, K Õ
B

, MHash(ctext
B

), hash
B

).
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This contract states that to collect collateral, one of two conditions must be met: (1)
the owner of pkB can prove that the opening of K Õ

A

does not decrypt a ciphertext cor-
responding to MHash(ctext

A

) to a plaintext corresponding to hash
A

, or (2) the owner
of pkA can prove that the opening of K Õ

B

does not decrypt a ciphertext corresponding
to MHash(ctext

B

) to a plaintext corresponding to hash
B

. This can be proved using
standard techniques from Merkle hashes.

5. Alice gives Bob her signature on contract Õ and Bob gives Alice his signature on
contract Õ.

A æ B : sig
A

(contract Õ)

B æ A : sig
B

(contract Õ)

6. Alice and Bob execute a fair exchange protocol where Alice gets K
B

(the opening of
K Õ

B

) and Bob gets K
A

(the opening of K Õ
A

). This can be done using Asokan et al.
fair exchange [7].

A ¡ B : K
B

, K
A

(fair exchange)

7. If K
B

does not decrypt ctext
B

correctly, Alice goes to the arbiter with the signed
contract Õ, escrow

B

, K
B

, a proof showing that ctext
B

did not decrypt correctly, and
a proof that she knows the secret key corresponding to pkA. The arbiter would give
Alice the endorsement to Bob’s e-coin and his signature on the e-coin. Alice can bring
the endorsed e-coin to the bank and deposit it in her account. Bob would do the same
if K

A

is incorrect.

Note: Showing that ctext
B

does not decrypt correctly can be done e�ciently. Alice
gives the arbiter the signed contract Õ, K

B

, and a chunk that does not decrypt correctly.
The arbiter can check that K

B

is the promised opening of K Õ
B

. Then the arbiter can test
if (1) chunk is in ctext

B

, (2) MHash(ctext
B

) is in chash
B

and (3) Dec
K

B

(chunk) is not in
hash

B

.
Steps 1 and 2 of the protocol only have to be done once to establish a bartering rela-

tionship between Alice and Bob. Subsequently, Alice and Bob can perform steps 3–7 to
exchange a block. The bartering protocol has more e�cient conflict resolution. If Bob
cheats Alice, Alice can show the arbiter which chunk decrypted incorrectly. As a result,
(1) conflict resolution is more e�cient and (2) a cheating Bob is caught with overwhelming
probability. Finally, we note that, bartering two files is more e�cient for the users than ex-
ecuting two purchase protocols; this is because the Asokan et al [7] fair exchange only has
to be performed once instead of twice (per block). This is true even if Alice and Bob decide
to preserve anonymity by using new signing keys and e-coins each time they exchange files.

The main security challenge is to ensure that Alice cannot deposit the e-coin she put
up for collateral (and that Bob cannot deposit his collateral e-coin). We have to make an
assumption about the endorsed e-cash deposit protocol: the bank can verify the contract
associated with an endorsed e-coin. Specifically, the bank will have to verify that the arbiter
signed the e-coin (the arbiter’s signing key is included in the contract, so the bank does not
have to know the arbiter’s identity in advance). As a result, to deposit the e-coin under
contract Õ, Alice has to get the arbiter’s signature. Alice cannot enforce clause (1) of the
contract because she does not know Bob’s secret key. Alice can enforce clause (2) only if
Bob cheats, in which case she is entitled to get her e-coin back. The only other option Alice
has is to deposit her e-coin under a new contract. If Alice does this, and Bob later deposits

18



the endorsed e-coin under the old contract, the bank will see that Alice double-spent an
e-coin. Due to the construction of endorsed e-cash, if the same e-coin is deposited under
two di�erent contracts, the bank can trace the owner of the e-coin. Thus Alice cannot
deposit her own collateral e-coin unless Bob cheats. The same argument shows that Bob
also cannot deposit his own collateral e-coin unless Alice cheats.

3.3.3 How to resolve disputes
We give a protocol that lets a seller prove to the arbiter that he provided the buyer with
the correct ciphertext and decryption key.

Recall that when Bob calls BobResolve in Algorithm 3.3.2, he has to prove to the arbiter
that he has provided it with the correct key. Specifically, he has to show that K decrypts
ctext = c0||c1|| . . . ||c

n

to block = b0||b1|| . . . ||b
n

, where ctext is in chash and block is in bhash.
Bob and the arbiter execute VerifyKey, as shown in Algorithm 3.3.3.

Algorithm VerifyKey will detect if chunk c
i

does not decrypt correctly. We call such a
chunk corrupted. If Bob corrupts an nth fraction of the chunks, and the arbiter verifies
k chunks, then the arbiter will catch Bob with probability 1 ≠ (1 ≠ n)k. Suppose Bob
corrupts 10% of the chunks. To catch Bob with 90% probability, the arbiter needs to check
22 chunks; to catch Bob with 80% probability, the arbiter needs to check 16 chunks. This
approach might not deter a malicious Bob who just wants to perform a denial of service
attack. However, a selfish Bob who wants to try to get paid for a bad file block would be
deterred.

3.4 Scaling by bartering
The requirements of anonymity and security that we have placed on our currency and
associated protocols impose computational and communication overheads. This section
describes these overheads, and explains how they can be mitigated by careful system design.

Our currency system requires the bank to perform expensive verification for each e-coin
presented for deposit, performing roughly as much work as the seller in the buy protocol.
This high transactional overhead implies that a distributed, load-balanced bank service
would be required to meet the demands of a large system. A mixed hardware-software
approach [58] also o�ers a way to accelerate each bank node’s performance.

Still, it is clear that to lessen the load on the bank and users alike, we should also
consider reducing the number of buy-sell exchanges (and thus deposits) performed in the
system. One may begin by selecting a large block size, lowering the number of transactions
required, to the detriment of fine-grained accounting. This provides a guideline for uses in
other applications: using e-cash to account for a very large number of small transactions
may not yet be practical.

Our barter protocol, described in Section 3.3.2, sidesteps this potential bottle-neck by
avoiding the bank altogether. Bartering requires expensive computation only for the first
exchange, when both parties create escrow coins, a task comparable to performing both
the buyer’s and seller’s jobs. Successive bartering between the same two parties involve
only key exchanges, not heavy computation: the bank becomes involved only in the case
of a dispute, when one of the parties may deposit the other’s escrow coin. As discussed
in Section 2.2, BitTorrent’s choking mechanism and clustering behavior suggests bartering
would be fairly common, and made even more so with a block-level tit-for-tat policy [23] or
a choking policy designed for fairness [170].

19



Algorithm 3.3.1: AliceResolve, run by the arbiter
Input: Exchange ID r (ensures only Alice can resolve)
v Ω h(r);
if {v, K} œ DB then

send K to Alice.
end

Algorithm 3.3.2: BobResolve, run by the arbiter
Input: key K, escrow, and contract { bhash, chash, timeout, coinÕ, v }, all sent by

Bob
if currentT ime < timeout then

endorsement Ω Decrypt(escrow);
if endorsement not valid for coinÕ then

return error.
end
Run VerifyKey with Bob for K, using (bhash, chash) from the contract.
// ensures Alice sent them
if K verifies then

add {v, K} to DB.
send endorsement to Bob.

else
return error.

end
end

Algorithm 3.3.3: VerifyKey
Arbiter’s Input: Two Merkle hashes bhash and chash, key K
Bob’s Input: Ciphertext c0|| . . . ||c

n

), key K
Step 1: Arbiter’s challenge

The arbiter sends Bob a set of indices I.
Step 2: Bob’s response

Bob replies with (c
i

, cproof
i

, bproof
i

) for every i œ I, where cproof
i

proves that c
i

is the Merkle tree corresponding to chash and bproof
i

proves that b
i

= Dec
K

(c
i

) is
in the Merkle tree corresponding to bhash.

Step 3: Verification

The arbiter accepts the key if Bob responds with valid (c
i

, cproof
i

, bproof
i

) for
every i œ I, and rejects otherwise.
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Of course, bartering may only be used when a pair of participants have mutually de-
sirable content. We evaluate the likelihood of these exchanges using the discrete event
simulator from [23]. We attempted to replicate the heterogeneous “flash crowd” scenario
from their published results, using 1000 nodes split evenly between cable (6 Mbps down; 3
Mbps up), DSL (1.5 Mbps down; 400 Kbps up) and slow DSL (784 Kbps down; 128 Kbps
up). The participating nodes exchanged a 400-block file with the help of a 6Mbps seed
node.

The simulator provides a complete log of node interactions; we analyzed logs generated
from both the default choking policy and the block-level tit-for-tat (TFT) policy. For each
piece received, we searched through nearby events, looking for a reciprocating piece in the
opposite direction. If blocks were exchanged in both directions during a short window, we
assume that the peers involved could have bartered for the blocks in question.
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Figure 3.1: Bartering opportunities for di�erent barter windows. Choking policies designed
for fairness and clustering produce more opportunities for bartering.

We present the results of our simulations in Figure 3.1, charting the fraction of blocks
found eligible for barter (out of a total of 400,000 possible transactions) as we increase the
barter window length. Each line represents a simulation run using a di�erent choking policy.
We find that with a 30-second barter window (three rounds, the length of an optimistic
unchoke), the block-level TFT and default policies reveal roughly equivalent opportunities
for bartering, at a little more than half of all transactions. With longer barter windows,
the fairer block-level TFT policy produces more opportunities, but not as many as with
the quick bandwidth estimation (QBE) scheme [23]. The authors designed QBE to obviate
the need for optimistic unchoking (a major source of unfairness), by simulating the e�ect of
instantaneous, accurate bandwidth probes between nodes. This allows nodes to immediately
begin unchoking their fastest neighbors, without need for the trial-and-error method of tit-
for-tat.

These simulation results indicate that more than half of peer transactions between
BitTorrent nodes involve reciprocation soon after. Finding more bartering opportunities
requires modified choking policies designed for fairness and clustering; interestingly, the
currency overhead aligns greater fairness, through barter, with reduced computational bur-
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den. However, achieving these results in practice may be more di�cult: we do not simulate
node churn, failure, nor do we attempt to integrate currency budgets or debt-reckoning at
certain intervals into the choking policy. We leave this for future work.

3.4.1 Batched transactions
Bank deposits may also be reduced by grouping transactions over time: the bank may
issue di�erent coin denominations (i.e., $1, $2, $4, etc.), which can be used to pay for
multiple blocks at once. The bank must publish di�erent keys corresponding to each coin
denomination, so that they may be withdrawn and recognized by all users. A buyer could
then negotiate a contract to pay for n decryption keys with log(n) coins. We expect peers
may use larger coins once a long-standing relationship has been established (so that in
case of a dispute, not many resources would have been wasted), thereby decreasing load on
themselves and the bank.

We note that these techniques may apply to other currency systems as well, regardless
of the underlying implementation. For example, Karma [172] builds a currency atop a
distributed hash table (DHT); as a result, its karma-for-file exchange protocol requires many
DHT lookups. Here, the overhead is defined by network latency, rather than computation,
but this overhead may nevertheless be similarly reduced by bartering and batching.

3.5 Economic Issues
In a monetized P2P network selfish peers serve as agents in a virtual economy. Peers
that behave correctly not only earn money, but add value to the network. As peers join,
the economy grows, requiring the creation and distribution of currency. The bank must
implement a monetary policy and peers must navigate the marketplace. In this section we
consider some simple solutions to these problems.

3.5.1 Entering the Network
Users in a monetized file sharing network make money by sharing the files they acquire.
This presents a bootstrapping problem: new users must obtain the resources (either e-cash
or files) required to obtain files.

If the bank simply gives new users e-cash, the network becomes highly vulnerable to
Sybil attacks [69]. Users will join repeatedly and e-coins will become worthless. A more
reasonable option is to give away blocks from a randomly selected file. Unfortunately this
places significant demand on the bank’s bandwidth, and requires that the bank obtain a
steady stream of desirable (and legal) content.

To avoid incentivizing Sybil attacks, we provide new users with neither coins nor files.
Instead we assume an existing social network capable of distributing files and e-coins. It is
in a P2P network’s interest to admit productive users. We expect existing users to give (or
lend) e-coins and files to trusted friends.

If a potential user cannot obtain resources through friends, they can also obtain e-coins
using some real world resource. The bank may either sell e-coins for real money, or facilitate
an auction between new and existing users. Alternatively, users can be given coins when
they perform a bandwidth intensive task (for example, users look up webpages and compute
hashes, which the bank then crosschecks). If the payo� of this task is small compared to
the payo� of sharing files, users will not waste bandwidth to join multiple times.
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3.5.2 Creation of Money
In any monetized P2P network, there is a time and cost associated with each transaction.
The bank must provide enough e-cash to satisfy the network’s demand for simultaneous
transactions. If the bank produces too few e-coins, the network cannot operate near full
capacity, and if the bank produces too many e-coins inflation potentially leads to a monetary
crash [102].

One proposed heuristic for currency creation is to grow the number of e-coins linearly
with the number of users [172]. This heuristic ignores the fact that certain users add more
value to a network than others. Furthermore, it does not address how new e-coins should
be distributed. Simply paying users interest on their bank balances is problematic since it
allows wealthy users to continually earn money without participating.

A simple, yet robust approach to wealth distribution is for the bank itself to participate
in the network. The bank can inject new e-coins when making purchases, or destroy existing
e-coins after making sales. To determine when currency should be created or destroyed the
bank can monitor the rate at which files are bought and sold, as well as the rate at which
e-coins are withdrawn and deposited. If currency becomes sparse, purchase requests will
slow. If currency is overly abundant, purchase requests will increase but finding sellers will
become di�cult. In either case withdrawal and deposit rates with slow.

A more analytic approach to currency regulation is pursued in [102]. Using a restricted
economic model, the authors demonstrate that bank balances (e.g. knowledge of wealth
distribution) can predict how much currency can be added to a monetized P2P network
without resulting in a crash. The model also allows the authors to bound the impact of
altruistic behavior and money hoarding. Though their approach is promising, their results
assume that all users have equal file-sharing resources (i.e. bandwidth, files to share). The
authors believe that more realistic assumptions do not fundamentally change their results.

3.5.3 Variable vs. fixed pricing
In our protocol, the price of a BitTorrent block is fixed at one e-coin. This minimizes the
overhead associated with purchasing files, but requires the value of an e-coin to remain
relatively constant; it also assumes that all content is priced the same per block. A protocol
with variable prices permits sellers to correct for inflation and deflation. It also allows
buyers to pay more for faster delivery of high-priority blocks (this would be useful for
streaming). To enable variable pricing, the bank can produce multiple denominations of
e-coins. If multiple coins are involved in a transaction, however, the overhead associated
with depositing these coins grows linearly. Furthermore, client behavior becomes much
more complex, since prices must be intelligently negotiated.

Our approach also provides incentives for the BitTorrent’s “rarest first” heuristic. Even
with fixed pricing, the rare blocks are more likely to be sold. Participants have an incentive
to buy rare blocks first, making them more common, and helping to solve the problem of
blockage at the end.

3.6 Currency for other distributed applications
We believe e-cash can be securely and anonymously applied to many other distributed peer-
to-peer systems. This section briefly describes how to make use of e-cash to incentivize such
applications. The key requirement for any application of e-cash accounting schemes to other
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systems is the formulation of a contract describing the resource exchanged in the buy or
barter protocol. In order to ensure fair exchange of resources for coins, this contract must
be able to concisely describe the resource in case of the need to resolve a claim with the
arbiter.

3.6.1 Distributed lookup
In BitTorrent, users contact a centralized tracker for a list of neighbors who are likely to
have the file. We want to remove any central trust points (except possibly the bank). We
need the system to be e�cient: lookup queries should not flood the whole network. We want
to introduce incentives to encourage peers to help other users find files and to discourage
unnecessary lookup queries.

One approach is to pay each node along the query path; the interaction between search
depth and query price has been studied in random-tree networks [104]. In a fully incentivized
DHT, payments would insure an e�cient lookup structure and honest responses to queries.
Suppose Alice wants to find some file (or a peer responsible for tracking the file). She asks
Bob, the closest peer she knows to the file, for the next hop. Alice pays for this information
using endorsed e-cash only if the next hop node is at least half-way closer to the file than
Bob (which can be checked using hashes), as specified in the contract. Then Alice would
contact the next node and repeat the process. Alice pays all peers that help her find the
file, encouraging peers to cooperate, and discouraging fake lookups.

3.6.2 Onion routing
The anonymity properties provided by our currency is particularly suited to privacy-
preserving systems or anonymous networks, since peers cannot be linked to their e-coins
or resource transactions. In onion routing (i.e. anonymous remailing) [44, 84, 65] systems,
participants route their messages through randomly chosen intermediate peers to disguise
the origin and destination of messages. Each router only knows about the next hop, and so
the real sender and receiver is hidden. Selfish peers might want to use the system to send
and receive messages, but refuse to route other peers’ packets.

As an incentive, a router could be paid only if it passes a message to the next router
in chain, by using a technique involving threshold endorsed e-cash described by Camenisch
et al. [42]. They outline a system whereby senders distributes portions of the endorsement
needed by each router to redeem its payment to its next- and previous-hop neighbors in
the routing chain. This technique would require that in order for a router to get paid, it
must perform a fair exchange with both of its neighbors (since each has a portion of an
endorsement that the other wants), ensuring message delivery to the final destination (who
holds the final endorsement).

3.6.3 Distributed computation
In current distributed computing projects, like Rosetta@Home [156], people voluntarily
donate their excess CPU cycles to perform computation-heavy tasks. We can transform
this one-way system into a mutually beneficial computing cluster. Users can accept outside
jobs when their CPU is not fully loaded, and pay other users to perform some computations
when they need more resources.

Suppose Alice wants some computation-heavy task to be done (although I/O-heavy
tasks may also be considered). We propose that using e-cash can provide an incentive for
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other uses to not only contribute in this computation but also perform it correctly. For some
problems, such as graph coloring (in NP), verifying the correctness of the answer is easy, and
so can be a part of the contract. In optimization problems, the contract may specify that
the best answer within a deadline will be paid (the most), and again the verification is easy.
Unfortunately, this is not true for some other types of problems. We further consider this
application in Chapter 4, modeling Alice as a boss employing multiple contractors interested
in performing computational tasks for currency.

3.6.4 Distributed storage
A distributed storage system allows a user to backup her data on another peer’s machine.
Suppose Alice wants to backup her data, and this will be done on Bob’s machine. If Alice
pays Bob upfront, then Bob has no incentive to store the data, he already got the money.
However, if Alice pays him upon retrieval, then if she decides she no longer needs the data,
she would never pay and Bob would have wasted his resources storing her data.

A simple approach might propose that Alice pays Bob upfront, but Bob gives her a
warranty check in return (via a fair exchange protocol) that contains a Merkle hash of the
data (for the arbiter to easily verify without downloading the whole data), an unendorsed
e-coin, and an escrow of the endorsement. If Bob ever loses or corrupts the data, the arbiter
would decrypt the escrow and pay Alice for her damage. The bank can ensure that Bob
always maintains a balance large enough to cover his liability. When Alice gets her data,
the check is invalidated.

However, this simple approach does not provide any guarantee to Alice that her data
is still in Bob’s possession until she finally decides to retrieve all of it later—and by then,
if the data is missing or corrupted, she is out of luck. In Chapter 5 we describe how Bob
can generate dynamic proofs of data possession that concisely prove to Alice (and also
the arbiter) that he continues to possess her data. The dynamic nature of these storage
proofs allows Alice to e�ciently modify, insert, or delete portions of the data she has stored
with Bob, just as she can with data on a local filesystem, without an expensive round spent
retrieving, recomputing, then re-storing of all her remote data. These storage proofs provide
for an unlimited number of random challenges, meaning that Alice can check every hour
or every day that Bob still has her data, and pay for this periodic check (representing his
continued service as a storage provider) with e-coins.
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Chapter 4

Accounting for outsourced
computation

Many tasks exhibit an arbitrarily high appetite for computational resources. Distributed
systems that coordinate computational contributions from thousands or millions of partic-
ipants have become popular as a way to tackle these challenges. Examples include systems
such as SETI@home [163] and Rosetta@home [156], which seek to analyze huge amounts
of data in the search for extra-terrestrial life and a better understanding of protein folding,
respectively. In these systems, every additional computational element added to the system
provides greater utility.

This chapter is motivated by e�orts to build peer-to-peer systems that rely on cryp-
tographic electronic cash (e-cash) to provide incentives for participation as described in
Chapter 3. Such a system prevents free-riding without sacrificing the privacy of its par-
ticipants. However, the verification of e-coins by the bank is an expensive computational
operation, and we wish to o�oad this work from the bank to the participants.

The naïve solution is to simply give each peer a program to run (such as an e-coin
verifier) and the input to this program (an e-coin). The peer would run the program and
report the answer. There are several problems with this approach. First, without a reward,
there is no incentive for participants to do any work. Second, even if the participants
were compensated for their contribution, there is no incentive to perform the computation
faithfully. Peers may report an answer at random or, perhaps, report an answer that they
know a priori to be the most likely output of the computation (e.g., that most e-coins are
valid). Worse, if participants are malicious, they may choose to behave irrationally in order
to force the bank to perform more work or accept incorrect results.

There problems are not limited to e-cash systems, however. Users of the distributed
computing network SETI@home have developed their own clients, for both malicious and
selfish reasons [131, 144] (see Section 2.3.3). Multi-player games cannot assume that players
will not modify their clients to give themselves an in-game advantage.

This solution assumes that there is some currency or credit system with which we can
reward or fine contractors depending on their performance. This could be a reputation or
credit system in which good contractors are awarded higher scores, or an actual currency
which can be exchanged for some other services. This allows us to set incentives such that
rational contractors will compute jobs correctly.

In this chapter, we analyze how to the boss can set fines and rewards, and how often
it will have to double-check the contractors’ results in order to enforce the incentive struc-
ture. In Section 4.2, we define a game-theoretic framework to analyze di�erent scenarios.
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Section 4.3 shows how to use collision resistant hash functions to increase the probability
of getting a correct answer without increasing the fine-to-reward ratio and the amount of
double-checking. In Section 4.4 we examine means of performing checks on contractors’
answers, and consider outsourcing the same computation to multiple contractors, double-
checking only if they disagree, as a way to reduce the amount of centralized double-checking.
We also look at the e�ect of o�ering a bounty to a user who catches another contractor
returning a wrong answer. In Section 4.5, we examine how to limit the damage that can be
caused by malicious and colluding contractors, who seek to maximize the amount of central-
ized double-checking, or decrease the accuracy of submitted results. Finally, we evaluate the
performance of di�erent settings the boss can set to influence the behavior of contractors
in Section 4.6.

4.1 Model
A central authority, the boss, will reward contractors to perform computational tasks, or
jobs, on its behalf. The goal is to reduce the demand on the boss’s own computational
resources. We assume that contractors continually request new job assignments from the
boss, but that they may freely choose when to stop requesting new jobs.

The boss will reward a contractor r for correctly completing a job. If the boss finds out
that the contractor returned an incorrect result, the boss will fine the contractor f , which
is subtracted from the contractor’s accumulated earnings. The boss will not assign a job to
a contractor unless the contractor has enough credit to pay the potential fine. As a result,
we are concerned with reducing the fine-to-reward ratio (f/r): too high a ratio makes it
harder for contractors to participate. As we will later see, there is a trade-o� between the
work the boss has to do and the f/r ratio.

Our definition of a job captures any e�ciently computable task and its inputs. For the
e-coin verification scenario, the only way the boss can make sure that a contractor properly
verified an e-coin is to reverify it herself. Similarly, for the Folding@home project, the boss
must refold the protein. For jobs in NP, the verification is much easier. However, the boss
can only check an answer if the output of the computation is deterministic. If the job uses
a randomized algorithm, the boss must provide the contractor with a random tape (i.e. a
seed to a pseudo-random number generator).

The results of some jobs may be easier to predict than others. Consider a naïve decision
problem formulation of the SETI@home project, “Is alien life detectable in this radio tele-
scope data?” Or, for the e-coin verification task, “Do these values represent a valid e-coin?”
A rational contractor may decide to conserve its computational resources and simply guess
the most likely answer (“no” and “yes”, respectively). We describe a hashing technique to
detect incorrect answers, even for such highly skewed answer distributions.

Our payment- and penalty-based incentives assume the presence of an underlying eco-
nomic framework in which the boss can enforce fines and rewards. In the e-cash system
described in Chapter 3, peers use e-cash to exchange resources; if the bank wishes to out-
source tasks, it can easily increase and deduct account balances directly. BOINC similarly
directly rewards users with credit that raises a user’s ranking on the leadership board. A
service provider boss (e.g., a storage server) might reward contractors by providing them
better service (e.g., more storage), and fine them by reducing the service provided (e.g.,
limiting their storage space). Real currencies might also be used if contractors o�er the fine
amount as deposit with the boss. Our model assumes only that a boss is able to withdraw
f from and pay r to contractors.
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4.2 Basic construction
Consider a contractor who has just been assigned a job by the boss. He faces two options:
first, he may perform the job honestly, and receive a reward r. If we define the cost of
computing a single job using the algorithm provided by the boss as cost(1), the expected
utility u(1) of an honest contractor is u(1) = r ≠ cost(1). In this case, we assume that the
boss sets r large enough to provide positive utility for the contractor, or he will refuse the
job.

The contractor’s second option is to return an output using an algorithm di�erent from
that specified by the boss. This might be possible, for example, if the contractor possesses
a priori knowledge of the output distribution: it can simply guess the most likely output.
Or, more generally, suppose the contractor has access to an alternative algorithm which
provides a correct output with probability q (e.g., SETI@home “optimized” client). Here,
the contractor may still receive r, but risks being fined f if the boss discovers he has
submitted an incorrect result.

We denote the probability that this lazy contractor will be caught submitting an in-
correct result as p. However, we do not assume that the boss will be able to detect each
incorrect result submitted and fine the guilty contractor: since checking the correctness
of a submitted result may unduly waste computational resources. (We defer discussion of
methods for checking results to Section 4.4.) Thus we can decompose p into two di�erent
values: the probability that the contractor’s result is incorrect, and the probability that the
result will be checked, when it is incorrect.

p = Pr[check | incorrect] Pr[incorrect]

We can analyze these two probabilities separately. First, let c be the probability that
a contractor’s result will be checked, conditioned on that contractor returning an incorrect
result: c = Pr[check | incorrect]. The check can be performed by the boss or by other
contractors. This also describes the case when the probability of a check is independent of
the contractor’s answer (e.g., if the boss simply checks a fraction c of submitted outputs
itself).

Next, we return to our definition of q, the probability of the contractor returning the
correct answer using an alternate method. Clearly the probability that the contractor’s
answer is incorrect is 1 ≠ q. Thus

p = c(1 ≠ q)

We also define the cost of the alternate method for obtaining a correct result with probability
q as cost(q). We assume this cost is at most cost(1)—otherwise, the contractor would simply
run the suggested algorithm—and at least 0.

We can now define the expected utility u(q) of a contractor, taking into account the
probability p of being caught and his cost, as

u(q) = r(1 ≠ p) ≠ fp ≠ cost(q)

The contractor will receive a reward unless he is caught cheating, in which case he will be
fined. Note that when q = 1, the contractor is performing the job correctly, and thus p = 0
and u(q) = u(1) from our previous definition.

For a rational contractor, selecting a value of q < 1 and earning the expected utility
u(q) may present a lucrative choice, resulting in a potentially incorrect output. However,
the boss can provide incentives to perform jobs correctly by setting f , r, and c.
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Theorem 4.2.1 If the boss sets the fine-to-reward ratio to f/r Ø (1≠p)/p where p = c(1≠Á)
then a rational contractor will return correct outputs at least Á of the time.

Proof To prove this, we need to show that for any qÕ < Á, the resulting utility
u(qÕ) < u(Á). Since we cannot argue about the cost functions of contractors realistically
(contractors may value their resources di�erently, and it might also depend on the state
of the contractor like his current load), we want to show ’qÕ < Á, u(qÕ) Æ 0. Remember,
u(qÕ) = r(1 ≠ pÕ) ≠ fpÕ ≠ cost(qÕ), where pÕ = c(1 ≠ qÕ). If we set f/r Ø 1/p ≠ 1 Ø 1/pÕ ≠ 1,
then we guarantee that r(1 ≠ pÕ) ≠ fpÕ Æ 0. Thus, given such an f, r, c, any contractor
who is not correct with probability at least Á will have negative utility. This means any
rational contractor will either perform the job with accuracy at least Á, or will refuse to
do the job.

Corollary 4.2.1 Any rational contractor will use the least costly algorithm that provides
correct answers with at least Á probability.

4.3 Accuracy and hash functions
By setting the fine-to-reward ratio as above, the boss can require rational contractors to
compute jobs correctly above a certain minimum accuracy requirement. Yet, obtaining high
accuracy might require an infeasibly high fine-to-reward ratio, and for some applications
even a small fraction of inaccurate results might be unacceptable.

Our concern is that there might be some alternate algorithm that costs the contractor
very little (in terms of computation), and that produces the correct answer with some fairly
high probability ‘ (e.g., guessing a coin to be valid in the e-cash verification scenario). To
prevent the contractor from using such an algorithm, we might have to set the fine-to-reward
ratio unreasonably high.

Ideally we would like to ensure that the contractor actually runs the algorithm that
we choose. Thus, instead of simply returning an answer, we could ask the contractor to
send us the results of every intermediate computation. If we assume that the intermediate
computations are small enough steps that the only way to get the correct intermediate
result is by actually running the appropriate computation, then this will be su�cient to
convince the boss that the contractor has run the computation correctly. Finally, to prevent
the contractor from having to send a very large amount of information, we have him use
a cryptographic hash function to hash all of this information into one short string. More
formally:

Definition 4.3.1 An algorithm is assumed to be composed of a finite number of atomic

operations. Each atomic operation is assumed to take a state information and output
another state information. The inner state of an algorithm is defined as the concatenation
of all the input/output states of the atomic operations of the algorithm, along with the
definition of the algorithm in terms of atomic operations. The original algorithm for a given
job is the one prescribed by the boss to the contractor. A hash function deterministically
maps the inner state of an algorithm to a random l-bit string. Define negligible probability
neg = O(2≠l).

We would like to assume that all algorithms which produce the correct result either have
cost cost(1) or negligible success probability. However, there is always a potential mixed
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strategy which with some probability runs the original algorithm and with some probability
makes a random guess of the inner state. Thus, we make the following assumption:

Assumption 4.3.1 (Unique Inner State Assumption) (for input distribution D
and negligible neg

Õ
)

Let cost(1) be the cost of the original algorithm. We assume that any algorithm which has
expected cost “cost(1) (given a random input from D) will produce the correct inner state
with probability at most “ + (1 ≠ “)neg

Õ (provided 0 Æ “ Æ 1).

Then we can say that a similar statement holds even after the application of the hash
function:

Theorem 4.3.1 Let cost(1) be the cost of the original algorithm. Let D, neg

Õ < neg be such
that the unique inner state assumption holds. Then under unique inner state assumption
and the random oracle model1, any algorithm which when given a random input from D
has expected cost ”cost(1) < cost(1) will produce the correct hash of the inner state with
probability at most ” + (1 ≠ ”)neg (provided 0 Æ ” Æ 1).

Proof (of Theorem 4.3.1) Consider the operation of the algorithm on a particular in-
put. There are two ways that an algorithm can output the correct hash value. First,
the algorithm might have queried the random oracle (to obtain the hash output) at the
same inner state value as the original algorithm. That means by the unique inner state
assumption that this operation must have cost “cost(1) and succeed with probability
“ + (1 ≠ “)neg

Õ. Second, the algorithm might have produced the same hash without
querying the random oracle at using the correct inner state. This has only negligible
probability under the random oracle model. We have said that the algorithm has ex-
pected cost ”cost(1). That means that it can be taking the first approach (following the
correct probability) on at most ”

“

fraction of the inputs. Thus, on all other inputs, it has
at best neg probability of success. That means that it’s total success probability can be
at most ”

“

(“ + (1 ≠ “)neg

Õ) + (1 ≠ ”

“

)neg Æ ” + (1 ≠ ”)neg.

Finally, we conclude that if we set the parameters appropriately, a rational contractor
will always use the original algorithm.

Theorem 4.3.2 Suppose that definition 4.3.1 holds for our input distribution. If f

r

Ø 1
c

,
and r > cost(1) and c > neg/(1 ≠ neg), then a rational contractor will use the original
algorithm for the job.

Proof Running the original algorithm results in utility r ≠ cost(1). By theorem 4.3.1,
any other algorithm will either have cost greater than cost(1) (and thus obviously lower
utility), or will have cost ”cost(1) < cost(1) and success probability ” + (1 ≠ ”)neg. That
means the total utility will be (” + (1 ≠ ”)neg)r ≠ (1 ≠ ” ≠ (1 ≠ ”)neg)cf + (1 ≠ ” ≠ (1 ≠
”)neg)(1 ≠ c)r ≠ ”cost(1). If f, r, c satisfy the conditions described in the theorem, then
this utility will always be strictly less than r ≠ cost(1), so the rational contractor will
always run the original algorithm.

Using a hash function with output length 160 bits (e.g., SHA-1), the boss can easily set
f, r, c appropriately so that every rational contractor will use the original algorithm. For
the remainder of this chapter, we can then assume Á ≥= 0, and therefore p ≥= c.

1The random oracle model is commonly used in cryptography. It assumes that the hash function behaves
like a truly random function.
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4.4 When to check an answer
In Section 4.2, we analyzed how to set the fine-to-reward ratio f/r in terms of p, the proba-
bility that a contractor will be caught; e.g., by setting f/r = (1 ≠ p)/p the boss can provide
incentives to rational contractors. In this section, we will examine di�erent strategies the
boss can use to actually catch the contractors. We will analyze c = Pr[check|incorrect],
the probability that the boss or other contractors will check the answer of a contractor,
conditioned on that contractor returning an incorrect answer.

4.4.1 Double checking
A simple strategy is for the boss to randomly double-check an answers it gets with proba-
bility t. Here, the boss cannot know whether a job is incorrect until it has checked it, so
c = t. Setting a low value of t allows the boss to reduce the amount of work needed for
double-checking—but since c is inversely proportional to f/r, a high f/r may present an
impractical barrier for contractors seeking jobs.

4.4.2 Hiring multiple contractors
The boss can try to minimize the amount of checking he has to do by farming out the same
job to multiple contractors. The boss then double-checks a submitted result only if the
contractors disagree.

The problem is that if all contractors output the same false answer, the boss will never
catch them. In fact, the contractors find themselves in a situation similar to the the iterated
prisoner’s dilemma. The best strategy for all the contractors is to employ a tit-for-tat mech-
anism: they should cheat until another contractor performs the computation honestly [151].

We begin our analysis by assuming that a fraction h of the contractors will always
perform the computation honestly: we call these contractors diligent. Later, we will show
how to do away with this assumption. Suppose the boss chooses m contractors at random
and assigns them the same job. We can describe c as the probability a contractor will be
caught by other contractors if he submits an incorrect answer.

Theorem 4.4.1 Suppose the boss farms out a job to m contractors, each of which are
honest with probability h, then the probability that a cheating contractor will be caught is
c = 1 ≠ (1 ≠ h)m≠1.

Proof A contractor who submits an incorrect result will be caught only if there exists a
diligent contractor in the group working on the same job. The probability that all of the
other m ≠ 1 contractors are non-diligent is L = (1 ≠ h)m≠1. Thus the probability that at
least one of the other m ≠ 1 contractors is diligent is c = 1 ≠ L.

Corollary 4.4.1 Suppose the boss farms out a job to m contractors, which are honest with
probability h, then by computing f/r using p ≥= c = 1 ≠ (1 ≠ h)m≠1 in section 4.2, the boss
can guarantee that all rational contractors will act honestly all the time.

This strategy still requires the boss to perform work when the results submitted by
contractors are in disagreement. In a system where all the contractors are rational, there
should be no disagreement at all. But if malicious or colluding contractors are present, they
may try to force the boss to double-check by returning an incorrect answer. We analyze
this behavior in Section 4.5.
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4.4.3 Hybrid strategy
The boss can also pursue a hybrid strategy: he can farm out a job to multiple contractors
and randomly double-check some of the answers. Thus even if all contractors collude to
give the same wrong answer, the boss can still catch them.

Theorem 4.4.2 Suppose the boss farms out a job to m contractors, which are honest with
probability h. The boss also randomly double-checks the jobs with probability t when all the
results agree. Then, c = 1 ≠ (1 ≠ t)(hm + (1 ≠ h)m).

Proof The boss definitely checks the answer if there is at least one diligent and one
cheating contractor in the group. This has probability 1≠hm ≠(1≠h)m. In any other case
(probability hm +(1≠h)m), all answers will agree and the boss will check with probability
t. Therefore, we get c = (1≠hm ≠(1≠h)m)+(hm +(1≠h)m)t = 1≠(1≠t)(hm +(1≠h)m).

4.4.4 Hiring two rational contractors
Now let us discuss how to shed the assumption that there are diligent contractors. In the
iterated prisoner’s dilemma it is assumed that in each round, a contractor plays against
the same group of other contractors. In our scenario, the boss will randomly choose a new
group of contractors for each job. The contractors are really playing a single round of the
prisoner’s dilemma many times with a di�erent group of contractors. Thus, if we set f/r
properly, the dominant strategy will be for the contractors to act honestly.

The table below computes the expected utilities u(1) and u(q) for a contractor depending
on whether the other players all chose to be diligent or lazy. As before, q refers to the
probability that a lazy contractor returns the correct answer. Please see Section 4.3 for how
to use hashing to set q arbitrarily close to 0.

All Diligent u(1) = r ≠ cost(1)
u(q) = rq ≠ f(1 ≠ q) ≠ cost(q)

All Lazy u(1) = r ≠ cost(1)
u(q) = r ≠ cost(q)

There are two Nash equilibria: If all other players cheat, a rational player will also cheat.
If at least one player is honest, a rational player must also be honest.

We can break the cheating equilibria by introducing a bounty. If the contractors disagree
on the output, the boss will check the computation and award b to all contractors who output
the correct answer. Now the expected utility for being diligent when everyone else chooses
to be lazy is u(1) = r ≠ cost(1) + b(1 ≠ q).

Theorem 4.4.3 Suppose the boss asks two contractors to perform a job. Then the boss
must set f/r > 0 and give a bounty of b Ø r/(1 ≠ q) to honest contractors whenever they
catch a cheating contractor.

Proof We have that r Ø cost(1) Ø cost(q). First, if all other players are diligent then a
contractor is better o� also acting honestly as long as

0 Ø rq ≠ f(1 ≠ q) ≠ cost(q) > rq ≠ f(1 ≠ q) ≠ r.
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As a result, we get f/r > ≠1. Since it makes no sense to have a negative fine (paying
contractors for wrong answers) and since a negative reward (taking away money for right
answers) discourages participation, we set f/r > 0. Second, if even one player is lazy, then
the contractor has an incentive to be diligent as long as r ≠cost(1)+b(1≠q) Ø r ≠cost(q).
The boss needs to set

b Ø r

1 ≠ q
Ø cost(1) ≠ cost(q)

1 ≠ q
.

4.5 Malicious contractors
Malicious (or Byzantine) contractors attack the system: they want to reduce the accuracy of
job results or increase the amount of double-checking the boss must do. They are irrational,
or may pursue a utility function outside our model. Yet, to be able to stay in the system,
they must keep at least a zero balance of utility (if they cannot a�ord the fine, they will not
be hired by the boss). Malicious contractors may also collude, through centralized control
(as in the Sybil attack), via external communication, and even by sharing resources (the
reward r).

4.5.1 Independent malicious contractors
Even a malicious contractor must maintain a certain minimum balance in his bank account.
Otherwise, the boss will not ask him to perform jobs. Thus, a malicious contractor intent
on submitting as many incorrect results as possible must also compute jobs correctly some
fraction of the time.

Definition 4.5.1 A malicious contractor will return the correct answer x fraction of the
time, and an incorrect answer y fraction of the time; thus x + y = 1.

We compute the utility of a single malicious contractor as

u(m) = xr + y(1 ≠ p)r ≠ ypf,

where x and y are defined above and p is the probability that the contractor will be caught.
We want to know how large a value y can the malicious contractor get away with while still
maintaining a non-negative utility.

Definition 4.5.2 Let d be the deterrent factor, where the boss sets f/r = d/p. Observe
that if d = 1≠p, this corresponds to our basic construction. Larger values of d indicate that
the boss has decided to deter maliciousness by increasing the f/r ratio without decreasing
the checks.

Theorem 4.5.1 The fraction of incorrect results y that a malicious contractor can return
to the boss is less than or equal to 1/(p + d).

Proof The malicious contractor needs to have a non-negative balance: 0 Æ u(m) =
xr + y(1 ≠ p)r ≠ ypf . We substitute f = rd/p and x = 1 ≠ y in the inequality to get
0 Æ (1 ≠ y)r + y(1 ≠ p)r ≠ yrd. We get rid of r, and solve to get y Æ 1/(p + d).
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Corollary 4.5.1 Suppose the boss hires only one contractor for each job and sets f/r =
d/p. Then the probability that the boss accepts an incorrect result is g(1 ≠ p)/(p + d), where
g is the fraction of malicious contractors in the system.

Note that if the boss only randomly double-checks with some fixed probability, no ma-
licious contractor can cause the boss to perform more work. However, in the setting where
the same job is outsourced to multiple contractors and checked if there is disagreement,
a malicious contractor can force the boss to perform a check by submitting an incorrect
result, hence causing disagreement among the group.

4.5.2 Colluding malicious contractors
In our multiple-contractors scenario, the boss assigns each job to a randomly-selected group
of size m, double-checking only when the contractors output di�erent results, and fining
those who submit an incorrect answer. We will examine two types of attacks by colluding
contractors. In the first, the colluding contractors will try to trick the boss into accepting
an incorrect answer. In the second, they will force the boss to perform extra checking by
causing disagreements.

Theorem 4.5.2 If the fraction of colluding contractors in the system is g, the probability
that the boss accepts an incorrect result is at most gm.

Proof The only way to trick the boss is if all the contractors in the group are colluders.
For a group of size m, the probability that all group members are colluders is gm.

Colluding contractors may wish to force the boss to devote more resources to performing
checks. The colluders can take advantage of the fact that if there is at least one colluder
in the group, then one colluder can submit a wrong answer while the rest can submit the
right answer and collect the reward. As a result, the overall utility of the colluding group
can be high enough to allow the group to continue participating in the system.

Theorem 4.5.3 The amount of work the boss needs to perform due to a group of mali-
ciously colluding contractors which make up a g fraction of all the contractors is at most
pgm/(p + d).

The proof of Theorem 4.5.3 requires the following Lemma. We omit the proof, which
follows from the Binomial Theorem and basic algebra.

Lemma 4.5.1 Let P (k, m) =
!

m

k

"
gk(1 ≠ g)m≠k be the probability that there are exactly k

colluders in a group of size m. Furthermore, let A =
q

m

k=1 P (k, m), be the probability
that there is at least one colluder in the group. Then, A = 1 ≠ (1 ≠ g)m. Finally, let
B =

q
m

k=1 P (k, m)k. Then, B = gm.

Proof (of Theorem 4.5.3) We will first define the total utility of the colluding con-
tractors. The contractors’ strategy is simple. If there is at least one colluder in the group
chosen by the bank, then one of the colluders will output a wrong answer with probability
y = 1 ≠ x while the rest output the correct answer. Then the total utility of the colluders
for one job will be xkr + y((k ≠ 1)r ≠ f) for k colluders (with probability x = 1 ≠ y,
all colluders will get the reward by outputting the correct answer, and with probability
y only one of them will get fined while the rest will be rewarded). If we sum over the
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probability that the there are k colluding contractors in a group of size m, we get the
total expected utility of the colluders.

u(c) =
mÿ

k=1
P (k, m)[xkr + y((k ≠ 1)r ≠ f)]

= xrB + yrB ≠ yrA ≠ yArd/p

if we do the substitutions for A, B and f . The colluders want to maximize y while keeping
their total utility positive: u(c) Ø 0. Then, rearranging the equation above gives us

y Æ B

A(1 + d/p) = pgm

(p + d)A.

Next, we note that, a job will provide this group of colluders the ability to cheat in order
to make the boss work more only if there is at least one colluder in that group. So, A
fraction of the jobs will enable the colluders to force the boss for a check. Therefore, by
multiplying y with A, we obtain the fraction of the time colluders can cause the boss to
work, which is at most pgm/(p + d).

4.6 Evaluation
Throughout this chapter we have presented various methods by which the bank can tune
the fine-to-reward ratio through setting other parameters. In this section, we show how
the boss can select system parameters that balance performance trade-o�s with protection
against malicious contractors. We begin with the selection of the ratio f/r and group
size m, depending on the percentage of honest contractors h in the system. The trade-o�
between high fine-to-reward ratio (which may present a barrier to entry for contractors)
and large group size (which may unnecessarily waste e�ort due to redundant computation)
is depicted in Figure 4.1. It can be seen from the figure that even a group size of 2 is enough
to allow a reasonable fine-to-reward ratio, even in the presence of a very low percentage of
honest contractors. Obviously, the higher the percentage of honest contractors, the smaller
the group size required.

In the figure, we assumed that all the other contractors are rational. Assuming that the
boss’s view of the percentage of honest contractors is not higher than that of the contractors’,
the fine-to-reward ratios shown on the figure will provide incentives for rational contractors
to always behave honestly. Next, we analyze the e�ect of irrational malicious and colluding
contractors on the system when we set the fine-to-reward ratio so as to incentivize rational
contractors.

Figure 4.2 shows the percentage of bogus results the irrational malicious and colluding
contractors, who are not incentivized by our scheme, can cause the boss to accept. The
boss can adjust the deterrent factor to deter malicious contractors by increasing the fine-to-
reward ratio without decreasing the probability of catching them. The figure shows the case
when the boss employs 2 contractors per job, and thus represents a worst-case multiple-
contractor scenario. When more contractors are employed, the fraction of bogus results
accepted by the boss will be lower, since the colluders need to control the entire group in
order to cheat the boss.

Next, in Figure 4.3, we see the fraction of extra double-checking work the colluding
contractors can force the boss to perform. The figure again uses a group size of 2. Increasing
the group size makes things worse in this case: the reason is that the colluders can make
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Figure 4.1: Example parameter settings for f/r and m that provide valid incentives assum-
ing a fraction h of honest users. (Theorem 4.4.1)
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Figure 4.2: The maximum fraction of incorrect results that the boss will accept due to a
fraction g of malicious contractors, for di�erent settings of the deterrent factor d. (Corol-
lary 4.5.1)
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Figure 4.3: The maximum amount of extra double-checking work that a group of malicious
colluders controlling a fraction g of all contractors can force the boss to perform, for di�erent
settings of the deterrent factor d. (Theorem 4.5.3)

the boss work only if there is at least one of them in the group the boss selects. When
the group size increases, the chance of that happening increases. An interesting point to
make is that if the boss’s probability of catching the colluders increases, then he obviously
needs to perform more work. Luckily, the fraction of bogus results that will be accepted is
bounded as in Figure 4.2.

Note that the number of honest contractors do not a�ect the performance of the system,
in terms of both the percentage of bogus results and extra work for the boss, once the fine-
to-reward ratio is set. This is the case because once the ratio is set according to the fraction
of honest contractors, then every rational contractor will have incentive to perform the job
correctly. If the system is dynamic and the percentage of honest contractors decrease, the
fine-to-reward ratio needs to be readjusted.

Our system can deter maliciousness without very high fine-to-reward ratios or large
group sizes even if there are very few honest contractors in the system. In most cases (except
when there is an extremely low number of honest users, i.e. h = 0.05, or an extremely high
number of malicious users, i.e. g = 0.75), a deterrent factor of d = 5 and a group size of
m = 2 is enough to result in a practical fine-to-reward ratio (f/r Æ 25), while guaranteeing
at most 10% of bogus results and about 15% more work in very unrealistic highly adversarial
scenarios (75% malicious), or almost no bogus results and about 5% more work in more
realistic scenarios (5% malicious).

4.7 Summary
This chapter has presented di�erent techniques that can be applied for incentivizing out-
sourced computation, through redundant computation by the boss or other contractors.
The hashing technique prevents the use of other algorithms than prescribed by the boss.
Then, we showed how to set the fine-to-reward ratio in presence of irrational honest users
(Section 4.4.2), or when the contractors cannot collude in large scale in the long run (Sec-
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tion 4.4.4). Finally, we have shown that using these techniques, a reasonable fine-to-reward
ratio can incentivize all rational users to behave honestly, and limit the damage by irrational
malicious contractors.

All of these techniques aim to decrease the amount of work the centralized boss needs to
perform. We assumed that this boss can a�ord to pay all rewards and is capable of fining
the contractors: another possibility is that multiple bosses might be in agreement with an
entity of such power. Then, before a job is outsourced, each contractor might provide an
escrow of the fine, so that the boss can claim it if cheating is detected. Additionally, bosses
might provide di�erent incentive structures f/r to di�erent peers, o�ering higher prices
to those willing to accept larger fines. In such a decentralized environment, designing a
distributed, budget-balanced mechanism provides a direction for future work.
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Chapter 5

Accounting for outsourced storage

In storage systems, the node responsible for storing a client’s data is not necessarily trusted;
this is especially true in peer-to-peer storage systems, where malicious or greedy nodes may
not be interested in providing reliable service to others. Therefore, users would like to
check if their data has been tampered with or deleted. However, outsourcing the storage of
very large files (or whole file systems) to remote servers presents an additional constraint:
the client should not download all stored data in order to validate it since this may be
prohibitive in terms of bandwidth and time, especially if the client performs this check
frequently (therefore authenticated data structure solutions [168] cannot be directly applied
in this scenario).

Ateniese et al. [8] have formalized a model called provable data possession (PDP). In
this model, data (often represented as a file F) is preprocessed by the client, and metadata
used for verification purposes is produced. The file is then sent to an untrusted server for
storage, and the client may delete the local copy of the file. The client keeps some (possibly
secret) information to check server’s responses later. The server proves the data has not
been tampered with by responding to challenges sent by the client. The authors present
several variations of their scheme under di�erent cryptographic assumptions. These schemes
provide probabilistic guarantees of possession, where the client checks a random subset of
stored blocks with each challenge.

However, PDP and related schemes [8, 68, 99, 164] apply only to the case of static,
archival storage, i.e. a file that is outsourced and never changes. While the static model fits
some application scenarios (e.g., libraries and scientific datasets), it is crucial to consider
the dynamic case, where the client updates the outsourced data—by inserting, modifying,
or deleting stored blocks or files—while maintaining data possession guarantees. Such a
dynamic PDP scheme is essential in practical cloud computing systems for file storage
[101, 115], database services [121], and peer-to-peer storage [106, 132].

In this chapter, we provide a definitional framework and e�cient constructions for dy-
namic provable data possession (DPDP), which extends the PDP model to support provable
updates on the stored data. Given a file F consisting of n blocks, we define an update as
either insertion of a new block (anywhere in the file, not only append), or modification of
an existing block, or deletion of any block. Therefore our update operation describes the
most general form of modifications a client may wish to perform on a file.

Our DPDP solution is based on a new variant of authenticated dictionaries, where we
use rank information to organize dictionary entries. Thus we are able to support e�cient
authenticated operations on files at the block level, such as authenticated insert and delete.
We prove the security of our constructions using standard assumptions.
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We also show how to extend DPDP to support data possession guarantees of a hierar-
chical file system as well as file data itself. To the best of our knowledge, this is the first
construction of a provable storage system that enables e�cient proofs of a whole file system,
enabling verification at di�erent levels for di�erent users (e.g., every user can verify her own
home directory) and at the same time not having to download the whole data (as opposed
to [88]). This scheme yields a provable outsourced versioning system (e.g., CVS), which is
evaluated in Section 5.7 by using traces of CVS repositories of three well-known projects.
The main contributions of this chapter are summarized as follows:

1. A formal framework for dynamic provable data possession (DPDP);

2. The first e�cient fully dynamic PDP solution;

3. A rank-based authenticated dictionary built over a skip list. This construction yields
a DPDP scheme with logarithmic computation and communication and the same
detection probability as the original PDP scheme

4. Practical applications of the DPDP constructions to outsourced file systems and ver-
sioning systems (e.g., CVS, with variable block size support);

5. An experimental evaluation of this skip list-based scheme.

Now, we outline the performance of our schemes. Denote with n the number of blocks.
The server computation, i.e., the time taken by the server to process an update or to compute
a proof for a block, is O(log n); the client computation, i.e., the time taken by the client
to verify a proof returned by the server, is O(log n) for both schemes; the communication
complexity, i.e., the size of the proof returned by the server to the client, is O(log n) for both
schemes; the client storage, i.e., the size of the meta-data stored locally by the client, is O(1)
for both schemes; finally, the probability of detection, i.e., the probability of detecting server
misbehavior, is 1≠ (1≠f)C for fixed logarithmic communication complexity, where f is the
ratio of corrupted blocks and C is a constant, i.e., independent of n.

We observe that for DPDP, we could use a dynamic Merkle tree (e.g., [113, 134]) instead
of a skip list to achieve the same asymptotic performance. We have chosen the skip list
due to its simple implementation and the fact that algorithms for updates in the two-party
model (where clients can access only a logarithmic-sized portion of the data structure) have
been previously studied in detail for authenticated skip lists [141] but not for Merkle trees.

5.1 Related work
The PDP scheme by Ateniese et al. [8] provides an optimal protocol for the static case
that achieves O(1) costs for all the complexity measures listed above. They review previous
work on protocols fitting their model, but find these approaches lacking: either they require
expensive server computation or communication over the entire file [79, 138], linear storage
for the client [162], or do not provide security guarantees for data possession [161]. Note
that using [8] in a dynamic scenario is insecure due to replay attacks. As observed in [70], in
order to avoid replay attacks, an authenticated tree structure that incurs logarithmic costs
must be employed and thus constant costs are not feasible in a dynamic scenario.

Juels and Kaliski present proofs of retrievability (PORs) [99], focusing on static archival
storage of large files. Their scheme’s e�ectiveness rests largely on preprocessing steps the
client conducts before sending a file F to the server: “sentinel” blocks are randomly inserted
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Scheme Server Client Comm. Model Block operations Probability

comp. comp. append modify insert delete of detection

PDP [8] O(1) O(1) O(1) RO X 1 ≠ (1 ≠ f)C

Scalable PDP [9] O(1) O(1) O(1) RO Xú Xú Xú 1 ≠ (1 ≠ f)C

DPDP O(log n) O(log n) O(log n) standard X X X X 1 ≠ (1 ≠ f)C

Table 5.1: Comparison of PDP schemes. A star (*) indicates that a certain operation can be
performed only a limited (pre-determined) number of times. We denote with n the number
of the blocks of the file, with f the fraction of the corrupted blocks, and with C a constant,
i.e., independent of n. In all constructions, the storage space is O(1) at the client and O(n)
at the server.

to detect corruption, F is encrypted to hide these sentinels, and error-correcting codes are
used to recover from corruption. As expected, the error-correcting codes improve the error-
resiliency of their system. Unfortunately, these operations prevent any e�cient extension to
support updates, beyond simply replacing F with a new file F Õ. Furthermore, the number
of queries a client can perform is limited, and fixed a priori. Shacham and Waters have
an improved version of this protocol called Compact POR [164], but their solution is also
static (see [68] for a summary of POR schemes and related trade-o�s).

Ateniese et al. have also developed a dynamic PDP solution called Scalable PDP [9].
Their idea is to come up with all future challenges during setup and store pre-computed
answers as metadata (at the client, or at the server in an authenticated and encrypted
manner). Because of this approach, the number of updates and challenges a client can
perform is limited and fixed a priori. Also, one cannot perform block insertions anywhere
(only append-type insertions are possible). Furthermore, each update requires re-creating
all the remaining challenges, which is problematic for large files. Under these limitations
(otherwise the lower bound of [70] would be violated), they provide a protocol with opti-
mal asymptotic complexity O(1) in all complexity measures giving the same probabilistic
guarantees as the DPDP scheme. Lastly, their work is in the random oracle model whereas
DPDP is provably secure in the standard model (see Table 5.1 for full comparison).

Finally, proofs of possession are closely related to memory checking, for which lower
bounds are presented in [70, 135]. Specifically, in [70] it is proved that all non-adaptive and
deterministic checkers have read and write query complexity summing up to �(log n/ log log n)
(necessary for sublinear client storage), justifying the O(log n) cost from DPDP. Note that
for schemes based on cryptographic hashing, an �(log n) lower bound on the proof size has
been shown [53, 169]. Related bounds for other primitives have been shown by Blum et
al. [28].

5.2 Model
We build on the PDP definitions from [8]. We begin by introducing a general DPDP scheme
and then show how the original PDP model is consistent with this definition.

Definition 5.2.1 (DPDP Scheme) In a DPDP scheme, there are two parties. The
client wants to o�-load her files to the untrusted server. A complete definition of a DPDP
scheme should describe the following (possibly randomized) e�cient procedures:

• KeyGen(1k) æ {sk, pk} is a probabilistic algorithm run by the client. It takes as input a
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security parameter, and outputs a secret key sk and a public key pk. The client stores the
secret and public keys, and sends the public key to the server;

• PrepareUpdate(sk, pk, F , info, M
c

) æ {e(F), e(info), e(M )} is an algorithm run by the
client to prepare (a part of) the file for untrusted storage. As input, it takes secret and
public keys, (a part of) the file F with the definition info of the update to be performed
(e.g., full re-write, modify block i, delete block i, add a block after block i, etc.), and the
previous metadata M

c

. The output is an “encoded” version of (a part of) the file e(F)
(e.g., by adding randomness, adding sentinels, encrypting for confidentiality, etc.), along
with the information e(info) about the update (changed to fit the encoded version), and
the new metadata e(M ). The client sends e(F), e(info), e(M ) to the server;

• PerformUpdate(pk, F
i≠1, M

i≠1, e(F), e(info), e(M )) æ {F
i

, M
i

, M Õ
c

, PM Õc} is an algorithm
run by the server in response to an update request from the client. The input contains
the public key pk, the previous version of the file F

i≠1, the metadata M
i≠1 and the client-

provided values e(F), e(info), e(M ). Note that the values e(F), e(info), e(M ) are the values
produced by PrepareUpdate. The output is the new version of the file F

i

and the metadata
M

i

, along with the metadata to be sent to the client M Õ
c

and its proof PM Õc . The server
sends M Õ

c

, PM Õc to the client;

• VerifyUpdate(sk, pk, F , info, M
c

, M Õ
c

, PM Õc) æ {accept, reject} is run by the client to ver-
ify the server’s behavior during the update. It takes all inputs of the PrepareUpdate

algorithm,1 plus the M Õ
c

, PM Õc sent by the server. It outputs acceptance (F can be deleted
in that case) or rejection signals;

• Challenge(sk, pk, M
c

) æ {c} is a probabilistic procedure run by the client to create a
challenge for the server. It takes the secret and public keys, along with the latest client
metadata M

c

as input, and outputs a challenge c that is then sent to the server;

• Prove(pk, F
i

, M
i

, c) æ {P} is the procedure run by the server upon receipt of a challenge
from the client. It takes as input the public key, the latest version of the file and the
metadata, and the challenge c. It outputs a proof P that is sent to the client;

• Verify(sk, pk, M
c

, c, P ) æ {accept, reject} is the procedure run by the client upon receipt of
the proof P from the server. It takes as input the secret and public keys, the client meta-
data M

c

, the challenge c, and the proof P sent by the server. An output of accept ideally
means that the server still has the file intact. We will define the security requirements of
a DPDP scheme later.

We assume there is a hidden input and output clientstate in all functions run by the
client, and serverstate in all functions run by the server. Some inputs and outputs may be
empty in some schemes. For example, the PDP scheme of [8] does not store any metadata
at the client side. Also sk, pk can be used for storing multiple files, possibly on di�erent
servers. All these functions can be assumed to take some public parameters as an extra input
if operating in the public parameters model, although our construction does not require such
modifications. Apart from {accept, reject}, algorithm VerifyUpdate can also output a new
client metadata M

c

. In most scenarios, this new metadata will be set as M
c

= M Õ
c

.
1However, in our model F denotes part of some encoded version of the file and not part of the actual

data (though for generality purposes we do not make it explicit).
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Retrieval of a (part of a) file is similar to the challenge-response protocol above, com-
posed of Challenge, Verify, Prove algorithms, except that along with the proof, the server also
sends the requested (part of the) file, and the verification algorithm must use this (part of
the) file in the verification process. We also note that a PDP scheme is consistent with the
DPDP scheme definition, with algorithms PrepareUpdate, PerformUpdate and VerifyUpdate

specifying an update that is a full re-write (or append).
As stated above, PDP is a restricted case of DPDP. The PDP scheme of [8] has the

same algorithm definition for key generation, defines a restricted version of PrepareUpdate

that can create the metadata for only one block at a time, and defines Prove and Verify

algorithms similar to our definition. It lacks an explicit definition of Challenge (though one
is very easy to infer). PerformUpdate consists of performing a full re-write or an append
(so that replay attacks can be avoided), and VerifyUpdate is used accordingly, i.e., it always
accepts in case of a full re-write or it is run as in DPDP in case of an append. It is clear
that our definition allows a broad range of DPDP (and PDP) schemes.

We now define the security of a DPDP scheme, inspired by the security definitions of
[8, 68]. Note that the restriction to the PDP scheme gives a security definition for PDP
schemes compatible with the ones in [8, 9].

Definition 5.2.2 (Security of DPDP) We say that a DPDP scheme is secure if for any
probabilistic polynomial time (PPT) adversary who can win the following data possession
game with non-negligible probability, there exists an extractor that can extract (at least) the
challenged parts of the file by resetting and challenging the adversary polynomially many
times.

Data Possession Game: Played between the challenger who plays the role of the client
and the adversary who acts as a server.

1. Keygen: The challenger runs KeyGen(1k) æ {sk, pk} and sends the public key pk to
the adversary;

2. ACF Queries: The adversary is very powerful. The adversary can mount adap-
tive chosen file (ACF) queries as follows. The adversary specifies a message F and
the related information info specifying what kind of update to perform (see Definition
5.2.1) and sends these to the challenger. The challenger runs PrepareUpdate on these
inputs and sends the resulting e(F), e(info), e(M ) to the adversary. Then the adver-
sary replies with M Õ

c

, PM Õc which are verified by the challenger using the algorithm
VerifyUpdate. The result of the verification is told to the adversary. The adversary
can further request challenges, return proofs, and be told about the verification results.
The adversary can repeat the interaction defined above polynomially-many times;

3. Setup: Finally, the adversary decides on messages Fú
i

and related information info

ú
i

for all i = 1, . . . , R of adversary’s choice of polynomially-large (in the security param-
eter k) R Ø 1. The ACF interaction is performed again, with the first info

ú
1 specifying

a full re-write (this corresponds to the first time the client sends a file to the server).
The challenger updates his local metadata only for the verifying updates (hence, non-
verifying updates are considered not to have taken place—data has not changed);

4. Challenge: Call the final version of the file F , which is created according to the
verifying updates the adversary requested in the previous step. The challenger holds
the latest metadata M

c

sent by the adversary and verified as accepting. Now the
challenger creates a challenge using the algorithm Challenge(sk, pk, M

c

) æ {c} and
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sends it to the adversary. The adversary returns a proof P . If Verify(sk, pk, M
c

, c, P )
accepts, then the adversary wins. The challenger has the ability to reset the adversary
to the beginning of the challenge phase and repeat this step polynomially-many times
for the purpose of extraction. Overall, the goal is to extract (at least) the challenged
parts of F from the adversary’s responses which are accepting.

Note that our definition coincides with extractor definitions in proofs of knowledge.
For an adversary that answers a non-negligible fraction of the challenges, a polynomial-
time extractor must exist. Furthermore, this definition can be applied to the POR case
[68, 99, 164], in which by repeating the challenge-response process, the extractor can extract
the whole file with the help of error-correcting codes. The probability of catching a cheating
server is analyzed in Section 5.5.

Finally, if a DPDP scheme is to be truly publicly verifiable, the Verify algorithm should
not make use of the secret key. This could be accomplished with a signature scheme using
the skip list roots but is not elaborated on further here.

5.3 Rank-based authenticated skip lists
In order to implement our first DPDP construction, we use a modified authenticated skip
list data structure [89]. This new data structure, which we call a rank-based authenticated
skip list, is based on authenticated skip lists but indexes data in a di�erent way. Note
that we could have based the construction on any authenticated search data structure, e.g.,
Merkle tree [127] instead. This would perfectly work for the static case. But in the dynamic
case, we would need an authenticated red-black tree, and unfortunately no algorithms have
been previously presented for rebalancing a Merkle tree while e�ciently maintaining and
updating authentication information (except for the three-party model, e.g., [113]). Yet,
such algorithms have been extensively studied for the case of the authenticated skip list data
structure [141]. Before presenting the new data structure, we briefly introduce authenticated
skip lists.

The authenticated skip list is a skip list [148] (see Figure 5.1) with the di�erence that
every node v above the bottom level (which has two pointers, namely rgt(v) and dwn(v))
also stores a label f(v) that is a cryptographic hash and is computed using some collision-
resistant hash function h (e.g., SHA-1 in practice) as a function of f(rgt(v)) and f(dwn(v)).
Using this data structure, one can answer queries like “does 21 belong to the set represented
with this skip list?" and also provide a proof that the given answer is correct. To be able
to verify the proofs to these answers, the client must always hold the label f(s) of the top
leftmost node of the skip list (node w7 in Figure 5.1). We call f(s) the basis (or root),
and it corresponds to the client’s metadata in our DPDP construction (M

c

= f(s)). In our
construction, the leaves of the skip list represent the blocks of the file. When the client asks
for a block, the server needs to send that block, along with a proof that the block is intact.

We can use an authenticated skip list to check the integrity of the file blocks. However,
this data structure does not support e�cient verification of the indices of the blocks, which
are used as query and update parameters in our DPDP scenario. The updates we want
to support in our DPDP scenario are insertions of a new block after the i-th block and
deletion or modification of the i-th block (there is no search key in our case, in contrast
to [89], which basically implements an authenticated dictionary). If we use indices of blocks
as search keys in an authenticated dictionary, we have the following problem. Suppose we
have a file consisting of 100 blocks m1, m2, . . . , m100 and we want to insert a block after
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Figure 5.1: Example of rank-based skip list.

the 40-th block. This means that the indices of all the blocks m41, m42, . . . , m100 should
be incremented, and therefore an update becomes extremely ine�cient. To overcome this
di�culty, we define a new hashing scheme that takes into account rank information.

5.3.1 Authenticating ranks
Let F be a file consisting of n blocks m1, m2, . . . , m

n

. We store at the i-th bottom-level
node of the skip list a representation T (m

i

) of block m
i

(we will define T (m
i

) later). Block
m

i

will be stored elsewhere by the untrusted server. Each node v of the skip list stores the
number of nodes at the bottom level that can be reached from v. We call this value the
rank of v and denote it with r(v). In Figure 5.1, we show the ranks of the nodes of a skip
list. An insertion, deletion, or modification of a file block a�ects only the nodes of the skip
list along a search path. We can recompute bottom-up the ranks of the a�ected nodes in
constant time per node.

The top leftmost node of a skip list will be referred to as the start node. For example,
w7 is the start node of the skip list in Figure 5.1. For a node v, denote with low(v) and
high(v) the indices of the leftmost and rightmost nodes at the bottom level reachable from v,
respectively. Clearly, for the start node s of the skip list, we have r(s) = n, low(s) = 1
and high(s) = nbe the nodes that can be reached from v by following the right or the down
pointer respectively. Using the ranks stored at the nodes, we can reach the i-th node of the
bottom level by traversing a path that begins at the start node, as follows. For the current
node v, assume we know low(v) and high(v). Let w = rgt(v) and z = dwn(v). We set

high(w) = high(v) ,

low(w) = high(v) ≠ r(w) + 1 ,

high(z) = low(v) + r(z) ≠ 1 ,

low(z) = low(v) .

If i œ [low(w), high(w)], we follow the right pointer and set v = w, else we follow the down
pointer and set v = z. We continue until we reach the i-th bottom node. Note that we do
not have to store high and low. We compute them on the fly using the ranks.

In order to authenticate skip lists with ranks, we extend the hashing scheme defined
in [89]. We consider a skip list that stores data items at the bottom-level nodes. In our
application, the node v associated with the i-th block m

i

stores item x(v) = T (m
i

). Let
l(v) be the level (height) of node v in the skip list (l(v) = 0 for the nodes at the bottom
level).
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node v v3 v4 v5 w3 w4 w5 w6 w7
l(v) 0 0 0 2 2 3 3 4
q(v) 0 1 1 1 1 5 1 1
g(v) 0 T (m4) T (m5) f(v1) f(v6) f(v7) f(v8) f(v9)

Table 5.2: Proof for the 5-th block of the file F stored in the skip list of Figure 5.1.

Let || denote concatenation. We extend a hash function h to support multiple arguments
by defining

h(x1, . . . , x
k

) = h(h(x1)|| . . . ||h(x
k

)) .

We are now ready to define our new hashing scheme:

Definition 5.3.1 (Hashing scheme with ranks) Given a collision resistant hash func-
tion h, the label f(v) of a node v of a rank-based authenticated skip list is defined as follows.
Case 0: v = null

f(v) = 0 ;

Case 1: l(v) > 0
f(v) = h(l(v), r(v), f(dwn(v)), f(rgt(v))) ;

Case 2: l(v) = 0
f(v) = h(l(v), r(v), x(v), f(rgt(v))) .

Before inserting any block (i.e. if initially the skip list was empty), the basis, i.e., the label
f(s) of the top leftmost node s of the skip list, can easily be computed by hashing the
sentinel values of the skip list; —the file consists of only two “fictitious” blocks— block 0
and block +Œ.

Algorithm 5.3.1: (T , �) = atRank(i)
1: Let v1, v2, . . . , vk be the verification path for block i;
2: return representation T of block i and proof � = (A(v1), A(v2), . . . , A(vk)) for T ;

5.3.2 Queries
Suppose now the file F and a skip list on the file have been stored at the untrusted server.
The client wants to verify the integrity of block i and therefore issues query atRank(i) to
the server. The server executes Algorithm 5.3.1, described below, to compute T (i) and a
proof for T (i) (for convenience we use T (i) to denote T (m

i

)).
Let v

k

, . . . , v1 be the path from the start node, v
k

, to the node associated with block
i, v1. The reverse path v1, . . . , v

k

is called the verification path of block i. For each node
v

j

, j = 1, . . . , k, we define boolean d(v
j

) and values q(v
j

) and g(v
j

) as follows, where we
conventionally set r(null) = 0:

d(v
j

) =
I

rgt j = 1 or j > 1 and v
j≠1 = rgt(v

j

)
dwn j > 1 and v

j≠1 = dwn(v
j

)
,
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q(v
j

) =

Y
_____]

_____[

r(rgt(v
j

)) if j = 1
1 if j > 1 and l(v

j

) = 0
r(dwn(v

j

)) if j > 1, l(v
j

) > 0 and d(v
j

) = rgt

r(rgt(v
j

)) if j > 1, l(v
j

) > 0 and d(v
j

) = dwn

,

g(v
j

) =

Y
_____]

_____[

f(rgt(v
j

)) if j = 1
x(v

j

) if j > 1 and l(v
j

) = 0
f(dwn(v

j

)) if j > 1, l(v
j

) > 0 and d(v
j

) = rgt

f(rgt(v
j

)) if j > 1, l(v
j

) > 0 and d(v
j

) = dwn

.

The proof for block i with data T (i) is the sequence �(i) = (A(v1), . . . , A(v
k

)) where
A(v) = (l(v), q(v), d(v), g(v)). So the proof consists of tuples associated with the nodes of
the verification path. Boolean d(v) indicates whether the previous node is to the right or
below v. For nodes above the bottom level, q(v) and g(v) are the rank and label of the
successor of v that is not on the path. The proof �(5) for the skip list of Figure 5.1 is
shown in Table 5.2. Due to the properties of skip lists, a proof has expected size O(log n)
with high probability (whp).

5.3.3 Verification
After receiving from the server the representation T of block i and a proof � for it, the
client executes Algorithm 5.3.2 to verify the proof using the stored metadata M

c

.

Algorithm 5.3.2: {accept, reject} = verify(i, Mc, T , �)
1: Let � = (A1, . . . , Ak), where Aj = (lj , qj , dj , gj) for j = 1, . . . , k;
2: ⁄0 = 0; fl0 = 1; “0 = T ; ›0 = 0;
3: for j = 1, . . . , k do
4: ⁄j = lj ; flj = flj≠1 + qj ; ”j = dj ;
5: if ”j = rgt then
6: “j = h(⁄j , flj , “j≠1, gj);
7: ›j = ›j≠1;
8: else {”j = dwn}
9: “j = h(⁄j , flj , gj , “j≠1);

10: ›j = ›j≠1 + qj ;
11: end if
12: end for
13: if “k ”= Mc then
14: return reject;
15: else if flk ≠ ›k ”= i then
16: return reject;
17: else {“k = Mc and flk ≠ ›k = i}
18: return accept;
19: end if

Algorithm 5.3.2 iteratively computes tuples (⁄
j

, fl
j

, ”
j

, “
j

) for each node v
j

on the verifi-
cation path plus a sequence of integers ›

j

. If the returned block representation T and proof
� are correct, at each iteration of the for-loop, the algorithm computes the following values
associated with a node v

j

of the verification path:

• integer ⁄
j

= l(v
j

), i.e., the level of v
j

;
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• integer fl
j

= r(v
j

), i.e., the rank of v
j

;

• boolean ”
j

, which indicates whether the previous node v
j≠1 is to the right or below v

j

;

• hash value “
j

= f(v
j

), i.e., the label of v
j

;

• integer ›
j

, which is equal to the sum of the ranks of all the nodes that are to the right
of the nodes of the path seen so far, but are not on the path.

5.3.4 Updates
The possible updates in our DPDP scheme are insertions of a new block after a given block
i, deletion of a block i, and modification of a block i.

To perform an update, the client issues first query atRank(i) (for an insertion or modi-
fication) or atRank(i ≠ 1) (for a deletion), which returns the representation T of block i or
i≠1 and its proof �Õ. Also, for an insertion, the client decides the height of the tower of the
skip list associated with the new block. Next, the client verifies proof �Õ and computes what
would be the label of the start node of the skip list after the update, using a variation of
the technique of [141]. Finally, the client asks the server to perform the update on the skip
list by sending to the server the parameters of the update (for an insertion, the parameters
include the tower height).

We outline in Algorithm 5.3.3 the update algorithm performed by the server (performUpdate)
and in Algorithm 5.3.4 the update algorithm performed by the client (verUpdate). Input pa-
rameters T Õ and �Õ of verUpdate are provided by the server, as computed by performUpdate.

Since updates a�ect only nodes along a verification path, these algorithms run in ex-
pected O(log n) time whp and the expected size of the proof returned by performUpdate is
O(log n) whp.

Algorithm 5.3.3: (T Õ, �Õ) = performUpdate(i, T , upd)
1: if upd is a deletion then
2: set j = i ≠ 1;
3: else {upd is an insertion or modification}
4: set j = i;
5: end if
6: set (T Õ, �Õ) = atRank(j);
7: if upd is an insertion then
8: insert element T in the skip after the i-th element;
9: else if upd is a modification then

10: replace with T the i-th element of the skip list;
11: else {upd is a deletion}
12: delete the i-th element of the skip list;
13: end if
14: update the labels, levels and ranks of the a�ected nodes;
15: return (T Õ, �Õ);

To give some intuition of how Algorithm 5.3.4 produces proof �Õ(i), the reader can verify
that Table 5.3 corresponds to �Õ(5), the proof that the client produces from Table 5.2 in
order to verify the update “insert a new block with data T after block 5 at level 1 of the skip
list of Figure 5.1”. This update causes the creation of two new nodes in the skip list, namely
the node that holds the data for the 6-th block, v2, and node w (5-th line of Table 5.3) that
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Algorithm 5.3.4: {accept, reject} = verUpdate(i, Mc, T , upd, T Õ, �Õ)
1: if upd is a deletion then
2: set j = i ≠ 1;
3: else {upd is an insertion or modification}
4: set j = i;
5: end if
6: if verify(j, Mc, T Õ, �Õ) = reject then
7: return reject;
8: else {verify(j, Mc, T Õ, �Õ) = accept}
9: from i, T , T Õ, and �Õ, compute and store the updated label M Õ

c of the start node;
10: return accept;
11: end if

node v v2 v3 v4 v5 w w3 w4 w5 w6 w7
l(v) 0 0 0 0 1 2 2 3 3 4
r(v) 1 1 2 3 4 5 6 11 12 13
f(v) T T (m5) T (m4) T (m3) f(v2) f(v1) f(v6) f(v7) f(v8) f(v9)

Table 5.3: The proof �Õ(5) as produced by Algorithm 5.3.4 for the update “insert a new
block with data T after block 5 at level 1".

needs to be inserted in the skip list at level 1. Note that f(v2) = h(0||1||T , 0||1||T (data(v1)))
is computed as defined in Definition 5.3.1 and that the ranks along the search path are
increased due to the addition of one more block.

5.4 DPDP scheme construction
In this section, we present our DPDP construction. First, we describe our algorithms for
the procedures introduced in Definition 5.2.1. Next, we develop compact representatives for
the blocks to improve e�ciency (blockless verification). In the following, n is the current
number of blocks of the file. The logarithmic complexity for most of the operations are due
to well-known results about authenticated skip lists [89, 142].

5.4.1 Core construction
The server maintains the file and the metadata, consisting of an authenticated skip list with
ranks storing the blocks. Thus, in this preliminary construction, we have T (b) = b for each
block b. The client keeps a single hash value, called basis, which is the label of the start
node of the skip list. We implement the DPDP algorithms as follows.

• KeyGen(1k) æ {sk, pk}: Our scheme does not require any keys to be generated. So, this
procedure’s output is empty, and hence none of the other procedures make use of these
keys;

• PrepareUpdate(sk, pk, F , info, M
c

) æ {e(F), e(info), e(M )}: This is a dummy procedure
that outputs the file F and information info it receives as input. M

c

and e(M ) are empty
(not used);
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• PerformUpdate(pk, F
i≠1, M

i≠1, e(F), e(info), e(M )) æ {F
i

, M
i

, M Õ
c

, PM Õc}: Inputs F
i≠1, M

i≠1
are the previously stored file and metadata on the server (empty if this is the first run).
e(F), e(info), e(M ), which are output by PrepareUpdate, are sent by the client (e(M )
being empty). The procedure updates the file according to e(info), outputting F

i

, runs
the skip list update procedure on the previous skip list M

i≠1 (or builds the skip list from
scratch if this is the first run), outputs the resulting skip list as M

i

, the new basis as
M Õ

c

, and the proof returned by the skip list update as PM Õc . This corresponds to calling
Algorithm 5.3.3 on inputs a block index j, the new data T (in case of an insertion or a
modification) and the type of the update upd (all this information is included in e(info)).
Note that the index j and the type of the update upd is taken from e(info) and the new
data T is e(F). Finally, Algorithm 5.3.3 outputs M Õ

c

and PM Õc = �(j), which are output
by PerformUpdate. The expected runtime is O(log n) whp;

• VerifyUpdate(sk, pk, F , info, M
c

, M Õ
c

, PM Õc) æ {accept, reject}: Client metadata M
c

is the
label of the start node of the previous skip list (empty for the first time), whereas M Õ

c

is empty. The client runs Algorithm 5.3.4 using the index j of the update, M
c

, previous
data T , the update type upd, the new data T Õ of the update and the proof PM Õc sent by
the server as input (most of the inputs are included in info). If the procedure accepts,
the client sets M

c

= M Õ
c

(new and correct metadata has been computed). The client
may now delete the new block from its local storage. This procedure is a direct call of
Algorithm 5.3.4. It runs in expected time O(log n) whp;

• Challenge(sk, pk, M
c

) æ {c}: This procedure does not need any input apart from knowing
the number of blocks in the file (n). It might additionally take a parameter C which is
the number of blocks to challenge. The procedure creates C random block IDs between
1, . . . , n. This set of C random block IDs are sent to the server and is denoted with c.
The runtime is O(C);

• Prove(pk, F
i

, M
i

, c) æ {P}: This procedure uses the last version of the file F
i

and the
skip list M

i

, and the challenge c sent by the client. It runs the skip list prover to create a
proof on the challenged blocks. Namely, let i1, i2, . . . , i

C

be the indices of the challenged
blocks. Prove calls Algorithm 5.3.1 C times (with arguments i1, i2, . . . , i

C

) and sends back
C proofs. All these C proofs form the output P . The runtime is O(C log n) whp;

• Verify(sk, pk, M
c

, c, P ) æ {accept, reject}: This function takes the last basis M
c

the client
has as input, the challenge c sent to the server, and the proof P received from the server.
It then runs Algorithm 5.3.2 using as inputs the indices in c, the metadata M

c

, the data
T and the proof sent by the server (note that T and the proof are contained in P ).
This outputs a new basis. If this basis matches M

c

then the client accepts. Since this is
performed for all the indices in c, this procedure takes O(C log n) expected time whp.

The above construction requires the client to download all the challenged blocks for the
verification. A more e�cient method for representing blocks is discussed in the next section.

5.4.2 Blockless verification
We can improve the e�ciency of the core construction by employing homomorphic tags, as
in [8]. However, the tags described here are simpler and more e�cient to compute. Note
that it is possible to use other homomorphic tags like BLS signatures [30] as in Compact
POR [164].
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We represent a block b with its tag T (b). Tags are small in size compared to data blocks,
which provides two main advantages. First, the skip list can be kept in memory. Second,
instead of downloading the blocks, the client can just download the tags. The integrity of
the tags themselves is protected by the skip list, while the tags protect the integrity of the
blocks.

In order to use tags, we modify our KeyGen algorithm to output pk = (N, g), where
N = pq is a product of two primes and g is an element of high order in Zú

N

. The public key
pk is sent to the server; there is no secret key.

The tag T (b) of a block b is defined by

T (b) = gb mod N .

The skip list now stores the tags of the blocks at the bottom-level nodes. Therefore, the
proofs provided by the server certify the tags instead of the blocks themselves. Note that
instead of storing the tags explicitly, the server can alternatively compute them as needed
from the public key and the blocks.

The Prove procedure computes a proof for the tags of the challenged blocks m
i

j

(1 Æ
i1, . . . , i

C

Æ n denote the challenged indices, where C is the number of challenged blocks and
n is the total number of blocks). The server also sends a combined block M =

q
C

j=1 a
j

m
i

j

,
where a

j

are random values sent by the client as part of the challenge. The size of this
combined block is roughly the size of a single block. Thus, we have a much smaller overhead
than for sending C blocks. Also, the Verify algorithm computes the value

T =
CŸ

j=1
T (m

i

j

)a

j mod N ,

and accepts if T = gM mod N and the skip list proof verifies.
The Challenge procedure can also be made more e�cient by using the ideas in [8]. First,

instead of sending random values a
j

separately, the client can simply send a random key
to a pseudo-random function that will generate those values. Second, a key to a pseudo-
random permutation can be sent to select the indices of the challenged blocks 1 Æ i

j

Æ n
(j = 1, . . . , C). The definitions of these pseudo-random families can be put into the public
key. See [8] for more details on this challenge procedure. We can now outline our main
result (for the proof of security see Section 5.5):

Theorem 5.4.1 Assume the existence of a collision-resistant hash function and that the
factoring assumption holds. The dynamic provable data possession scheme presented in this
section (DPDP) has the following properties, where n is the current number of blocks of the
file, f is the fraction of tampered blocks, and C = O(1) is the number of blocks challenged
in a query:

1. The scheme is secure according to Definition 5.2.2;

2. The probability of detecting a tampered block is 1 ≠ (1 ≠ f)C ;

3. The expected update time is O(log n) at both the server and the client whp;

4. The expected query time at the server, the expected verification time at the client and
the expected communication complexity are each O(log n) whp;

5. The client space is O(1) and the expected server space is O(n) whp.
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Note that the above results hold in expectation and with high probability due to the prop-
erties of skip lists [148].

5.5 Security
In this section we prove the security of our DPDP scheme. We begin with the following
lemma, which follows from the two-party authenticated skip list construction (Theorem 1
of [141]) and our discussion in Section 5.3.

Lemma 5.5.1 Assuming the existence of a collision-resistant hash function, the proofs
generated using our rank-based authenticated skip list guarantees the integrity of its leaves
T (m

i

) with non-negligible probability.

To prove security, we are also using the factoring assumption:

Definition 5.5.1 (Factoring assumption) For all PPT adversaries A and large-enough
number N = pq which is a product of two primes p and q, the probability that A can output
p or q given N is negligible in the size of p and q.

Theorem 5.5.1 (Security of DPDP protocol) The DPDP protocol is secure in the
standard model according to Definition 5.2.2, assuming the existence of a collision-resistant
hash function and that the factoring assumption holds.

Proof The challenger is given a hash function h, and an integer N = pq but not p or q.
The challenger then samples a high-order element g. He interacts with the adversary in
the data possession game honestly, using the given hash function, and creates and updates
the tags while using N as the modulus and g as the base.

Suppose now the challenger challenges C blocks, namely the blocks with indices
i1, i2, . . . , i

C

. We recall that in response to each challenge, the proof contains:

1. The tags T
i1 , T

i2 , . . . , T
i

C

for each block i1, i2, . . . , i
C

, along with the respective skip
list proofs that correspond to each tag T

i1 , T
i2 , . . . , T

i

C

;

2. A “weighted" sum of the form S1 = a
i11b

i1 + a
i12b

i2 + . . . + a
i1C

b
i

C

, where a
i1j

(j = 1, . . . , C) are random numbers known by the challenger.

According to Definition 5.2.2, the DPDP scheme is secure if, whenever the verifi-
cation succeeds with non-negligible probabilty (i.e., the adversary wins the data pos-
session game), the challenger can extract the actual blocks (which we denote with
m

i1 , m
i2 , . . . , m

i

C

) in polynomially-many interactions with the adversary. We extract
the actual blocks by means of the “weighted" sums sent by the adversary as follows. Sup-
pose the challenger challenges the adversary for a polynomial number of times and gets
C verifying responses. Then if S1, S2, . . . , S

C

are the weigthed sums sent each time, we
have the following equations:

S1 = a
i11b

i1 + a
i12b

i2 + . . . + a
i1C

b
i

C

S2 = a
i21b

i1 + a
i22b

i2 + . . . + a
i2C

b
i

C

...
S

C

= a
i

C1b
i1 + a

i

C2b
i2 + . . . + a

i

CC

b
i

C
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where a
i

j1 , a
i

j2 , . . . , a
i

jC

for j = 1, . . . , C are di�erent sets of random numbers sent each
time with the challenge and b

i1 , b
i2 , . . . , b

iC

are the blocks that the adversary claims to pos-
sess. By solving this system of linear equations we extract the blocks b

i1 , b
i2 , . . . , b

iC

. We
recall that the actual blocks are denoted with m

i1 , m
i2 , . . . , m

iC

. Since all the responses
verified we have that for all j = 1, . . . , C the following statements are true:

1. T
i

j

= gm

i

j mod N , whp. Otherwise the adversary can break the collision resistance
of function h by Lemma 5.5.1;

2. T
a

i

j1
i1 T

a

i

j2
i2 . . . T

a

i

jC

i

C

= gS

j mod N , which by the linear system equations can be
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j mod N is the correct tag with high
probability, and therefore the expressions referring to them are cancelled out. Now, for
Equation 5.2 to be satisfied, we have
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. This means that the adversary
can find A ”= B such that gA = gB mod N , which means that A ≠ B = k„(N) and
therefore A ≠ B can be used to factor N , by using Miller’s Lemma [130].

Therefore, the exracted blocks must be the correct ones. Otherwise, the adversary
can either break the collision resistance of the function used, or factor N .

Concerning the probability of detection, the client probes C blocks by calling the
Challenge procedure. Clearly, if the server tampers with a block other than those probed,
the server will not be caught. Assume now that the server tampers with t blocks. If the
total number of blocks is n, the probability that at least one of the probed blocks matches at
least one of the tampered blocks is 1≠((n ≠ t)/n)C , since choosing C of n≠ t non-tampered
blocks has probability ((n ≠ t)/n)C .

5.6 Extensions to outsourced storage applications
Our DPDP scheme supports a variety of distributed data outsourcing applications where
the data is subject to dynamic updates. In this section, we describe extensions of our
basic scheme that employ additional layers of rank-based authenticated dictionaries to store
hierarchical, application-specific metadata for use in networked storage and version control.
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5.6.1 Variable-sized blocks
We now show how we can augment our hashing scheme to support variable-sized blocks
(e.g., when we want to update a byte of a certain block). Recall that our ranking scheme
assigns each internal node u a rank r(u) equivalent to the number of bottom-level nodes
(data blocks) reachable from the subtree rooted at u; these nodes (blocks) are conventionally
assigned a rank equal to 1. We support variable-sized blocks by defining the rank of a node
at the bottom level to be the size of its associated block (i.e. in bytes). Each internal node,
in turn, is assigned a rank equivalent to the amount of bytes reachable from it. Queries
and proofs proceed the same as before, except that ranks and intervals associated with the
search path refer to byte o�sets, not block indices, with updates phrased as, e.g., “insert m
bytes at byte o�set i”. Such an update would require changing only the block containing
the data at byte index i. Similarly, modifications and deletions a�ect only those blocks
spanned by the range of bytes specified in the update.

5.6.2 Directory hierarchies
We can also extend our DPDP scheme for use in storage systems consisting of multiple files
within a directory hierarchy. The key idea is to place the start node of each file’s rank-
based authenticated structure (from our single-file scheme) at the bottom node of a parent
dictionary used to map file names to files. Using key-based authenticated dictionaries [141],
we can chain our proofs and update operations through the entire directory hierarchy,
where each directory is represented as an authenticated dictionary storing its files and
subdirectories. Thus, we can use these authenticated dictionaries in a nested manner, with
the start node of the topmost dictionary representing the root of the file system(as depicted
in Figure 5.2(a)).

This extension provides added flexibility for multi-user environments. Consider a system
administrator who employs an untrusted storage provider. The administrator can keep the
authenticated structure’s metadata corresponding to the topmost directory, and use it to
periodically check the integrity of the whole file system. Each user can keep the label of the
start node of the dictionary corresponding to her home directory, and use it to independently
check the integrity of her home file system at any time, without need for cooperation from
the administrator.

Since the start node of the authenticated structure of the directory hierarchy is the
bottom-level node of another authenticated structure at a higher level in the hierarchy,
upper levels of the hierarchy must be updated with each update to the lower levels. Still,
the proof complexity stays relatively low: For example, for the rank-based authenticated
skip list case, if n is the maximum number of leaves in each skip list and the depth of the
directory structure is d, then proofs on the whole file system have expected O(d log n) size
and computation time whp.

5.6.3 Version control
We can build on our extensions further to e�ciently support a versioning system (e.g.,
a CVS repository, or versioning filesystem). Such a system can be supported by adding
another additional layer of key-based authenticated dictionaries [141], keyed by revision
number, between the dictionaries for each file’s directory and its data, chaining proofs as
in previous extensions. (See Figure 5.2(b) for an illustration.) As before, the client needs
only to store the topmost basis; thus we can support a versioning system for a single file
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(a) A file system skip list with blocks as leaves, di-
rectories and files as roots of nested skip lists.

(b) A version control file system. Notice the addi-
tional level of skiplists for holding versions of a file.
To eliminate redundancy at the version level, persis-
tent authenticated skip lists could be used [4]: the
complexity of these proofs will then be O(log n +
log v + d log f).

Figure 5.2: Proving directions of files and versioned resources atop the DPDP scheme.

with only O(1) storage at the client and O(log n + log v) proof complexity, where v is the
number of the file versions. For a versioning system spanning multiple directories, let v be
the number of versions and d be the depth of the directory hierarchy. The proof complexity
for the versioning file system has expected size O(d(log n + log v)).

The server may implement its method of block storage independently from the dictionary
structures used to authenticate data; it does not need to physically duplicate each block of
data that appears in each new version. However, as described, this extension requires the
addition of a new rank-based dictionary representing file data for each new revision added
(since this dictionary is placed at the leaf of each file’s version dictionary). In order to be
more space-e�cient, we could use persistent authenticated dictionaries [4] along with our
rank mechanism. These structures handle updates by adding some new nodes along the
update path, while preserving old internal nodes corresponding to previous versions of the
structure, thus avoiding unneeded replication of nodes.

5.7 Performance evaluation
We evaluate the performance of our DPDP scheme (Section 5.4.2) in terms of communica-
tion and computational overhead, in order to determine the price of dynamism over static
PDP. For ease of comparison, our evaluation uses the same scenario as in PDP [8], where a
server wishes to prove possession of a 1GB file. As observed in [8], detecting a 1% fraction
of incorrect data with 99% confidence requires challenging a constant number of 460 blocks;
we use the same number of challenges for comparison.

5.7.1 Proof size
The expected size of proofs of possession for a 1GB file under di�erent block sizes is il-
lustrated in Figure 5.3. Here, a DPDP proof consists of responses to 460 authenticated
skip list queries, combined with a single verification block M = �a

i

m
i

, which grows lin-
early with the block size. The size of this block M is the same as that used by the PDP
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scheme in [8], 2 and is thus represented by the line labeled PDP. The distance between this
line and those for our DPDP scheme represents our communication overhead—the price of
dynamism—which comes from the skip list query responses (illustrated in Table 5.2). Each
response contains on average 1.5 log n rows, so the total size decreases exponentially (but
slowly) with increasing block size, providing near-constant overhead except at very small
block sizes.

5.7.2 Server computation
Next, we measure the computational overhead incurred by the server in answering chal-
lenges. Figure 5.4 presents the results of these experiments (averaged from 5 trials), which
were performed on an AMD Athlon X2 3800+ system with 2GHz CPU and 2GB of RAM.
As above, we compute the time required by our scheme for a 1GB file under varying block
sizes, providing 99% confidence. As shown, our performance is dominated by computing M
and increases linearly with the block size; note that static PDP [8] must also compute this
M in response to the challenge. Thus the computational price of dynamism—time spent
traversing the skip list and building proofs—while logarithmic in the number of blocks, is
extremely low in practice: even for a 1GB file with a million blocks of size 1KB, computing
the proof for 460 challenged blocks (achieving 99% confidence) requires less than 40ms in
total (as small as 13ms with larger blocks). We found in other experiments that even when
the server is not I/O bound (i.e. when computing M from memory) the computational cost
was nearly the same. Note that any outsourced storage system proving the knowledge of
the challenged blocks must reach those blocks and therefore pay the I/O cost, and therefore
such a small overhead for such a huge file is more than acceptable.

The experiments suggest the choice of block size that minimizes total communication
cost and computation overhead for a 1GB file: a block size of 16KB is best for 99% confi-
dence, resulting in a proof size of 415KB, and computational overhead of 30ms. They also
show that the price of dynamism is a small amount of overhead compared to the existing
PDP scheme.

5.7.3 Version control
Finally, we evaluate an application that suits our scheme’s ability to e�ciently handle
and prove updates to versioned, hierarchical resources. Public CVS repositories o�er a
useful benchmark to assess the performance of the version control system we describe in
Section 5.6. Using CVS repositories for the Rsync [157], Samba [157] and Tcl [139] projects,
we retrieved the sequence of updates from the RCS source of each file in each repository’s
main branch. RCS updates come in two types: “insert m lines at line n” or “delete m
lines starting at line n”. Note that other partially-dynamic schemes (i.e. Scalable PDP [9])
cannot handle these types of updates. For this evaluation, we consider a scenario where
queries and proofs descend a search path through hierarchical authenticated dictionaries
corresponding (in order) to the directory structure, history of versions for each file, and
finally to the source-controlled lines of each file. We use variable-sized data blocks, but
for simplicity, assume a naïve scheme where each line of a file is assigned its own block; a
smarter block-allocation scheme that collects contiguous lines during updates would yield
fewer blocks, resulting in less overhead.

2The authors present multiple versions of their scheme. The version without the knowledge of exponent
assumption and the random oracle actually sends this M ; other versions only compute it.

56



250

500

750

1000

1250

P
r
o
o
f
s
i
z
e
(
K
B
)

P
r
o
o
f
s
i
z
e
(
K
B
)

200 400 600 800 1000

Block size (KB)Block size (KB)

DPDP (99%)
PDP (99%)

Figure 5.3: Size of proofs of possession on a 1GB file, for 99% probability of detecting
misbehavior.
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Rsync Samba Tcl
dates of activity 1996-2007 1996-2004 1998-2008

# of files 371 1538 1757
# of commits 11413 27534 24054
# of updates 159027 275254 367105

Total lines 238052 589829 1212729
Total KBytes 8331 KB 18525 KB 44585 KB

Avg. # updates/commit 13.9 10 15.3
Avg. # commits/file 30.7 17.9 13.7

Avg. # entries/directory 12.8 7 19.8
Proof size, 99% 425 KB 395 KB 426 KB

Proof size per commit 13 KB 9 KB 15 KB
Proof time per commit 1.2ms 0.9ms 1.3ms

Fraction of total size 8.4% 6.7% 3.4%
Max v 44123 9880 59664

Max proof size 2003 KB 4632 KB 4075 KB

Table 5.4: Authenticated CVS server characteristics.

Table 5.4 presents performance characteristics of three public CVS repositories under
our scheme; while we have not implemented an authenticated CVS system, we report the
server overhead required for proofs of possession for each repository. Here, “commits” refer
to individual CVS checkins, each of which establish a new version, adding a new leaf to the
version dictionary for that file; “updates” describe the number of inserts or deletes required
for each commit. Total statistics sum the number of lines (blocks) and kilobytes required
to store all inserted lines across all versions, even after they have been removed from the
file by later deletions.

We use these figures to evaluate the performance of a proof of possession under the
DPDP scheme: as described in Section 5.6, the cost of authenticating di�erent versions of
files within a directory hierarchy requires time and space complexity corresponding to the
depth of the skip list hierarchy, and the width of each skip list encountered during the Prove

procedure.
As in the previous evaluation, “Proof size, 99%” in Table 5.4 refers to the size of a

response to 460 challenges over an entire repository (all directories, files, and versions).
This figure shows that clients of an untrusted CVS server—even those storing none of
the versioned resources locally—can query the server to prove possession of the repository
using just a small fraction (1% to 5%) of the bandwidth required to download the entire
repository. “Proof size and time per commit” refer to a proof sent by the server to prove
that a single commit (made up of, on average, about a dozen updates) was performed
successfully, representing the typical use case. These commit proofs are very small (9KB to
15KB) and fast to compute (around 1ms), rendering them practical even though they are
required for each commit. Our experiments show that our DPDP scheme is e�cient and
practical for use in distributed applications.
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Chapter 6

Accounting for bandwidth

As outlined in Chapter 1, systems designed in a peer-to-peer (P2P) style aim to take
advantage of the benefits of decentralized architecture. These benefits include the ability
to self-scale as new participants join, with new peers contributing resources to o�set the
added workload they generate. Additionally, decentralization o�ers improved fault-tolerance
and user privacy, as no central authority is responsible for orchestrating or recording peer
interactions.

However, this decentralized, semi-anonymous structure also makes it di�cult to enforce
policies over clients (software agents acting on behalf of their users) in order to promote even
greater long-lived scalability, fault-tolerance, and fairness. Though peer-to-peer systems rely
on the contributions of peers, when faced with free-riders who consume more resources than
they provide to others, some systems (such as BitTorrent) must rely on altruistic members
to provide adequate performance.

The system described in this chapter, FairTrader, addresses this problem by enforcing
strict fairness among peers. FairTrader uses e-cash to allow participants to earn points in
exchange for work they contribute and spend their points to obtain service from others.

The use of e-cash o�ers a solution to many issues relating to identity and accountability
that are common in peer-to-peer systems. For example, Sybil attacks [69] exploit the use of
many identities to receive extra benefit from a system. In a currency-based system, as long
as creating a new identity does not provide the attacker with more currency, Sybil attacks
provide no economic benefit and lose their meaning.

Further, e-cash provides a strong and persistent accounting mechanism which incen-
tivizes desirable long-term behavior, since clients earn credit for future benefit. BitTorrent
uses a simpler “tit-for-tat” scheme that is both gameable [146, 119, 100] and concerned
only with the present. Once the desired file has been obtained, a peer gains no benefit
from continuing to upload. This lack of fungible credit linking disparate files is especially
problematic when a participant joins a new BitTorrent swarm: since the new node has no
data, it is ignored by other participants. Only after receiving blocks from an altruistic peer
can the new peer participate normally.

Fairness due to stricter accounting of peer activity with currency also helps to yield a
more robust system. In today’s BitTorrent systems, a large fraction of upload bandwidth
is contributed by a few well-provisioned, altruistic peers [146], while many free-riding peers
consume significantly more resources than they contribute. This imbalance leads to two
problems. First, the performance of such imbalanced swarms is critically dependent on a
few participants: their failure or departure hurts performance for the remaining majority of
peers. Second, observed performance for individual members may be highly variable: only
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those participants lucky enough to be chosen by the fast, altruistic peers are well served.
The benefits of fairness and accountability provided by FairTrader come at a cost, how-

ever, as the use of the cryptographic protocols requires semi-centralized components, the
bank and the arbiter, described in Chapter 3. We say they are “semi-centralized” because
each can be widely distributed, but their services are not provided by peers. These com-
ponents pose a scaling challenge, but we have taken care to reduce their overhead and
demonstrate that large swarms can still be supported. We also ensure that these com-
ponents do not weaken user privacy: our protocols allow a client to be linked to its P2P
interactions only if it has acted maliciously by attempting to double-spend a coin.

Outline This chapter presents the FairTrader design, described in Section 6.1, which
demonstrates a solution to the free-riding problems of BitTorrent-like systems, as well as the
problem of maintaining a persistent reputation across swarms. In doing so, we increase the
overall fairness of the system (i.e., peers are served in proportion to their own contributions);
we also do so in a way that is privacy-preserving. In particular, we show how e-cash
accounting, described in Section 6.2, can be added to a system with an existing incentive
scheme to ensure accountability while still preserving privacy of the participants in the P2P
system.

We also present an implementation of the protocols and architecture of FairTrader. In
Section 6.5 we demonstrate that our system is feasible for practical application, and that
its currency-based approach o�ers benefits for both short- and long-term performance.

6.1 Design
FairTrader builds on the existing block-transfer mechanism of BitTorrent, while layering on
top of it the the cryptographic accounting needed for e-cash and fair exchange. We describe
our design, both in terms of the changes required to add currency to BitTorrent and the
strategy changes that must take place in order for peers to e�ectively use our new system.

6.1.1 Goals
Motivated by the problems outlined in the previous section, FairTrader’s chief design goal is
to increase fairness — which we believe provides better long-term incentives and improved
reliability — through a currency-based credit system that persists throughout each swarm in
which a peer participates. Fairness guarantees that seeders of past files will get proportional
or preferential treatment in future files; i.e., they will see better performance relative to non-
contributors. Achieving fairness solves the seeding and free-riding problems described in
the previous section.

We introduce persistent fungible credit that allows peers to exchange past work (for
example, as a seeder) for future resources, which means that they will no longer enter new
swarms without their history to boost (or lower) their reputation. Our credit system ensures
that a peer’s good behavior in one swarm can be used to benefit another.

FairTrader specifically intends to enforce long-term fairness, rather than force users into
short-term tit-for-tat exchanges, as BitTorrent does today. Short-term fairness is su�cient
when users have simultaneous demands and comparable capacity — e.g., in a flash crowd
for a popular file — but does not provide strong incentives for long-lived applications. A
peer joining a BitTorrent swarm for last week’s most popular file is likely to find that most
downloaders who acquired it last week are now devoting their resources to something new,
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since no incentive exists for them to continue uploading the old one. In fact, peers will receive
the best service for downloading today’s files by dedicating all of their network capacity to
uploading just those files. Our use of a fungible, currency-based incentive mechanism is
motivated by a “long view” of system performance as spanning multiple, disparate swarms
over weeks or months, including concerns for the future availability of data and continued
performance for new peers.

In pursuit of fairness and fungibility, FairTrader does not sacrifice the privacy of users.
While many systems, including BitTorrent, do not make privacy guarantees, it is impor-
tant that our scheme not weaken the existing level of peer privacy. Privacy-preserving or
anonymity-providing system designs would be poorly served by an accounting mechanism
that required online access to a centralized entity during peer interactions or allowed a third
party to observe or infer peer interactions.

In order to meet these three goals of fairness, fungibility, and privacy, we use protocols
for electronic cash and fair exchange that are provably secure against fraud, i.e., double
spending and/or counterfeiting coins, and do not require access to a centralized bank during
each interaction (cryptographically speaking, this means we are using o�ine e-cash). We
have altered and augmented these protocols to better suit their use in a P2P application. For
example, a buyer cannot lose the key sent to them by the sender (either through intentional
maliciousness or network failure), and similarly a sender cannot lose the coin sent to them
by the buyer.

Although the use of o�ine e-cash does take some of the burden o� the bank, FairTrader
still requires coins to be withdrawn and deposited with a bank. Furthermore, a sender must
deposit any earned coins with the bank rather than spending them himself, as otherwise
coins grow excessively in size [49]. In addition, fair exchange protocols, in which two parties
exchanging data are guaranteed that either both or neither of them will get what they
want, cannot be achieved without the presence of some trusted third party (in our case, the
arbiter) to intervene in the case of failure [140]. In summary, both the bank and the arbiter
are inherently centralized entities. Still, the work of these entities can in fact be distributed
across multiple machines (with little coordination required), or outsourced to potentially
untrusted third parties [17].

6.1.2 Currency-enabled BitTorrent
Our e-cash and fair exchange protocols follow the structure depicted in Figure 6.1. Clients
hold accounts with the bank, and use them to withdraw wallets consisting of coins; the
coins in these wallets are then used to buy and barter for blocks of data. If an exchange
fails (e.g., by someone trying to cheat or an inopportune network failure), the buyer or
seller can turn to the arbiter to resolve the failure. If an exchange is successful and a buy
operation took place, the receiving party will later deposit the coin with the bank in order
to receive credit. The anonymity property of e-cash guarantees that the bank is unable to
link a spent coin to the original user who withdrew the coin, unless that user attempts to
cheat by spending the same coin twice.

To adapt this currency system to the design of BitTorrent, we first consider a strawman
design in which an e-cash transaction is used to account for each block exchange in BitTor-
rent. In such a design, every block transfer in one direction could be paid for by a coin sent
in the opposite direction. A fair exchange protocol would be used to ensure that both or
neither of the transfers occur.

This simple design has several drawbacks, due to the overhead of the cryptographic
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Figure 6.1: The FairTrader system components. Users A and B will exchange encrypted
blocks; if both users have blocks that the other one desires, A and B may barter. Otherwise
A will buy the desired block from B. Following a buy operation, B can deposit the earned
coin with the bank. If a problem occurs at any point in the exchange, either party can
go to the arbiter. The percentages seen illustrate reasonable expectations for the relative
frequency of these operations; they are quite subject to change, however, as they will be
highly dependent on system characteristics such as peer failure rates and the percentage of
peers that are actively downloading (i.e., not just seeding).
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protocols involved. First, e-cash transactions are computationally expensive, both for the
peers involved and for the bank. While the burden on peers is distributed, the bank is a
centralized entity that must eventually accept a deposit for each coin that is exchanged;
this design would present an impractically high computational overhead for the bank.

One approach to reducing CPU overhead for the bank would be to increase the block
size, thus reducing the number of transactions required to download a file. However, this
solution does not match the typical usage of BitTorrent, in which users make many requests
for small blocks. For example, a large block size would be inconvenient when buying from
a slow peer, as the peer downloading the block would be prevented from selling his received
data, and additionally crediting the peer for BitTorrent’s tit-for-tat mechanism, until the
entire block was finished (this is to ensure that the block is not corrupted, since its hash
can be checked only after the whole block is downloaded). Furthermore, large blocks would
also cause problems for the arbiter since it is sometimes required to decrypt and transmit
an entire disputed block.

To alleviate these drawbacks, FairTrader decouples block transfer from accounting. Bit-
Torrent is used, nearly unmodified, to disseminate small encrypted blocks among peers; the
process of data transfer can now be considered separately from the process of obtaining
the decryption key needed to get the content within the block. Once an encrypted block
is downloaded, peers later acquire the decryption keys for the block using a fair exchange
protocol; this significantly reduces the overhead of the protocol, as the fair exchange now
involves trading coin in exchange for the decryption key value (both comparably small), as
opposed to the entire block. Again, the cryptographic protocols in place prevent the users
from being cheated, as the Buy protocol protects the buyer from paying for an invalid key
through the use of enforceable contracts.

To further reduce the cryptographic overhead of for typical peer interactions, we intro-
duce the Barter protocol, which allows peers to exchange keys for keys (as opposed to a key
for a coin in the Buy protocol) if mutual interest exists; i.e., when peers have sent each other
encrypted blocks. A barter exchange places a coin in escrow to protect the initiator of the
barter transaction, but does not require the coin to be “spent” (and therefore deposited) as
long as both parties provide valid keys. This escrow coin can be re-used for future barter
operations, thus reducing overhead even further. In the common case, the Barter protocol
eliminates most of the cryptographic overhead for peers and for the bank; for more on this,
see Section 6.2.

Finally, FairTrader reduces overhead by issuing e-coins in multiple denominations; e.g.,
one denomination for each power of two. A coin of a larger denomination is the same size
as a coin of a smaller denomination, meaning the computational overhead the same for each
coin; this allows clients to buy or barter for a large number of recently-received blocks (e.g.,
512 blocks) at fixed intervals with a constant overhead for each interval, regardless of the
amount of data being transferred. At the last interval, the remaining balance of N blocks
can be paid using only O(lg N) coins.

6.1.3 Payment strategy
By decoupling block transfer from accounting, our aim is to modify the existing tit-for-tat
“choking” strategy that BitTorrent clients employ in the short term as little as possible.
While we do not modify the way BitTorrent peers download and upload encrypted blocks,
we do influence client strategy by periodically “settling debts”; i.e., by buying or bartering
for the keys to any encrypted blocks received since the last settling operation. When settling
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debts, our strategy is to barter for as many blocks as possible, and afterwards, if any unpaid
blocks remain, to use the biggest single coin by denomination (nearest power of two) to buy
the majority of remaining blocks. This ensures that the overhead due to our currency
accounting remains constant at each settling step.

FairTrader modifies interactions with seeders more extensively. Under BitTorrent’s in-
centive scheme, seeders provide purely altruistic service to downloading peers. FairTrader
rewards seeders for their contributions in the form of currency payments; this allows a peer
entering a new swarm to begin obtaining blocks more quickly than before. Our design does
not prescribe that FairTrader clients buy blocks solely from seeders and avoid all other
interactions, though: we believe the performance benefits due to bartering, as described
above, o�er significant incentives for peers to continue seeking tit-for-tat partners, when
possible, that will reduce the overhead involved in buying.

6.1.4 Centralized components
The service provided by a bank is well-suited for distribution: all it has to do is store a
balance for each account holder (identified by public key) and a short record of each coin
deposited; it does not even need to record completed withdrawals. As such, a bank requires
no administrative relationship with BitTorrent’s centralized tracker, nor with the arbiter
that resolves aborted transactions, so FairTrader clients may select any combination of these
three entities for a given exchange or swarm.

Our bank is logistically similar to the deployment of private trackers in some BitTorrent
communities, described in detail in Section 2.2.6. Private trackers measure and enforce up-
load/download ratio requirements on peer activity across multiple files [5]. While e�ective,
these tracker ratio schemes rely on easily forgeable, self-reported client statistics; with e-
cash, on the other hand, uploads by peers in excess of the amount downloaded are securely
accounted for by each user’s bank balance without loss of privacy.

The proliferation of private trackers suggests that di�erent banks, each issuing its own
currency and enforcing its own policy, might be well-suited to the state of BitTorrent file-
sharing communities today. Many private trackers restrict their membership to those invited
by well-performing peers, but o�er up-front credit to new users in the form of relaxed ratio
requirements (i.e., below 1.0), which become stricter as the user continues to participate.
FairTrader banks could implement a similar policy by granting e-cash to new users. Of
course, this sort of system requires external controls on membership, or strong identities,
to avoid Sybil attacks.

The ratio schemes and invitation restrictions employed by private trackers serve as a
defense against Sybil attacks: even though new members receive instant benefit by joining,
the number of invitations is restricted to prevent users from receiving this benefit repeatedly.
A design based on an open, unrestricted bank would have to be careful not to provide any
starting balance to users, and instead rely on gifts of currency from existing users, or an
opportunity to perform work for the system at the outset.

Finally, dealing with fraud is also an important consideration for the bank. While the
bank can detect double-spending after the fact, no o�ine e-cash mechanism can stop a
malicious user from the simultaneous use of the same coin in multiple transactions. In
this case, the deposit of a duplicate coin would reveal enough information to identify the
malicious spender, and the bank could punish the user. A simple punishment is account
revocation; if new accounts can be created e�ortlessly, however, then this would open the
door to Sybil attacks. Throttling or otherwise limiting the number of new accounts (through
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confirmation by email, SMS, credit card, social networks [176], etc.) represents one tactic
to avoid this problem. Another approach is to obtain a “high value secret” or monetary
deposit for each account that could be revealed or retained in case of bad behavior. E-cash
supplies the mechanism to support such policies, and FairTrader allows the coexistence of
multiple banks, allowing further innovation in this area.

In addition to the bank, FairTrader requires another semi-centralized entity: the arbiter.
The arbiter facilitates fair exchange by serving as a fallback mechanism to resolve aborted
transactions; its protocols are described in Section 6.2. It serves as the trusted third party
(TTP) required by fair exchange, and its role is limited to decrypting escrowed keys and
coins left by peers that disconnect before finishing the Buy or Barter protocol. To establish
itself as an arbiter, it must simply publish a public key for peers to use for encrypting
escrow messages, and record aborted transactions it resolves; it is also therefore well-suited
for distribution. A distributed arbiter might, for simplicity, share a single public key;
otherwise, peers might draw from a list of available arbiters before beginning an exchange.
Note that under our system, a peer gains no benefit from refusing to send the last message
of an exchange, a sthe message is small and the arbiter will provide whatever information
is missing anyway; rather, it is in the peer’s best interest to retain goodwill with the peer
in order to receive further blocks. We therefore expect the load on the arbiter to be low,
and due only to unexpected node failure and churn.

6.2 Cryptographic Protocols
FairTrader builds upon the protocols for endorsed e-cash for buying and bartering described
in Chapter 3, and also on the improved barter protocols of Küpçü and Lysyanskaya [107].
Here we provide details on these protocols, as adapted for FairTrader.

6.2.1 Withdraw
Withdraw is a two-round protocol between a client and the bank. The client contacts the
bank and proves her identity; she can then request the withdrawal of a certain number of
coins. If the bank is satisfied that the client is who she says she is, it will respond with
a wallet, signed by the bank, that contains the specified number of coins. Because we use
compact e-cash [36], the size of the wallet is not dependent on the number of coins inside.
Cryptographically, the wallet can be thought of as the bank’s signature on the seed of some
pseudorandom function [82]; the serial number of each coin is then a value generated by
the pseudorandom function using this seed. To keep the user’s transactions anonymous
with respect to the bank, we use blind signatures [45, 40], in which the signature on the
pseudorandom function seed can be created jointly by the user and the bank but without
the bank learning the seed (i.e., the message that it just signed). As a result, the bank
cannot link a spent coin when it is deposited later to the user who withdrew it, because
it does not know the serial number. Nevertheless, to keep users accountable the coins still
contain mechanisms to guarantee that the bank can easily check the validity of the coin, or
catch a user who is attempting to spend a coin twice; for details on how this is accomplished,
we refer the reader to Camenisch et al. [36, 42] or Belenkiy et al. [18].

To best suit our purposes, as mentioned in Section 6.1.2 we have modified the original
withdraw protocol to allow for coins of di�erent denominations. To allow multiple coin
denominations, the bank uses multiple public keys; each public key corresponds to a di�erent
coin denomination. When a client requests a withdrawal, she specifies the number and values
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of the coins she would like to withdraw. If the client has enough money in her account, the
bank signs the wallet using the public key corresponding to the selected denomination and
adjusts the client’s balance accordingly. A seller can easily check the worth of a coin, as its
validity will verify only under the corresponding public key of the bank.

Finally, the withdraw protocol is run over a secure communication channel (e.g., SSL)
to protect the user’s privacy, as an eavesdropping party would be able to learn information
about the identity of the user performing the withdrawal otherwise.

6.2.2 Deposit
Deposit is a non-interactive protocol in which the client sends a single message to the bank
that serves to both prove her identity (so that the deposit goes into the right account) and
deposit her coin(s). Optionally, the bank may acknowledge that the deposit was successful.

Before crediting the client’s account, the bank must check each coin to make sure it is
valid and has not been spent twice. Although the bank needs to check each coin separately,
there are methods for batch-checking some parts of the deposit [40, 37, 74] that would
increase the bank’s e�ciency on deposits of multiple coins. Furthermore, untrusted con-
tractors (i.e., computing devices) can be employed to outsource the checking of e-coins [17].
The deposit protocol is also run over a secure channel so that outside observers do not infer
information about the wealth of the client.

6.2.3 Fair block exchange
As mentioned in Section 6.1.2, peers may exchange blocks in two di�erent ways: either
through a Buy or a Barter protocol. For our Buy protocol, which allows for the fair ex-
change of a coin and a block (more precisely, the decryption key for an encrypted block),
we adapt the buy protocol of from Section 3.3.1. For our Barter protocol, which allows
for the fair exchange of a block for a block, we adapt the barter protocol of Küpçü and
Lysyanskaya [107]. Currently, all known optimistic fair exchange protocols make use of an
expensive cryptographic primitive known as verifiable escrow [43]. In the buy protocol, ver-
ifiable escrow is used for buying each block, while in the barter protocol it is used only once
for any number of (successful) exchanges between the same peers. Bartering is therefore
much more e�cient than buying, especially when peers can barter repeatedly (for example,
when they are seeking the same content).

6.2.4 Buy
To buy a file from Bob, Alice computes a contract; i.e., a document that says that she (she
can be identified by a temporary signing key, so that her true identity remains unknown)
promises to give to Bob (whose true identity need not be known either) the contents of an
escrow in exchange for a key that will decrypt the ciphertext (identified by its hash alone)
to the data promised in some given hash, by some given expiration date. Alice can then
sign this contract under her temporary signing key.

Bob, upon receiving this contract, can send to Alice the key; he next receives an “en-
dorsement” from Alice which acts to complete the coin, thus allowing him to submit it
for deposit. If Bob does not receive the endorsement, he must contact the arbiter before
the expiration date and engage in a resolution protocol (for details on this resolution, see
Belenkiy et al. [18]). If the resolution goes well, the arbiter can give the endorsement to Bob
using information provided in the contract. If, on the other hand, Alice does not receive the
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key prior to the expiration date, she can also contact the arbiter and engage in a resolution
protocol to get the key.

6.2.5 Barter
If Alice and Bob choose to barter, then Alice will now be providing Bob with a decryption
key of her own rather than a coin. She still needs to include the original escrow (containing
the coin), however, as if the exchange goes wrong and Bob does not get Alice’s decryption
key, he will at least be able to get the coin using the resolution protocol above. But, if all
goes well and everyone is honest, then this escrow (which, remember, is quite expensive)
will remain untouched and can be kept in place for future exchanges without any additional
overhead.

In addition to the escrow on the coin, Alice will also form an escrow on her decryption
key; although this is another escrow, it is substantially less computationally expensive than
the one containing the coin. The contract will now contain essentially the same information
as before, with the addition of this new escrow. Bob can then send Alice his decryption
key, and Alice can respond in turn with her own. If something goes wrong with either of
these last steps, the parties can resolve with the arbiter as they did before (using slightly
di�erent protocols; see Küpçü and Lysyanskaya [107] for details).

We expect that in general peers will prefer to barter rather than buy whenever possible,
as bartering o�ers a way for peers to receive content immediately, as opposed to buying
in which they will sell files to receive credit that they will then invariably just use to buy
files anyway. Furthermore, the e�ciency improvements gained from reusing the expensive
coin escrow are quite noticeable; for example, for peers who exchanges tens to hundreds of
blocks (which is highly typical [94]), the e�ciency gain in bartering over buying is between
one and two orders of magnitude (in temrs of both CPU time and bandwidth overhead).

6.3 Implementation
We have developed a prototype implementation of FairTrader which extends the BitTorrent
protocol to use e-cash for strong accountability. In this section we describe the implemen-
tation of the client, the bank, and the underlying cryptographic operations.

6.3.1 Client
We built the FairTrader client using libtorrent, an open-source C++ BitTorrent client
library. Libtorrent uses Boost ASIO to provide fast, multi-platform data transfers for a
number of front-end client implementations. Our implementation aims to separate control
of block transfer from accounting, by leaving BitTorrent underlying block transfer and short-
term incentive mechanisms largely untouched. To accomplish this, we allow libtorrent
to manage the transfer of encrypted blocks with as few modifications as possible, and
implement our e-cash protocols as BitTorrent extension messages using a plugin interface
used by other protocol extensions.

Our main changes to the libtorrent core involve the encryption and decryption of blocks.
We encrypt blocks before they are sent to a waiting peer, and interpose decryption at the
point when a newly received block is asynchronously queued for hash-checking. From the
library’s point of view, a block missing an encryption key is still waiting to be hashed by
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the disk helper; since its contents has not yet been validated, this ensures that encrypted
blocks from one peer are not uploaded to other peers.

We implemented our buying and bartering protocols by adding new BitTorrent extension
messages for each round of the buy and barter protocols. The BitTorrent protocol allows
peers to announce support for new extension message types, and client developers have
used these messages to implement new standards such as peer exchange, DHT support, and
encryption. We use our cryptographic library, described in Section 6.3.3, to process the
messages and decrypt blocks.

In FairTrader, peers periodically settle debts separately from the underlying peer selec-
tion and bandwidth throttling modules of Libtorrent. After each interval a peer barters with
each of its peers that it has exchanged blocks with. Then, whichever peer has received more
encrypted blocks over the interval will purchase the largest power-of-two blocks that is less
than the di�erence. This strategy yields a constant computational and network overhead
per unit time.

Although we use the basic BitTorrent sharing mechanisms to exchange encrypted blocks,
some modifications were necessary to account for block purchases. BitTorrent clients make
peer selections based on the amount of data they receive from peers. In FairTrader, clients
are credited for sending encrypted blocks or buying encryption keys. This modification is
necessary to keep the underlying block transfers moving along for peers that have a pure
buyer/seller relationship.

Our fair exchange protocols require that each block of data bought or bartered be
described with a contract, as described in Section 6.2. Both parties must agree on what
they are exchanging using a prepublished hash value. We use the metadata in the torrent file
for this purpose, which provides a hash for each block. However, the blocks described in a
typical torrent file range between 256kB and 2MB, while the subpieces actually transferred
between peers in tit-for-tat interactions are typically 16kB. This di�erence complicates
BitTorrent operation—it may be di�cult to tell which peer supplied corrupted data if
a block hash comparison, which consists of many subpieces, fails. This complication is
unacceptable for FairTrader’s precise accounting, so we instead chose a 16kB block size to
correspond with the size of a tit-for-tat unit.

6.3.2 Bank server
Our bank server is implemented as a single-threaded, event-driven HTTP server which
answers requests to withdraw and deposit coins, or register a new user. We chose HTTP
because it is well-supported by clients, especially BitTorrent clients, which already connect
to the torrent tracker service using HTTP. Our protocols match the nature of HTTP requests
well: deposit takes a single round to complete, while withdraw takes two (a session variable
is used to match the second round’s request to the first).

Due to this simple implementation, the bank can be easily scaled like most web apps,
by adding additional server process on available cores of each available machine, making it
suitable for deployment on a cluster of servers. A reverse HTTP proxy (in our deployment
testing, based on lighttpd) does the work of load-balancing and mapping users to available
bank backends. The work of the bank is almost purely computational, and scales nearly
linearly with available cores or machines. See Section 6.4 for details.

Deposit We use a SQL database to store bank information. The bank database must
store a record of every coin deposited, keyed on each coin’s unique serial number, with
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each record storing the information required to detect double-spending. Since these serial
numbers are chosen at random, this database schema would distribute well on a distributed
key-value store or DHT.

Withdraw The database must also store a balance for each account; account-holders
identify themselves to the bank solely using a randomly-chosen public key. After the sec-
ond round of the withdraw protocol has completed and the account’s balance has been
decremented the correct amount, no record of the withdrawn wallet needs to be stored with
the bank.

6.3.3 Cryptographic library
For our cryptographic operations, we use the Cashlib library described in Chapter 7. This
library is built on top of a custom programming language, ZKPDL, that allows for the
implementation of all the cryptographic primitives required for our application; it addition-
ally uses custom modular multi-exponentiation routines that help to reduce some of the
overhead required by our cryptographic protocols.

In addition to the computational savings provided by Cashlib, we chose to use it for
a number of other reasons. As an optimization for fair exchange protocols in which large
blocks of data may be exchanged, Cashlib supports the purchase of multiple non-contiguous
blocks of data by using a compact representation of these blocks; specifically, it creates a
Merkle hash [127] of all the blocks and puts the tree root in the contract, instead of having
one hash per block. We also found that Cashlib provides ways, using the Boost C++
library [31], to serialize containers such as messages, contracts, and public/secret keys.
Using this serialization, our clients can save objects to disk and load them back when
needed, and the bank and the arbiter can convert their public keys to files and distribute
them to the clients should the need arise.

Finally, we observed that another optimization could be made once we chose to run
our cryptographic protocols over secure channels (as recommended by Cashlib). To pre-
vent man-in-the-middle attacks, e-cash constructions require a random value that must be
generated jointly by the buyer and the seller for every coin, which would normally require
an extra round trip between peers. Instead, we eliminated this round trip by reusing the
randomness generated for secure communication.

6.4 Performance of the bank and arbiter
As discussed in Section 6.1.2, our FairTrader client buys or barters keys for encrypted blocks
periodically, in multiples of 16kB. Our protocols allow for these blocks to be batched into
one exchange using a large-value coin; for illustration, let us assume that a FairTrader
client with a 2Mbit/s Internet is exchanging blocks with four peers; this means that every
15 seconds, a peer might exchange about 1MB of data with each peer. By exchanging one
coin per peer per interval the size of the message is quite low (38kB, less than 4%) when
compared with the amount of data exchanged.

Computationally, once barter setup has completed (which typically requires about half
a second, but again is required only once for multiple exchanges), a barter exchange requires
only 18ms of overhead (for the peer initiating the exchange; for the other peer the overhead
is even lower). Buying, however, takes slightly more than half a second for the buyer and

69



about half that for the seller; as described earlier, we mitigate this overhead by buying only
at fixed intervals, with the highest value coin possible.

Specific benchmarks for the buy, barter, withdraw, and deposit protocols can be found
later in the evaluation of Cashlib and ZKPDL, in Section 7.9.

Bank To run our bank, we used an EC2 node of instance type c1.xlarge, which provides
eight virtual cores (where each core provides performance approximately equivalent to that
of a 2GHz processor). With this machine, we were able to consistently accept almost 100
deposits per second, and we observed that this number scaled linearly with the number
of cores (as would be expected). To obtain a higher throughput, a single bank could
be distributed over multiple machines, and outsourcing computation techniques could be
applied to further reduce the load of the bank [17]. We also mention that although multiple
banks tend to operate independently (meaning coins withdrawn at one bank may not be
accepted by another), this is analogous to the situation in BitTorrent, in which independent
private trackers are used to share among a particular set of peers.

Arbiter We also consider the e�ciency of the arbiter. A resolution is necessary only
when ciphertext and verifiable escrow exchanges are completed, but one of the parties fails
to send her key. Belenkiy et al. [18] showed that the 400kB data the arbiter need to download
is independent of the size of the blocks transferred, and it provides 99% confidence in the
arbiter’s decision. In our experiments, the time taken to send the key and check the received
key is less than 10ms. In FairTrader, peers exchange keys every 15 seconds. This means
that the probability that a random machine failure will occur in a critical section of the
protocol is 1/1500. Following Stutzbach and Rejaie [167], we estimate that the average
uptime of a peer is roughly 2.5 hours, which means that we can expect to see one failure
every 2.5 · 3600 = 9000 seconds.

In a BitTorrent system with 1.7 million users, 1700000/9000 = 190 machines will fail
every second, but only 190/1500 of those failures will require resolution by the arbiter. This
rate means a resolution will be necessary once every 7.9 seconds. If we consider the largest
BitTorrent system to date (with 22 million users [105]), then a resolution will be necessary
every 0.6 seconds. In either case, all resolutions can be handled by a single arbiter, as the
arbiter typically needs between 90ms and 280ms per resolution in a single core.

6.5 FairTrader performance
Our evaluation illustrates the performance benefits and costs arising from the use of e-cash
in FairTrader. We compare the performance of FairTrader to the BitTorrent system upon
which it is based, and measure the overhead due to our design, which we recall buys and sells
encrypted blocks, as opposed to the simple exchange of unencrypted data in BitTorrent.

Afterwards, we demonstrate the fungibility and fairness guarantees enforced by our
system, through experiments designed to highlight the benefits they create. We show how
FairTrader enforces fairness, by rewarding peers that have made contributions to the system
in the past. We also show that FairTrader provides fungibility in its reward mechanism; i.e.
the ability to make exchanges between peers using e-cash that would not have been possible
with BitTorrent. We demonstrate situations where FairTrader enables cooperation between
peers that would be impossible with BitTorrent (because they were involved in di�erent
swarms) by uniting incentives across the entire system.
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We ran our swarm experiments on the Amazon Elastic Compute Cloud (EC2), using the
m2.xlarge instance type. Each instance provides two virtual cores, each core providing per-
formance approximately equivalent to a 2.67GHz processor on modern physical machines.
We use Dummynet [154] to emulate bandwidth limitations between instances.

6.5.1 Comparisons with BitTorrent
Experiments which attempt to understand the performance of a decentralized network of
many participants rely on certain core assumptions about the characteristics of partici-
pants. Apart from standard experimental parameters like bandwidth capacity, computa-
tional speed, etc., in P2P file-sharing applications assumptions on client behavior have a
large impact on performance measurements.

For example, consider the “flash crowd” scenario in which many peers begin downloading
a file at the same time until it is complete. When should these participants leave the network
and discontinue uploading to their peers: right after finishing the download, or at some point
afterwards? Should the experiment assume peers are all devoting their total bandwidth
capacity to a single swarm, or that users often seek many files at once, participating as a
downloader in several swarms at a time while seeding in others?

Altruism The importance of this first question adds altruism as an experimental param-
eter: we define altruism as upload activity that continues after a download has completed.
Since under BitTorrent, a peer receives no direct benefit for continuing to upload a file once
complete—in fact, the spare upload capacity due to altruism might be better used by other,
concurrent swarms in which the peer is involved—the rational choice for is to leave a swarm
immediately after the download has finished.

We use this rational, selfish behavior as a baseline measurement for comparison with Bit-
Torrent. We also note that even more selfish behavior is possible with BitTorrent: research
implementations exist which game BitTorrent’s mechanisms to more selfishly allocate tra�c
to peers [146], or download while providing no data to others at all [119]; this evaluation
does not consider these non-standard clients, though FairTrader’s benefits would be greater
in such a scenario.

Research has suggested, however, that much of BitTorrent’s performance is due to al-
truistic behavior by a small fraction of peers with high bandwidth capacities [146]. So in
practice, it’s clear that some peers do persist in a swarm as seeders, whether due to altruism,
the influence of ratio-tracking networks, or default client settings. To model this activity,
we have also evaluated BitTorrent performance under increasing levels of altruism, defined
by setting a target parameter R for each peer. Once a peer finishes downloading a swarm,
it compares its upload/download ratio to R, and continues uploading until the target has
been met before leaving the swarm.

Multiple concurrent downloads In addressing the second question, we also consider
scenarios where peers are involved in multiple swarms at a time. Single-file flash crowd eval-
uations of BitTorrent performance are common [110, 146, 55] and capture a basic content-
distribution use case, but these types of experiments unrealistically consider each file’s
swarm in isolation, ignoring the pattern of P2P use most prevalent today. (cite needed)

Most users of P2P networks do not enter a single file’s swarm at the same time as every
other peer, and then discontinue use of the P2P network forever after. In practice, many
users of BitTorrent and other P2P networks engage in multiple swarms simultaneously,
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either as seeder or downloader, and are often continuously engaged with these swarms over
periods of days or weeks (as described in Section 6.1).

Further, many popular BitTorrent tracker communities focus less on facilitating “flash
crowds” than on providing access to a continuously-available library of content. On these
trackers, swarms for popular content may persist for months or years, and user download
patterns are much less synchronized as in the flash crowd scenario (e.g., they follow a natural
pattern resulting from user interest). In these communities, just as in a library, not every
user is mutually interested in the content of every other peer, but rather in a subset of the
content available.

6.5.2 Scheduled download experiments
Based on the aforementioned observations, we have constructed three general scenarios for
evaluating the performance of FairTrader and BitTorrent. These scenarios are each based
on first creating files (torrents) and peers interested in them, then defining a schedule of
each peer’s arrival to the swarms for the files in which it has interest.

We create a network of N peers, and a set of available files F , with each peer participating
in M of the total |F | files (the set F

n

, where |F
n

| = M). At the beginning of the experiment,
we label a fraction s of each file’s M peers as seeders (meaning these peers are assumed to
already have downloaded the content). The other (1 ≠ s)M peers are considered interested
downloaders who, during the course of the experiment, will enter the swarm for that file and
attempt to download it. To schedule the arrival of peers, we assign for each peer n œ N and
each file f œ F

n

a start time selected over a window of time T (here, in seconds). Variations
of these values induce the settings described as follows.

Flash crowd Studies of flash crowds exercise the classic content distribution scenario
where, typically, a single seed publishes a file that becomes suddenly popular. Under a
client-server architecture, the sudden onset of a crowd of downloaders can often cause
severe performance degradation for all participants; thus this scenario is often employed to
demonstrate the e�ectiveness of P2P systems in mitigating these performance problems.
We use parameter settings of |F | = 1 and M = 1 with di�erent crowd sizes for N , a seeding
fraction s = 1/N , and time window T = 0 to induce this setting.

Our flash crowd experiments imitate the scenario considered by Legout et al. [110],
introducing many peers simultaneously interested in a single file. A small number of seed-
ers initially provides the file, but since their upload capacities are just as constrained as
their peers, downloaders are forced to interact with their neighbors rather than download
exclusively from the seed.

Figure 6.2 demonstrates the performance of FairTrader as well as the overhead of using e-
cash for incentives. While download times seem distributed around in roughly the same way,
we see a noticeable overhead due to the use of the cryptography and exchange mechanisms
required by our protocols. This is due to the way in which FairTrader clients batch buying,
selling, and barter operations at fixed debt-settling intervals, i.e. by only buying or bartering
for keys every 15 or 30 seconds. We show download times for the FairTrader client using two
di�erent settle intervals: when a shorter interval is used, performance improves. However,
this need to procure keys before blocks can be re-sold prevents FairTrader clients from being
able to quickly upload incoming blocks as soon as they is available, as BitTorrent can. For
the single-file flash crowd scenario, BitTorrent is simply able to distribute blocks at a faster
rate.
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Figure 6.2: Cumulative distribution of download times for the flash crowd scenario. Here,
N = 49, F = 1, and s = 0.1, and file size 100MB. Download time is measured in seconds,
on the x axis.

Multiple concurrent swarms For these scenarios, we have performed experiments that
demonstrate peers engaged in multiple concurrent downloads, using parameters that choose
larger sets of files such as |F | = 5 or |F | = 10, with N = 20 or N = 49, and N = 99, and
distributed interest among peers in these files to small subsets such as M = 2, and M = 3.
Like the steady-state scenario, we have chosen arrival times at random over a time window
of T = 400.

To capture the benefit of fungible credit, we run our long-term experiments for many
files. Each peer begins this scenario with a “schedule” comprising a subset of the available
files that they would like to download. To better compare average download times, we set
each file to be of identical size, and provide each peer with a random file that it can seed
at the beginning of the experiment. We require that FairTrader clients continue to upload
data until they have earned back their initial balance.

Figure 6.3 shows the distribution of download times for each file downloaded: here, each
of the 98 peers are engaged in download swarms for 3 files chosen randomly from a set of
10 files, with each file 20 megabytes in size. Peers begin downloading each file at randomly-
chosen points within the 400-second arrival window T . We see that FairTrader’s download
performance is now more competitive with BitTorrent than it was in the single-file case,
which does not provide fungible incentives between swarms for di�erent files. However,
this scenario bears some similarity to the flash-crowd case, since at any moment there are
typically only several seeders available for each file, limiting the number of nodes that new
downloaders may contact to begin purchasing and then re-selling blocks.

Figure 6.4 starkly demonstrates the di�erence between the incentive systems provided
by FairTrader and BitTorrent. In both experimental settings, both systems’ P2P clients
may leave an individual swarm only when two conditions are met: first, that it has com-
pleted downloading the file, and second, that it has reached a 1.0 ratio for that file (“ratio”
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Figure 6.3: Cumulative distribution of download times for the multi-swarm scenario using
N = 98 nodes, |F | = 10 files, M = 3, s = 0.2, and peers staggering their arrival times in
each torrent over a time interval spanning T = 400 seconds.

Figure 6.4: Cumulative distribution of ratio values for the multi-swarm scenario, with
parameter settings N = 98, |F | = 10, M = 3, s = 0.2, and T = 400.
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refers to bytes uploaded/downloaded for BitTorrent clients, and currency earned/spent for
FairTrader). Once all peers have completed downloading, the experiment ends, leaving
lower per-file ratios than 1.0 if there was not enough demand for the file. Figure 6.4 plots
the distribution of these ratios for each file downloaded by each peer, after the experiment
has completed.

Here we see that BitTorrent nodes stop participating in each file’s swarm as soon as they
have uploaded enough bandwidth to meet the ratio requirement, seen in the steep line at the
1.0 mark. Since BitTorrent provides no performance gain from continuing to upload these
files, the rational choice for these peers is to commit upload bandwidth to other swarms
that are still in progress. However, in FairTrader, since clients that continue to upload are
rewarded with currency that may used to pay for blocks from other swarms in progress,
we see that roughly 30% of files continue to be seeded beyond this point, with some files
uploaded several times over. Clearly, e-cash provides FairTrader clients with extra seeding
incentives not found in BitTorrent.

Fully-interested scenario While the previous scenarios have focused on the performance
of BitTorrent and FairTrader under situations where blocks are relatively scarce (with low
values of seeding fraction s), we have also examined scenarios where blocks are more readily
available; that is, where every peer is interested in its neighbors’ blocks, and vice-versa. The
goal of these experiments is to provide a “level playing field” where all peers are equally
able to conduct block transactions with each other, in order to examine the performance
characteristics of each system in a highly competitive environment.

To induce this scenario we have created |F | = 10 files, each 20 megabytes in size, with
N = 19 peers overall. At the start of the experiment, each peer begins with a randomly-
selected subset of 50% of the total blocks in each file. Once the experiment starts, each
peer immediately joins all 10 swarms and begins downloading every file simultaneously.
The experiment ends when all peers have finished downloading the remaining 100 megabytes
needed to complete their files. Additionally, just as in the previous scenario, a BitTorrent or
FairTrader node may not leave an individual swarm until it has uploaded enough bandwidth
to meet the 1.0 ratio requirement.

Figures 6.5 and 6.6 highlight the e�ects of fungibility and increased fairness provided by
FairTrader over BitTorrent. Under BitTorrent, nodes cannot pool credit for uploads across
di�erent swarms, and thus are more likely to leave a swarm after completing it, resulting in
a much higher variation of UL/DL ratios as seen in Figure 6.6. This can also be evidenced
in the distribution of download times experienced by BitTorrent clients in Figure 6.5, where
a fraction of files downloaded by peers take significantly longer to complete than with
FairTrader. These unlucky nodes encounter slower download performance because fewer
and fewer of their peers continue to upload in the swarms for files they are trying to complete
as time progresses.

In contrast, the FairTrader system exhibits fairer performance characteristics: since fun-
gible currency incentivizes clients to persist in all swarms even after completing a download,
the performance across the entire system (that is, considering every file downloaded by ev-
ery node) is much more even. This can be seen in the tight grouping of ratios around 1.0
in Figure 6.6 and the smoother distribution of download times in Figure 6.5.

We find that in this highly-competitive environment, where peers are engaged in multi-
ple simultaneous downloads, BitTorrent’s single-file tit-for-tat incentives do not guarantee
good performance for all participants. In fact, as seen in Figure 6.6, BitTorrent arbitrarily
assigns an unfair upload bandwidth burden on roughly 20% of nodes, while also arbitrarily
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Figure 6.5: Cumulative distribution of download times for the fully-interested scenario using
N = 19 nodes, each downloading all |F | = 10 files.
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Figure 6.6: Cumulative distribution of fairness ratios for the fully-interested scenario using
N = 19 nodes, each downloading all |F | = 10 files. FairTrader’s incentives provide a much
fairer distribution of UL/DL ratios around 1.
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rewarding another 20% of downloaders, who need to upload only a fraction of the bandwidth
they downloaded.

6.6 Summary
In general, previous work in providing better fairness guarantees in peer-to-peer systems has
either been forced to sacrifice the privacy of the peers involved or has neglected to consider
behavior across multiple swarms. To address these concerns, we have introduced FairTrader,
a currency-based BitTorrent system that aims to provide long-term fairness guarantees to
peers without having to track their every exchange. To achieve these goals, our design of
FairTrader has incorporated well-studied cryptographic primitives while managing to keep
the basic block-exchange mechanisms of BitTorrent largely the same.

In addition to our design, we have also implemented FairTrader and shown, in Sec-
tion 6.5, the performance of our system in a variety of circumstances. We find that our
client by nature motivates stronger fairness among peers, and that in environments where
peers are engaged in many swarms, currency-based accounting can provide nodes with seed-
ing incentives not found today in BitTorrent that improves overall download performance.
These incentives provide a secure, tamper-proof, and privacy-preserving alternative to sim-
ilar mechanisms already employed today by BitTorrent ratio tracker communities.
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Chapter 7

Implementing e-cash with ZKPDL

Modern cryptographic protocols are complicated, computationally intensive, and, given
their security requirements, require great care to implement. However, one cannot expect
all good cryptographers to be good programmers, or vice versa. As a result, many newly pro-
posed protocols—often described as e�cient enough for deployment by their authors—are
left unimplemented, despite the potentially useful primitives they o�er to system designers.
We believe that a lack of high-level software support (such as that provided by OpenSSL,
which provides basic encryption and hashing) presents a barrier to the implementation and
deployment of advanced cryptographic protocols, and in this work attempt to remove this
obstacle.

One particular area of recent cryptographic research which has applications for privacy-
preserving systems is zero-knowledge proofs [85, 83, 27, 73], which provide a way of proving
that a statement is true without revealing anything beyond the validity of the statement.
Among the applications of zero-knowledge proofs are electronic voting [91, 118, 63, 97],
anonymous authentication [35, 61, 137], anonymous electronic ticketing for public trans-
portation [92], verifiable outsourced computation [17, 80], and essentially any system in
which honesty needs to be enforced without sacrificing privacy. Much recent attention has
been paid to protocols based on anonymous credentials [47, 60, 38, 41, 19, 16], which al-
low users to anonymously prove possession of a valid credential (e.g., a driver’s license), or
prove relationships based on data associated with that credential (e.g., that a user’s age
lies within a certain range) without revealing their identity or other data. These protocols
also prevent the person verifying a credential and the credential’s issuer from colluding to
link activity to specific users. As corporations and governments move to put an increasing
amount of personal information online, the need for e�cient privacy-preserving systems has
become increasingly important and a major focus of recent research.

Another application of zero-knowledge proofs is electronic cash. The primary aim of
ZKPDL has been to enable the e�cient deployment of secure, anonymous electronic cash
(e-cash) in network applications. Like physical coins, e-coins cannot be forged; furthermore,
given two e-coins it is impossible to tell who spent them, or even if they came from the
same user. For this reason, e-cash holds promise for use in anonymous settings and privacy-
preserving applications, where free-riding by users may threaten a system’s stability.

These e-cash protocols can also be used for payments in other systems that face free-
riding problems, such as anonymous onion routing [42]. In such a system, routers would
be paid for forwarding messages using e-cash, thus providing incentives to route tra�c on
behalf of others in a manner similar to that proposed by Androulaki et al. [6]. Since P2P
systems like these require each user to perform many cryptographic exchanges, the need to
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provide high performance for repeated executions of these protocols is paramount.

7.1 Goals
In this chapter, we hope to bridge the gap between design and deployment by providing
a language, ZKPDL (Zero-Knowledge Proof Description Language), that enables program-
mers and cryptographers to more easily implement privacy-preserving protocols. We also
provide a library, Cashlib, that builds upon our language to provide simple access to cryp-
tographic protocols such as electronic cash, blind signatures, verifiable encryption, and fair
exchange.

The design and implementation of our language and library were motivated by collabo-
rations with systems researchers interested in employing e-cash in high-throughput applica-
tions, such as the P2P systems described earlier. The resulting performance concerns, and
the complexity of the protocols required, motivated our library’s focus on performance and
ease of use for both the cryptographers designing the protocols and the systems programmers
charged with putting them into practice. These twin concerns led to our language-based
approach and work on the interpreter.

The high-level nature of our language brings two benefits. First, it frees the programmer
from having to worry about the implementation of cryptographic primitives, e�cient math-
ematical operations, generating and processing messages, etc.; instead, ZKPDL allows the
specification of a protocol in a manner similar to that of theoretical descriptions. Second,
it allows our library to make performance optimizations based on analysis of the protocol
description itself.

ZKPDL permits the specification of many widely-used zero-knowledge proofs. We also
provide an interpreter that generates and verifies proofs for protocols described by our
language. The interpreter performs optimizations such as precomputation of expected ex-
ponentiations, translations to prevent redundant proofs, and caching compiled versions of
programs to be loaded when they are used again on di�erent inputs. More details on these
optimizations are provided in Section 7.5.

Our e-cash library, Cashlib, described in Section 7.8, sits atop our language to pro-
vide simple access to higher-level cryptographic primitives such as e-cash [42], blind sig-
natures [40], verifiable encryption [43], and optimistic fair exchange [18, 107]. Because of
the modular nature of our language, we believe that the set of primitives provided by our
library can be easily extended to include other zero-knowledge protocols.

Finally, we hope that our e�orts will encourage programmers to use (and extend) our li-
brary to implement their cryptographic protocols, and that our language will make their job
easier; we welcome contribution by our fellow researchers in this e�ort. Documentation and
source code for our library can be found online at http://github.com/brownie/cashlib.

7.2 Cryptographic Background
There are two main modern cryptographic primitives used in our framework: commitment
schemes and zero-knowledge proofs. Briefly, a commitment scheme can be thought of as
cryptographically analogous to an envelope. When a user Alice wants to commit to a value,
she puts the value in the envelope and seals it. Upon receiving a commitment, a second user
Bob cannot tell which value is in the envelope; this property is called hiding (in this analogy,
let’s assume Alice is the only one who can open the envelope). Furthermore, because the
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envelope is sealed, Alice cannot sneak another value into the envelope without Bob knowing:
this property is called binding. To eventually reveal the value inside the envelope, all Alice
has to do is open it (cryptographically, she does this by revealing the private value and
any randomness used to form the commitment; this collection of values is aptly referred
to as the opening of the commitment). We employ both Pedersen commitments [145] and
Fujisaki-Okamoto commitments [78, 62], which rely on the security of the Discrete Log
assumption and the Strong RSA assumption respectively.

Zero-knowledge proofs [85, 83] provide a way of proving that a statement is true to
someone without that person learning anything beyond the validity of the statement. For
example, if the statement were “I have access to this sytem” then the verifier would learn
only that I really do have access, and not, for example, how I gain access or what my access
code is. In our library, we make use of sigma proofs [59], which are three-message proofs that
achieve a weaker variant of zero-knowledge known as honest-verifier zero-knowledge. We do
not implement sigma protocols directly; instead, we use the Fiat-Shamir heuristic [75] that
transforms sigma protocols into non-interactive (fully) zero-knowledge proofs, secure in the
random oracle model [21].

A primitive similar to zero-knowledge is the idea of a proof of knowledge [20], in which
the prover not only proves that a statement is true, but also proves that it knows a reason
why the statement is true. Extending the above example, this would be equivalent to
proving the statement “I have access to the system, and I know a password that makes this
true.”

In addition to these cryptographic primitives, our library also makes uses of hash func-
tions (both universal one-way hashes [136] and Merkle hashes [127]), digital signatures [86],
pseudo-random functions [82], and symmetric encryption [57]. The security of the protocols
in our library relies on the security of each of these individual components, as well as the
security of any commitment schemes or zero-knowledge proofs used.

7.3 Design
The design of our library and language arose from our initial goal of providing a high-
performance implementation of protocols for e-cash and fair exchange for use in applications
such as those described in the introduction. For these applications, the need to support
many repeated interactions of the same protocol e�ciently is a paramount concern for both
the bank and the users. In the bank’s case, it must conduct withdraw and deposit protocols
with every user in the system, while in the user’s case it is possible that a user would want
to conduct many transactions using the same system parameters.

Motivated by these performance requirements, we initially developed a more straightfor-
ward implementation of our protocols using C++ and GMP [81], but found that our ability
to modify and optimize our implementation was hampered by the complexity of our proto-
cols. High-level changes to protocols required significant e�ort to re-implement; meanwhile,
potentially useful performance optimizations became di�cult to implement, and there was
no way to easily extend the functionality of the library.

These di�culties led to our current design, illustrated in Figure 7.1. Our system allows
a pseudocode-like description of a protocol to be developed using our description language,
ZKPDL. This program is compiled by our interpreter, and optionally provided a list of
public parameters, which are “compiled in” to the program. This produces an interpreter
object, used by each party to prove and verify that the prover’s private values satisfy a
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Figure 7.1: Usage of a ZKPDL program: a program is compiled separately by the prover
and verifier, who also provide with a set of fixed public parameters.

certain set of relationships. Serialization and processing of proof messages are provided by
the library.

At compile time, a number of transformations and optimizations are performed on the
abstract syntax tree produced by our parser, which we developed using the ANTLR parser
generator [143]. Once compiled, these interpreter objects can be used repeatedly by the
prover to generate zero-knowledge proofs about private values, or by the verifier to verify
these proofs.

Key to our approach is the simplicity of our language. It is not Turing-complete and
does not allow for branching or conditionals; it simply describes the variables, equations,
and relationships required by a protocol, leaving the implementation details up to the in-
terpreter and language framework. This framework, described in the following section,
provides C++ classes that parse, analyze, optimize, and interpret ZKPDL programs, em-
ploying many common compiler techniques (e.g., constant substitution and propagation,
type-checking, providing error messages when undefined variables are used, etc.) in the
process. We are able to understand and transform mathematical expressions into forms
that provide better performance (e.g., through techniques for fixed-base exponentiation),
and recognize relationships between values to be proved in zero-knowledge. All of these
low-level optimizations, as well as our high-level primitives, should enable a programmer to
quickly implement and evaluate the e�ciency of a protocol.

We also provide a number of C++ classes that wrap ZKPDL programs into interfaces
for generating and verifying proofs, as well as marshaling them between computers. We
build upon these wrappers to additionally provide Cashlib, a collection of interfaces that
allows a programmer to assume the role of buyer, seller, bank, or arbiter in a fair exchange
system based on endorsed e-cash [42], as described in Chapter 3.
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sample.zkp

1 computation: // compute values required for proof

2 given: // declarations

3 group: G = <g,h>

4 exponents in G: x[2:3]

5 compute: // declarations and assignments

6 random exponents in G: r[1:3]

7 x_1 := x_2 * x_3

8 for(i, 1:3, c_i := g^x_i * h^r_i)

9
10 proof:

11 given: // declarations of public values

12 group: G = <g,h>

13 elements in G: c[1:3]

14 for(i, 1:3, commitment to x_i: c_i = g^x_i * h^r_i)

15 prove knowledge of: // declarations of private values

16 exponents in G: x[1:3], r[1:3]

17 such that: // protocol specification; i.e. relations

18 x_1 = x_2 * x_3

Figure 7.2: A sample program proving a product of two values.

7.4 The zero-knowledge proof description language (ZKPDL)
To enable implementation of the cryptographic primitives discussed in Section 7.2, we have
designed a programming language for specifying zero-knowledge protocols, as well as an in-
terpreter for this language. The interpreter is implemented in C++ and consists of approx-
imately 6000 lines of code. On the prover side, the interpreter will output a zero-knowledge
proof for the relations specified in the program; on the verifier side, the interpreter will be
given a proof and verify whether or not it is correct. Therefore, the output of the interpreter
depends on the role of the user, although the program provided to the interpreter is the
same for both.

7.4.1 Language overview
Here we provide a brief overview of some fundamental language features to give an idea of
how programs are written; a full grammar for our language, containing all of its features,
can be found in our documentation available online, and further sample programs can be
found in Section 7.6. A program can be broken down into two blocks: a computation
block and a proof block. Each of these blocks is optional: if a user just wants a calculator
for modular (or even just integer) arithmetic then he will specify just the computation
block; if, on the other hand, he has all the input values pre-computed and justs wants a
zero-knowledge proof of relations between these values, he will specify just the proof block.
Figure 7.2 presents a sample program written in our language (indentations are included
for readability, and are not required syntax).

In this example, we are proving that the value x1 contained within the commitment
c1 is the product of the two values x2 and x3 contained in the commitments c2 and c3.
The program can be broken down in terms of how variables are declared and used, and
the computation and proof specifications. Note that some lines are repeated across the
computation and proof blocks, as both are optional and hence considered independently.
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7.4.2 Variable declaration
Two types of variables can be declared: group objects and numerical objects. Names of
groups must start with a letter and cannot have any subscripts; sample group declarations
can be seen in lines 3 and 12 of the above program. In these lines, we also declare the group
generators, although this declaration is optional (as we will see later on in Section 7.6, it is
also optional to name the group modulus).

Numerical objects can be declared in two ways. The first is in a list of variables,
where their type is specified by the user. Valid types are element, exponent (which refer
respectively to elements within a finite-order group and the corresponding exponents for that
group), and integer; it should be noted that for the first two of these types a corresponding
group must also be specified in the type information (see lines 4 and 13 for an example).
The other way in which variables can be declared is in the compute block, where they
are declared as they are being assigned (meaning they appear on the left-hand side of an
equation), which we can see in lines 7 and 8. In this case, the type is inferred by the values
on the right-hand side of the equation; a compile-time exception will be thrown if the types
do not match up (for example, if elements from two di�erent groups are being multiplied).
Numerical variables must start with a letter and are allowed to have subscripts.

7.4.3 Computation
The computation block breaks down into two blocks of its own: the given block and the
compute block. The given block specifies the parameters, as well as any values that have
already been computed by the user and are necessary for the computation (in the example,
the group G can be considered a system parameter and the values x_2 and x_3 are just
needed for the computation).

The compute block carries out the specified computations. There are two types of
computations: picking a random value, and defining a value by setting it equal to the right-
hand side of an equation. We can see an example of the former in line 6 of our sample
program; in this case, we are picking three random exponents in a group (note r[1:3]
is just syntactic sugar for writing r_1, r_2, r_3). We also support picking a random
integer from a specified range, and picking a random prime of a specified length (examples
of these can be found in Section 7.6). As already noted, lines 7 and 8 provide examples
of lines for computing equations. In line 8, the for syntax is again just syntactic sugar;
this time to succintly specify the relations c_1 = g^x_1*h^r_1, c_2 = g^x_2*h^r_2, and
c_3 = g^x_3*h^r_3. We have a similar for syntax for specifying products or sums (much
like

r
or

q
in conventional mathematical notation), but neither of these for macros should

be confused with a for loop in a conventional programming language.

7.4.4 Proof specification
The proof block is comprised of three blocks: the given block, the prove knowledge of
block, and the such that block. In the given block, the parameters for the proof are
specified, as well as the public inputs known to both the prover and verifier for the zero-
knowledge protocol. In the prove knowledge of block, the prover’s private inputs are
specified. Finally, the such that block specifies the desired relations between all the values;
the zero-knowledge proof will be a proof that these relations are satisfied. We currently
support four main types of relations:
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sample_prover.cc

1 group_map g;

2 variable_map v;

3 g["G"] = G;

4 v["x_2"] = x2;

5 v["x_3"] = x3;

6 InterpreterProver prover;

7 prover.check("sample.zkp", g); // compile program with groups

8 prover.compute(v); // compute intermediate values needed for proof

9 // compute and produces serializable proof message object

10 ProofMessage proofMsg(prover.getPublicVariables(),

11 prover.computeProof());

Figure 7.3: A sample C++ wrapper for the prover.

• Proving knowledge of the opening of a commitment [159]. We can prove openings of
Pedersen [145] or Fujisaki-Okamoto commitments [78, 62]. In both cases we allow for
commitments to multiple values.

• Proving equality of the openings of di�erent commitments. Given any number of
commitments, we can prove the equality of any subset of the values contained within
the commitments.

• Proving that a committed value is the product of two other committed values [62,
32]. As seen in our sample program, we can prove that a value x contained within
a commitment is the product of two other values y, z contained within two other
commitments; i.e., x = y · z. As a special case, we can also prove that x = y2.

• Proving that a committed value is contained within a public range [32, 117]. We can
prove that the value x contained within a given commitment satisfies lo Æ x < hi,
where lo and hi are both public values.

There are a number of other zero-knowledge proof types (e.g., proving a value is a Blum
integer, proving that committed values satisfy some polynomial relationship, etc.), but we
chose these four based on their wide usage in applications, in particular in e-cash and
anonymous credentials. We note, however, that adding other proof types to the language
should require little work (as mentioned in Section 7.5), as we specifically designed the
language and interpreter with modularity in mind.

7.4.5 Sample usage
In addition to showing a sample program, we would also like to demonstrate a sample usage
of our interpreter API. In order to use the sample ZKPDL program from Section 7.4.1, one
could use the C++ code in Figure 7.3 (assuming there are already numerical variables
named x2 and x3, and a group named G):

The method is the same for all programs: any necessary groups and/or variables are
inserted into the appropriate maps, which are then passed to the interpreter. Note that the
group map in this case is passed to the interpreter at “compile time” so that it may pre-
compute powers of group generators to be used for exponentiation optimizations (described
in the next section); however, both the group and variable maps may be provided at “com-
pute time.” Any syntactic errors will be caught at compile time, but if the inputs provided
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sample_verifier.cc

1 group_map g;

2 variable_map v;

3 g["G"] = G;

4 InterpreterVerifier verifier;

5 verifier.check("sample.zkp", g); // compile program

6 verifier.compute(v, proofMsg.publics); // compute intermediate values

7 bool verified = verifier.verify(proofMsg.proof); // verify proof

Figure 7.4: A sample C++ wrapper for the verifier.

at compute time are not valid for the relations being proved, the proof will be computed
anyway and the error will be caught by the verifier. The ProofMessage is a serializable
container for the zero-knowledge proof and any intermediate values (e.g., commitments and
group bases) that the verifier might need to verify the proof.

The method is almost identical for the verifier, as seen in Figure 7.4. As we can see,
the main di�erence is that the verifier uses both its own public inputs and the prover’s
public values at compute time (with its own inputs always taking precedence over the
ProofMessage inputs), but still takes in the proof to be checked afterwards so that the
actions of the prover and verifier remain symmetric.

7.5 ZKPDL Interpreter Optimizations
In our interpreter, we have incorporated a number of optimizations that make using our
language not only more convenient but also more e�cient. Here we describe the most
significant optimizations, which include removing any redundancy when multiple proofs
are combined and performing multi-exponentiations on cached bases when the same bases
are used frequently. Other improvements specific to existing protocols can be found in
Section 7.6.

7.5.1 Translation
To eliminate redundancy between di�erent proofs, we first translate each proof described
in Section 7.4.4 into a “fundamental discrete logarithm form.” In this form, each proof can
be represented by a collection of equations of the form A = Bx · Cy. For example, if the
prover would like to prove that the value x contained within C

x

= gxhr

x is equal to the
product of the values y and z contained within C

y

= gyhr

y and C
z

= gzhr

z respectively,
this is equivalent to a proof of knowledge of the discrete logarithm equalities C

y

= gyhr

y

and C
x

= Cz

y

hr

x

≠zr

y .
Our sample program in the previous section is first translated into this discrete logarithm

form. During runtime, the values provided to the prover are then used to generate the zero-
knowledge proof. In addition to eliminating redundancy between proofs of di�erent relations
in the program, this technique also allows our language to easily add new types of proofs
as they become available. To add any proof that can be broken down into this discrete
logarithm form, we need to add only a translation function and a rule in the grammar for
how we would like to specify this proof in a program, and the rest of the work will be
handled by our existing framework.
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7.5.2 Multi-exponentiation
The computational performance of many cryptographic protocols, especially those used
by our library, is often dominated by the need to perform many modular exponentiation
operations on large integers. These operations typically involve the use of systems pa-
rameters as bases, with exponents chosen at random or provided as private inputs (e.g.,
Pedersen commitments, which require computation of gx · hr, where g and h are publicly
known). Algorithms for simultaneous multiple exponentiation allow the result of multi-
base exponentiations such as these to be computed without performing each intermediate
exponentiation individually; an overview of these protocols can be found in Section 14.6 of
Menezes et al. [126].

Our interpreter leverages the descriptions of mathematical expressions in ZKPDL pro-
grams to recognize when fixed-base exponentiation operations occur, allowing it to precom-
pute lookup tables at compile time that can speed up these computations dramatically. In
addition to single-table multi-exponentiation techniques (i.e., the 2w-ary method [126]), we
o�er programmers who expect to run the same protocol many times the ability to take ad-
vantage of time/space tradeo�s by generating large lookup tables of precomputed powers.
This allows a programmer to choose parameters that balance the memory requirements of
the interpreter against the need for fast exponentiation.

For single-base exponentiation, we employ window-based precomputation techniques
similar to those used by PBC [120] to cache powers of fixed bases. For multi-base exponen-
tiation of k exponents, we currently extend the 2w-ary method to store 2kw-sized lookup
tables for each w-bit window of the expected exponent length, so that multi-exponentiations
on exponents of length n require only n/w multiplications of stored values. While we are
also evaluating other algorithms o�ering similar time-space tradeo�s, we demonstrate the
performance gains a�orded by these techniques later in Table 7.1.

7.5.3 Interpreter caching
We also cache the parsed, compiled environments of ZKPDL programs when they are first
run. Because we accept system parameters at compile time, we are able to evaluate and
propagate any subexpressions made up of fixed constants and perform exponentiation pre-
computations before these expressions are fully evaluated at runtime. Even without the
use of large tables for fixed-based exponentiation, this optimization proves useful when re-
peated executions of the same program must be performed; e.g., for a bank dealing with
e-coin deposits. In this case, a bank must invoke the interpreter for each coin deposited;
looking ahead to Table 7.1 we see that, on average, this operation takes the bank 83ms.
If our program were re-parsed each time, it would take an extra 10ms, as opposed to the
fraction of a millisecond required to load a cached interpreter environment, saving the bank
approximately 10% of computation time per transaction by avoiding parsing overhead.

7.6 Sample programs
Using our language, we have written programs for a wide variety of cryptographic primitives,
including blind signatures [40], verifiable encryption [43], and endorsed e-cash [42]. In
the following sections, we provide our programs for these three primitives; in addition,
performance benchmarks for all of them can be found at the end of the section.
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cl-recipient-proof.zkp

1 computation:

2 given:

3 group: pkGroup = <fprime, gprime[1:L+k], hprime>

4 exponents in pkGroup: x[1:L]

5 integers: stat, modSize

6 compute:

7 random integer in [0,2^(modSize+stat)): vprime

8 C := hprime^vprime * for(i, 1:L, *, gprime_i^x_i)

9
10 proof:

11 given:

12 group: pkGroup = <fprime, gprime[1:L+k], hprime>

13 group: comGroup = <f, g, h, h1, h2>

14 element in pkGroup: C

15 elements in comGroup: c[1:L]

16 for(i, 1:L, commitment to x_i: c_i=g^x_i*h^r_i)

17 integer: l_x

18 prove knowledge of:

19 integers: x[1:L]

20 exponents in comGroup: r[1:L]

21 exponent in pkGroup: vprime

22 such that:

23 for(i, 1:l, range: (-(2^l_x-1)) <= x_i < 2^l_x)

24 C = hprime^vprime * for(i, 1:L, gprime_i^x_i)

25 for(i, 1:L, c_i = g^x_i * h^r_i)

Figure 7.5: CL signatures in ZKPDL, phase one: partial signature.
cl-issuer-proof.zkp

1 computation:

2 given:

3 group: pkGroup = <f, g[1:L+k], h>

4 element in pkGroup: C

5 exponents in pkGroup: x[1:k+L]

6 integers: stat, modSize, lx

7 compute:

8 random integer in [0,2^(modSize+lx+stat)): vpp

9 random prime of length lx+2: e

10 einverse := 1/e

11 A := (f*C*h^vpp * for(i,L+1:k+L,*,g_i^x_i))^einverse

12
13 proof:

14 given:

15 group: pkGroup = <f, g[1:L+k], h>

16 elements in pkGroup: A, C

17 exponents in pkGroup: e, vpp, x[L+1:k]

18 prove knowledge of:

19 exponents in pkGroup: einverse

20 such that:

21 A = (f*C*h^vpp * for(i,L+1:k+L,*,g_i^x_i))^einverse

Figure 7.6: CL signatures in ZKPDL, phase two: issuer proof.
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cl-possession-proof.zkp

1 computation:

2 given:

3 group: pkGroup = <fprime, gprime[1:L+k], hprime>

4 element in pkGroup: A

5 exponents in pkGroup: e, v, x[1:L]

6 integers: modSize, stat

7 compute:

8 random integers in [0,2^(modSize+stat)): r, r_C

9 vprime := v + r*e

10 Aprime := A * hprime^r

11 C := h^r_C * for(i, 1:L, *, gprime_i^x_i)

12 D := for(i, L+1:L+k, *, gprime_i^x_i)

13 fCD := f * C * D

14
15 proof:

16 given:

17 group: pkGroup = <fprime, gprime[1:L+k], hprime>

18 group: comGroup = <f, g, h, h1, h2>

19 elements in pkGroup: C, D, Aprime, fCD

20 elements in comGroup: c[1:L]

21 for(i, 1:L, commitment to x_i: c_i=g^x_i*h^r_i)

22 exponents in pkGroup: x[L+1:L+k]

23 integer: l_x

24 prove knowledge of:

25 integers: x[1:L]

26 exponents in comGroup: r[1:L]

27 exponents in pkGroup: e, vprime, r_C

28 such that:

29 for(i, 1:L, range: (-(2^l_x - 1)) <= x_i < 2^l_x)

30 C = hprime^r_C * for(i, 1:l, *, gprime_i^x_i)

31 for(i, 1:L, c_i = g^x_i * h^r_i)

32 fCD = (Aprime^e) * hprime^(r_C - vprime)

Figure 7.7: CL signatures in ZKPDL, phase three: proof of signature possession.
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7.6.1 CL signatures
Using our language, we have implemented the blind signature scheme due to Camenisch
and Lysyanskaya [40]; as we will see in Section 7.6.3, CL signatures are integral to endorsed
e-cash. Briefly, a blind signature, as introduced by Chaum [45], enables a signature issuer
to sign a message without learning the contents of the message. A CL signature works in
two main phases: an issuing phase, in which a user actually obtains the signature, and a
proving phase, in which the user is able to prove (in zero-knowledge) to other users that he
does in fact possess a valid CL signature.

The issuing phase is a one-round interaction between the recipient and the issuer, at
the end of which the recipient obtains the blind signature on her message(s). Because
the protocol is interactive, we present one program for each stage of the protocol. At the
end of this first stage, implemented in Figure 7.5, the signature issuer will return a partial
signature to the recipient, who will then use this signature to compute the full signature on
the hidden message.

Next, the issuer must prove the partial signature is computed correctly, as in the program
shown in Figure 7.6. Once the recipient obtains the partial signature, she can unblind it to
obtain a full signature; this step completes the issuing phase.

Finally, in Figure 7.7, the owner of a CL signature needs a way to prove that she
has a signature, without revealing either the signature or the values. To accomplish this,
the prover first randomizes the CL signature and then attaches a zero-knowledge proof
of knowledge that the randomized signature corresponds to the original signature on the
committed message.

7.6.2 Verifiable encryption
Briefly, verifiable encryption consists of a ciphertext under the public key of some trusted

third party (in our case, the arbiter) and a zero-knowledge proof that the values inside the
ciphertext satisfy some relation; this pair is often referred to as a verifiable escrow. Our
implementation of verifiable encryption, shown in Figure 7.8, is based on the construction
of Camenisch and Shoup [43]. The main use of verifiable encryption in e-cash is to allow a
user to verifiably encrypt the opening of a commitment under the public key of the arbiter.
A recipient of such a verifiable escrow can then verify that the encrypted values correspond
to the opening of the commitment.

7.6.3 E-cash
Electronic cash, or e-cash for short, was first introduced by Chaum [45] and can be thought
of as the electronic equivalent of cash; i.e., an electronic currency that preserves users’
anonymity, as opposed to electronic checks [48] or credit cards. We implement endorsed
e-cash, due to Camenisch, Lysyanskaya, and Meyerovich [42] (which is an extension of
compact e-cash [36]), for two main reasons. Our first reason is that an endorsed e-coin can
be split up into two parts, its endorsement and an unendorsed component; only with both
of these parts can the coin be considered complete. As we will see in Section 7.8.2, this
property enables e�cient fair exchange. The second reason for choosing endorsed e-cash is
that it is o�ine, which means the bank does not need to be active in every transaction; this
significantly reduces the burden placed on the bank. Although the bank does not check the
coin in every interaction, endorsed e-cash has the property that double-spenders (i.e., users
who try to spend the same coin twice) can be caught by the bank at the time of deposit
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verifiable-encryption.zkp

1 computation:

2 given:

3 group: secondGroup = <g[1:m], h>

4 group: RSAGroup

5 modulus: N

6 group: G

7 group: cashGroup = <f_3, gprime, hprime, f_1, f_2>

8 exponents in G: x[1:m]

9 elements in G: u[1:m], v, w

10 compute:

11 random integer in [0,N/4): s

12 random exponents in secondGroup: r[1:m]

13 for(i, 1:m, c_i := g_1^x_i * g_2^r_i)

14 Xprime := for(i, 1:m, *, g_i^x_i) * h^s

15 vsquared := v^2

16 wsquared := w^2

17 for(i, 1:m, usquared_i := u_i^2)

18
19 proof:

20 given:

21 group: secondGroup = <g[1:m], h>

22 group: G

23 group: RSAGroup

24 modulus: N

25 group: cashGroup = <f_3, gprime, hprime, f_1, f_2>

26 element in cashGroup: X

27 elements in secondGroup: Xprime, c[1:m]

28 for(i,1:m,commitment to x_i: c_i=g_1^x_i*g_2^r_i)

29 elements in G: a[1:m], b, d, e, f, usquared[1:m],

30 vsquared, wsquared

31 prove knowledge of:

32 integers: x[1;M], r

33 exponent in G: hash

34 exponents in secondGroup: r[1:m], s

35 such that:

36 for(i, 1:m, range: -N/2 + 1 <= x_i < N/2)

37 vsquared = f^(2*r)

38 wsquared = (d * e^hash)^(2*r)

39 for(i, 1:m, usquared_i = b^(2*x_i) * a_i^(2*r))

40 X = for(i, 1:m, *, f_i^x_i)

41 Xprime = for(i, 1:m, *, g_i^x_i) * h^s

Figure 7.8: ZKPDL Implementation of verifiable encryption [43].
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Program type

Prover (ms) Verifier (ms) Proof size

(bytes)

Cache

size (MB)

Multi-exps

With cache Without With cache Without Prover Verifier
DLR proof 3.07 3.08 1.26 1.25 511 0 2 1

Multiplication proof 2.03 4.07 1.66 2.32 848 33.5 8 2
Range proof 36.36 74.52 21.63 31.54 5455 33.5 31 11

CL recipient proof 119.92 248.31 70.76 112.13 19189 134.2 104 39
CL issuer proof 7.29 7.38 1.73 1.73 1097 0 2 1

CL possession proof 125.89 253.17 78.19 117.67 19979 134.2 109 40
Verifiable encryption 416.09 617.61 121.87 162.77 24501 190.2 113 42

Coin 134.37 271.34 83.01 121.83 22526 223.7 122 45

Table 7.1: Time (in milliseconds) and size (in bytes) required for various zero-knowledge
proofs, averaged over twenty runs. Timings are considered from both the prover and ver-
ifier sides, as are the number of multi-exponentiations, and are considered both with and
without caching for fixed-based exponentiations; the size of the cache is also measured (in
megabytes). As we can see, using caching results on average in a 48% speed improvement
for the prover, and a 31% improvement for the verifier.

and punished accordingly. Because e-cash is meant to preserve privacy, however, a user is
also guaranteed that unless she double spends a coin, her identity will be kept secret.

During the withdrawal phase of endorsed e-cash, a user contacts the bank. Before
withdrawing, the user will have registered with the bank by storing a commitment. In
order to prove her identity, then, the user will provide a proof that she knows the opening
of the registered commitment. This can be accomplished using the simple program in
Figure 7.9.

Once the bank has verified this proof, the user and the bank will run a protocol to
obtain a CL signature (using the programs we saw in Section 7.6.1) on the user’s identity
and two pseudo-random function seeds. These private values and the signature on them
define a wallet that contains W coins (where W is a system-wide public parameter).

When a user wishes to spend one of her coins, she splits it up into its unendorsed part
and the endorsement. She then sends the unendorsed component to a merchant and proves
it is valid. If the merchant then sends her what she wanted to buy, she will follow up with
the endorsement to complete the coin and the transaction is complete. The program shown
in Figure 7.10 is used to prove the validity of a coin.

7.7 Performance of ZKPDL
Here we measure the communication and computational resources used by our system when
running each of the programs above. The benchmarks presented in Table 7.1 were collected
on a MacBook Pro with a 2.53GHz Intel Core 2 Duo processor and 4GB of RAM running
OS X 10.6; we therefore expect that these results will reflect those of a typical home user
with no special cryptographic hardware support.

As for speed, caching exponents of fixed bases results in a significant performance in-
crease, making it an important optimization for applications that require repeated protocol
executions. The only caveat is that the exponent cache required for complex protocols can
grow to hundreds of megabytes (using faster-performing parameters), and so our library
allows users to choose whether to use caching, and if so how much of the cache should be
used by this optimization.

The time taken for the higher-level protocols provides a clear view of the complexity of
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user-id-proof.zkp

1 proof:

2 given:

3 group: cashGroup = <f,g,h,h1,h2>

4 elements in cashGroup: A, pk_u

5 commitment to sk_u: A = g^sk_u * h^r_u

6 prove knowledge of:

7 exponents in cashGroup: sk_u, r_u

8 such that:

9 pk_u = g^sk_u

10 A = g^sk_u * h^r_u

Figure 7.9: Proof of user identity to bank, in ZKPDL.
coin-proof.zkp

1 computation:

2 given:

3 group: cashGroup = <f, g, h, h1, h2>

4 exponents in cashGroup: s, t, sk_u

5 integer: J

6 compute:

7 random exponents in cashGroup: r_B, r_C, r_D, x1, x2, r_y, R

8 alpha := 1 / (s + J)

9 beta := 1 / (t + J)

10 C := g^s * h^r_C

11 D := g^t * h^r_D

12 y := h1^x1 * h2^x2 * f^r_y

13 B := g^sk_u * h^r_B

14 S := g^alpha * g^x1

15 T := g^sk_u * (g^R)^beta * g^x2

16
17 proof:

18 given:

19 group: cashGroup = <f, g, h, h1, h2>

20 elements in cashGroup: y, S, T, B, C, D

21 commitment to sk_u: B = g^sk_u * h^r_B

22 commitment to s: C = g^s * h^r_C

23 commitment to t: D = g^t * h^r_D

24 integer: J

25 prove knowledge of:

26 exponents in cashGroup: x1, x2, r_y, sk_u, alpha, beta, s, t, r_B, r_C, r_D, R

27 such that:

28 y = h1^x1 * h2^x2 * f^r_y

29 S = g^alpha * g^x1

30 T = g^sk_u * (g^R)^beta * g^x2

31 g = (g^J * C)^alpha * h^(-r_C / (s+J))

32 g = (g^J * D)^beta * h^(-r_D / (t+J))

Figure 7.10: Coin validity proof in ZKPDL.
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each protocol. For example, the marked di�erence between the time required to generate a
CL issuer proof and a CL possession proof can be attributed to the fact that a CL issuer
proof requires proving only one discrete log relation, while a CL possession proof on three
private values requires three range proofs and five more discrete log relations.

Table 7.1 also shows that verifiable encryption is by far the biggest bottleneck, requiring
almost three times as much time to compute as any other step. As seen in the program in
Section 7.6.2, there is one range proof performed for each value contained in the verifiable
escrow. In order to perform a range proof, the value contained in the range must be
decomposed as a sum of four squares [149]. Because the values used in our verifiable
encryption program are much larger than the ones used in CL signatures (about 1024 vs.
160 bits, to get 80-bit security for both), this decomposition often takes considerably more
time for verifiable encryption than it does for CL signatures. Furthermore, since the values
being verifiably encrypted are di�erent each time, caching the decomposition of the values
wouldn’t be of any use.

A final observation on computational performance is that proving possession of a CL
signature completely dominates the time required to prove the validity of a coin, since
the timings for the two proofs are within milliseconds. This suggests that the only way
to significantly improve the performance of e-coins and verifiable encryption would be to
develop more e�cient techniques for range proofs (which has in fact been the subject of
some recent cryptographic research [91, 33, 160]).

In terms of proof size, range proofs are much larger than proofs for discrete logarithms or
multiplication. This is to be expected, as translating a range proof into discrete logarithm
form (as described in Section 7.5) requires eleven equations, whereas a single DLR proof
requires only one, and a multiplication proof requires two.

7.8 Implementation of Cashlib
Using the primitives described in the previous section, we wrote a cryptographic library
designed for optimistic fair exchange protocols. Fair exchange [56] involves a situation in
which a buyer wants to make sure that she doesn’t pay a merchant unless she gets what she
is buying, while the merchant doesn’t want to give away his goods unless he is guaranteed to
be paid. It is known that fair exchange cannot be done without a trusted third party [140],
but optimistic fair exchange [7, 10] describes the cases in which the trusted third party has
to get involved only in the case of a dispute.

The library was written in C++ and consists of approximately 11000 lines of code in
addition to the interpreter. A previous version of the library in which all the protocols
and proofs were hand-coded (i.e., the interpreter was not used) consisted of approximately
20000 lines of code, meaning that the use of roughly 400 lines of ZKPDL was able to replace
9000 lines of our original C++ code (and, as we will see, make our operations more e�cient
as well).

7.8.1 Endorsed e-cash
A description of endorsed e-cash can be found in Section 7.6.3; the version used in our
library, however, contains a number of optimizations. Just as with real cash, we now allow
for di�erent coin denominations. Each coin denomination corresponds to a di�erent bank
public key, so once the user requests a certain denomination, the wallet is then signed using
the corresponding public key. A coin generated from such a wallet will verify only when
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the same public key of the bank is used, and thus the merchant can check for himself the
denomination of the coin.

The program in Section 7.6.3 also reflects our decision to randomize the user’s spending
order rather than having them perform a range proof that the coin index was contained
within the proper range. As the random spending order does not reveal how many coins
are left in the wallet, the user’s privacy is still protected even though the index is publicly
available. Furthermore, because range proofs are slow and require a fair amount of space
(see Table 7.1 for a reminder), this optimization resulted in coins that were 20% smaller
and 21% faster to generate and verify.

Finally, endorsed e-cash requires a random value contributed by both the merchant
and the user. Since e-coin transactions should be done over a secure channel, in practice
we expect that SSL connections will be used between the user and the merchant. One
useful feature of an SSL connection is that it already provides both parties with shared
randomness, and thus this randomness can be used in our library to eliminate the need for
a redundant message.

7.8.2 Buying and Bartering
Our library implements two e�cient optimistic fair exchange protocols for use with e-cash.
The first is the buy protocol for exchanging a coin with a file (described in Chapter 3),
and the improved barter protocol of Küpçü and Lysyanksaya [107] for exchanging two files
or blocks. The two protocols serve di�erent purposes (buy vs. barter) and so we have
implemented both.

Two of the main usage scenarios of fair exchange protocols are e-commerce and peer-
to-peer file sharing (described in Chapters 3 and 6). In e-commerce, one needs to employ a
buy protocol to ensure that both the user and the merchant are protected; the user receives
her item while the merchant receives his payment. In a peer-to-peer file sharing scenario,
peers exchange files or blocks of files. In this setting, it is more beneficial to barter for
the blocks than to buy them one at a time; for an exchange of n blocks, buying all the
blocks requires O(n) verifiable escrow operations (which, as discussed in Section 7.7, are
quite costly), whereas bartering for the blocks requires only one such operation, regardless
of the number of blocks exchanged.

Although the solution might seem to be to barter all the time and never buy, our
FairTrader implementation from Chapter 6 depends on both protocols. Peers who have
nothing to o�er but would still like to download can o�er to buy the files, while peers who
would like only to upload and have no interest in downloading can act as the merchant
and earn e-cash. Due to the resource considerations mentioned above, however, bartering
should always be used if possible.

Because peers do not always know beforehand if they want to buy or barter for a file,
we have modified the buy protocol to match up with the barter protocol in the first two
messages. This modification, as well as outlines of both the protocols, can be seen in
Figure 7.11. We further modified both protocols to let them exchange multiple blocks at
once, so that one block of the fair exchange protocol might correspond to multiple blocks
of the underlying file.

We give an overview of each protocol below, with the optimizations we have added. We
have also implemented the trusted third parties (the bank and the arbiter) necessary for
e-cash and fair exchange.
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Buying

The modified buy protocol is depicted on the left in Figure 7.11, although we also allow
for the users to participate in the original buy protocol (in which the messages appear in a
slightly di�erent order). To initiate the modified buy protocol, the buyer sends a “setup”
message, which consists of an unendorsed coin and a verifiable escrow on its corresponding
endorsement. Upon receiving this message, the seller will use the programs in Section 7.6 to
check the validity of the coin and the escrow. If these proofs verify, the seller will proceed by
sending back an encrypted version of his file (or file block). Upon receiving this ciphertext,
the buyer will store it (and a Merkle hash of it, for use with the arbiter in case the protocol
goes wrong later on) and send back a contract, which consists of a hash of the seller’s file
and some session information. The seller will check this contract and, if satisfied with the
details of the agreement, send back its decryption key. The buyer can then use this key to
decrypt the ciphertext it received in the second message of the protocol. If the decryption
is successful, the buyer will send back his endorsement on the coin. If in these last steps
either party is unsatisfied (for example, the file does not decrypt or the endorsement isn’t
valid for the coin from the setup message), they can proceed to contact the arbiter and run
resolution protocols (Section 3.3.3).

Bartering

This protocol is depicted on the right in Figure 7.11; because the first two messages of
the barter protocol (the setup message and the encrypted data) are identical to those in
the buy protocol described in the previous section, we do not describe them again here
and instead jump directly to the third message. Because bartering involves an exchange of
data, the initiator will respond to the receipt of the ciphertext with a ciphertext of her own,
corresponding to an encryption of her file. She will also send a contract, which is similar to
the buy contract but also contains hash information for her file. The responder will then
check this contract as the seller did in the buy protocol, and if satisfied with the agreement
will send back his decryption key. If the ciphertext decrypts correctly (i.e., decrypts to the
file described in the contract) then the initiator can respond in turn with her own decryption
key. If this decryption key is also valid, both parties have successfully obtained the desired
files and the barter protocol can be considered complete. If neither party had to contact
the arbiter (for similar reasons as in the buy protocol; i.e., a file did not decrypt correctly)
then they are free to engage in future barter protocols without the overhead of an additional
setup message. Otherwise, they need to resolve with the arbiter [107].

7.9 Performance of Cashlib
In Table 7.2, we can see the computation time and size complexity for the steps described
above, as well as computation and communication overhead for the withdraw and deposit
protocols involving the bank. The numbers in the table were computed on the same com-
puter as those in Section 7.7.

The numbers in Table 7.2 clearly demonstrate our earlier observation that bartering is
considerably more e�cient than buying, both in terms of computation and communication
overhead. The setup message for both buying and bartering takes about 600ms to generate
and approximately 46kB of space. In contrast, the rest of the barter protocol takes very
little time; on the order of milliseconds for both parties (and about 1.5kB of total overhead).
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Figure 7.11: An outline of both the buy and barter protocols. Until the decision to buy or
barter, the two protocols are identical; the main di�erence is that in a buy protocol, the
setup message must be sent for each file exchange, which results in linear e�ciency loss
compared to bartering.
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Operation Time (ms) “Naïve” time (ms) Size (B)
Withdraw (user) 126.35 290.79 20093
Withdraw (bank) 83.36 140.02 1167
Deposit (bank) 82.11 128.36 22526

Buying a block (buyer) 628.49 901.04 47286
Buying a block (seller) 211.89 275.94 203
Barter setup message 608.29 881.32 46934

Checking setup message 210.61 276.98 n/a
Barter after setup (initiator) 18.02 18.28 1280

Barter after setup (responder) 1.11 1.18 204

Table 7.2: Average time required and network overhead, in milliseconds and bytes respec-
tively, for each e-cash protocol implemented by Cashlib. The timings were averaged over
twenty runs, and caching and compression optimizations were used. For the naïve timings,
an older version of the library was used, which uses some multi-exponentation optimization
techniques but not the interpreter; we can see a clear improvement when using ZKPDL.
Parameters were used to provide a security level of 80 bits (160-bit SHA-1 hashing, 128-bit
AES encryption, 1024-bit RSA moduli, and 1024-bit DSA signatures).

In addition, we consider the same protocols run using a previous “naïve” version of
our library, which provided the same e-cash API and employed some multi-exponentation
optimizations, but did not use ZKPDL. Using the optimizations available to the interpreter
is considerably faster over our previous approach, meaning that our interpreter has not only
made developing our protocols more convenient, but has also helped to improve e�ciency.
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Chapter 8

Conclusion and future work

Recall, from Chapter 1, the primary assertion of this thesis:

E-cash accounting techniques are practical and well-suited for providing fairness,
robustness, and better long-term incentives in decentralized systems.

Chapter 3 presents a design describing how e-cash accounting techniques could be ap-
plied to distributed system applications such as file-sharing, distributed storage, computa-
tion outsourcing, and onion routing. Key components in such a currency-based approach
include the use of contracts which describe the resources being exchanged, and fair exchange
protocols for buying and bartering those resources.

Chapter 4 provides greater detail on how users in a computation outsourcing system
could be incentivized to behave correctly. It found that by farming the same jobs to multiple
workers, and by penalizing users for misbehavior, the impact of selfish or malicious workers
can be acceptably mitigated.

Chapter 5 provides an essential primitive for the use of currency in distributed storage
networks: a system for creating dynamic proofs of data possession that guarantee to a buyer
of storage services that her remote data remains intact and unmolested. This enables the
buyer to erase her local copy of the data, retaining only a constant-sized piece of metadata,
and allows her to to issue any number of challenges to the storage provider to ensure her
data is intact. These proofs also allow her to insert, modify, or delete certain blocks of
her remote data, and update her local metadata, without having to retrieve the entire
dataset from the provider. Section 5.7 demonstrates that these proofs are computationally
inexpensive to compute, are relatively small, and have direct applications to storage systems
with extensive metadata, such as version-controlled file systems.

Chapter 6 elaborates on the design presented in Chapter 3 and presents the implemen-
tation of FairTrader, a peer-to-peer file-sharing system based on BitTorrent. It describes
practical measures that such a system must take in order to mitigate the cryptographic
overhead required by e-cash accounting. The seeding incentives provided by FairTrader’s
design have much in common with ratio-tracking techniques deployed in many BitTorrent
communities today, described in Section 2.2.6.

Finally, Chapter 7 presents an implementation approach and software library that makes
e-cash practical for use in network systems. Significant performance gains are reaped by de-
coupling the description of protocols involving zero-knowledge proofs from their implemen-
tation, through the use of a simple description language and focused optimization e�orts in
the language’s runtime engine. These methods could be expanded to describe a wider range
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of cryptographic protocols in the future, such as those which use pairing-based cryptogra-
phy. Further optimization e�orts still o�er promise: for example, multi-core architectures
could be exploited to lower e-cash transaction latency.

One area left largely unconsidered by this thesis is the application of e-cash to anonymous
or privacy-preserving systems, such as Tor [66]. Like file-sharing systems, onion routing
networks also su�er from fairness and free-riding problems, but it is di�cult to develop a
reputation or incentive system that rewards users with better service for forwarding other
users’ tra�c without leaking information that threatens their privacy [64]. While users of
e-cash are anonymous from the bank’s viewpoint, and coins cannot identify a buyer to the
seller, any deployment of currency-based accounting on an anonymous network would have
to consider possible side-channel attacks related to communication with the bank and other
trusted third parties, from the viewpoint of an adversary intent on linking tra�c between
users. A design that provided forwarding incentives by placing e-cash at the core of a
system like Tor might consider ways to mask or batch tra�c related to e-coin transactions
to prevent making tra�c analysis attacks more e�ective.

Still, systems such as BitTorrent, which do not provide strong privacy guarantees (as a
tracker generally is employed that can record peer activity), might find enhanced privacy
due to the use of e-cash accounting as a replacement for reputation systems or user-based
ratio-tracking systems like those currently deployed today (Section 2.2.6). Future peer-
to-peer system designers could benefit from e-cash incentives and remain confident that
currency might be easily adapted for their application without threatening user privacy. It
is this author’s hope that in the future, as the computational power of the average user’s
computer increases, and as concerns for user privacy in peer-to-peer systems grow, that
these e-cash accounting protocols and techniques might be of use to future system designers
in need of a fair, fungible, and secure incentive system.
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