Contour People:
A Parameterized Model of 2D Articulated Human Shape

O. Freifeld S. Zuffi A. Weiss M.J. Black
Brown University

CVPR 2010
2D generative models of humans

• In wide use in Computer Vision
 Pose estimation; tracking; gesture analysis

• Go back a long way
 [Fischler & Elschlager 73, Hinton 76, Hogg 76, Ju et al. 96]

• Computationally efficient
 Pictorial Structure (PS) and Belief Propagation (BP)
 [Felzenszwalb & Huttenlocher, IJCV ’05]
 [Andriluka et al. CVPR ’09]
Problem

• Lack of realism (no detailed shape)
• Body shape estimation has many applications
 Gaming, clothing industry, security
• A good model of shape can improve pose estimation
Possible solution: SCAPE

• A 3D **graphics** model
 [Anguelov et al. Siggraph ’05]

• Used in **computer vision** for shape and pose estimation from multiple calibrated cameras
 [Balan et al. ‘07]
Problem

- Inference is computationally expensive
- Assumes calibrated cameras
- Ambiguous in a single view

[Guan et al. ICCV ‘09]
Goal: The best of both

2D

parameters: 12-40

3D

parameters: 60-100
Goal: The best of both

- Learn an articulated 2D model of detailed shape that is lower-dimensional than SCAPE

<table>
<thead>
<tr>
<th></th>
<th>2D</th>
<th>3D</th>
</tr>
</thead>
<tbody>
<tr>
<td># parameters:</td>
<td>12-40</td>
<td>25-60</td>
</tr>
</tbody>
</table>
The Contour Person (CP) model

- A part-based articulated **deformable template** model
- It **factorizes** shape, pose and camera variations
- A 2D model that captures the **detailed shape** of the human body
- The model is learned from 3D SCAPE
Deformable template

\[T = \begin{pmatrix} \tilde{x}_1 & \tilde{y}_1 & \ldots & \tilde{x}_n & \tilde{y}_n \end{pmatrix}^T \]

\[C = \begin{pmatrix} x_1 & y_1 & \ldots & x_n & y_n \end{pmatrix}^T \]
Deformation of a line segment

\[T = \begin{pmatrix} \tilde{x}_1 & \tilde{y}_1 & \ldots & \tilde{x}_n & \tilde{x}_n \end{pmatrix}^T \quad C = \begin{pmatrix} x_1 & y_1 & \ldots & x_n & y_n \end{pmatrix}^T \]
Deformation of a line segment

\[T = \begin{pmatrix} \tilde{x}_1 & \tilde{y}_1 & \ldots & \tilde{x}_n & \tilde{x}_n \end{pmatrix}^T \]

\[C = \begin{pmatrix} x_1 & y_1 & \ldots & x_n & y_n \end{pmatrix}^T \]

\[
\begin{align*}
(\tilde{x}_i, \tilde{y}_i) & \quad \rightarrow \quad (x_i, y_i) \\
(\tilde{x}_{i+1}, \tilde{y}_{i+1}) & \quad \rightarrow \quad (x_{i+1}, y_{i+1})
\end{align*}
\]

\[S_i \text{ is the ratio of the lengths} \]

\[
D_i^{2 \times 2} = S_i \begin{pmatrix} \cos \theta_i & -\sin \theta_i \\ \sin \theta_i & \cos \theta_i \end{pmatrix}
\]
Template contour \(T = \begin{pmatrix} \tilde{x}_1 & \tilde{y}_1 & \ldots & \tilde{x}_n & \tilde{x}_n \end{pmatrix}^T \)

New contour \(C = \begin{pmatrix} x_1 & y_1 & \ldots & x_n & y_n \end{pmatrix}^T \)

Connectivity matrix \(E = \begin{pmatrix}
-1 & 0 & +1 & 0 & \ldots & 0 & 0 & 0 \\
0 & -1 & 0 & +1 & \ldots & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & \ldots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \ldots & -1 & 0 & +1 \\
+1 & 0 & 0 & 0 & \ldots & 0 & -1 & 0 \\
0 & +1 & 0 & 0 & \ldots & 0 & 0 & -1
\end{pmatrix} \)
Template contour

$$T = \begin{pmatrix} \tilde{x}_1 & \tilde{y}_1 & \cdots & \tilde{x}_n & \tilde{y}_n \end{pmatrix}^T$$

New contour

$$C = \begin{pmatrix} x_1 & y_1 & \cdots & x_n & y_n \end{pmatrix}^T$$

Connectivity matrix

$$E = \begin{pmatrix} -1 & 0 & +1 & 0 & \cdots & 0 & 0 & 0 \\ 0 & -1 & 0 & +1 & \cdots & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & \cdots & 0 & 0 & 0 \\ \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & -1 & 0 & +1 \\ +1 & 0 & 0 & 0 & \cdots & 0 & -1 & 0 \\ 0 & +1 & 0 & 0 & \cdots & 0 & 0 & -1 \end{pmatrix}$$

Template line segments

$$ET = \begin{pmatrix} \tilde{x}_2 - \tilde{x}_1 & \tilde{y}_2 - \tilde{y}_1 & \cdots & \tilde{x}_1 - \tilde{x}_n & \tilde{y}_1 - \tilde{x}_n \end{pmatrix}^T$$

New line segments

$$EC = \begin{pmatrix} x_2 - x_1 & y_2 - y_1 & \cdots & x_1 - x_n & y_1 - y_n \end{pmatrix}^T$$
Deformation of T

$$D(\Theta) = \begin{pmatrix}
D_1^{2\times2} & 0 & \ldots & 0 \\
0 & D_2^{2\times2} & \ldots & 0 \\
0 & 0 & \ddots & 0 \\
0 & 0 & \ldots & D_n^{2\times2}
\end{pmatrix}$$

$$D_i^{2\times2} = S_i \begin{pmatrix}
\cos \theta_i & -\sin \theta_i \\
\sin \theta_i & \cos \theta_i
\end{pmatrix}$$
Deformation of T

$$D(\Theta) = \begin{pmatrix}
D_1^{2\times2} & 0 & \cdots & 0 \\
0 & D_2^{2\times2} & \cdots & 0 \\
0 & 0 & \ddots & 0 \\
0 & 0 & \cdots & D_n^{2\times2}
\end{pmatrix}$$

ET $\xrightarrow{D(\Theta)}$ EC

$$EC = D(\Theta)ET$$
Deformation of T

\[
D(\Theta) = \begin{pmatrix}
D_{1}^{2\times2} & 0 & \cdots & 0 \\
0 & D_{2}^{2\times2} & \cdots & 0 \\
0 & 0 & \ddots & 0 \\
0 & 0 & \cdots & D_{n}^{2\times2}
\end{pmatrix}
\]

$ET \quad D(\Theta) \quad EC$

$EC \approx D(\Theta)ET$
$D(\Theta)ET$
\[
\min_{C} \| D(\Theta)ET - EC \|^2
\]

\[
D(\Theta)ET
\]
\[\min_{C} \|D(\Theta)ET - EC\|^2 \]

\[C = E^\dagger D(\Theta)ET \]
Factorization

\[\Theta = (\Theta_{\text{shape}}, \Theta_{\text{pose}}, \Theta_{\text{camera}}) \]

\[D(\Theta) = D_{\text{shape}} D_{\text{pose}} D_{\text{camera}} \]

\[C = E^\dagger D(\Theta) E T \]
Factorization

\[\Theta = (\Theta_{\text{shape}}, \Theta_{\text{pose}}, \Theta_{\text{camera}}) \]

\[D(\Theta) = D_{\text{shape}} \quad D_{\text{pose}} \quad D_{\text{camera}} \]

\[C = E^\dagger D(\Theta) E T \]

\[\Theta^1_{\text{shape}} \quad \Theta^2_{\text{shape}} \quad \Theta^3_{\text{shape}} \]

\[C_1 \quad C_2 \quad C_3 \]
Factorization

$$\Theta = (\Theta_{\text{shape}}, \Theta_{\text{pose}}, \Theta_{\text{camera}})$$

$$D(\Theta) = D_{\text{shape}} D_{\text{pose}} D_{\text{camera}}$$

$$C = E^\dagger D(\Theta) E T$$

$$\Theta^1_{\text{pose}} \quad \Theta^2_{\text{pose}} \quad \Theta^3_{\text{pose}}$$

$$C_1 \quad \quad C_2 \quad \quad C_3$$
Factorization

\[\Theta = (\Theta_{\text{shape}}, \Theta_{\text{pose}}, \Theta_{\text{camera}}) \]

\[D(\Theta) = D_{\text{shape}} D_{\text{pose}} D_{\text{camera}} \]

\[C = E^\dagger D(\Theta) E T \]

\[\Theta_{\text{camera}}^1 \quad \Theta_{\text{camera}}^2 \quad \Theta_{\text{camera}}^3 \]

\[C_1 \quad C_2 \quad C_3 \]
Factorization

\[\Theta = (\Theta_{\text{shape}}, \Theta_{\text{pose}}, \Theta_{\text{camera}}) \]

\[D(\Theta) = D_{\text{shape}} D_{\text{pose}} D_{\text{camera}} \]

\[C = E^\dagger D(\Theta) E T \]

\[\Theta^1 \quad \Theta^2 \quad \Theta^3 \]

\[T \]
Learning

\[\Theta = (\Theta_{\text{shape}}, \Theta_{\text{pose}}, \Theta_{\text{camera}}) \]

\[D(\Theta) = D_{\text{shape}} \quad D_{\text{pose}} \quad D_{\text{camera}} \]

\[C = E^\dagger D(\Theta) E T \]

• How do we learn this parametric model?
 – Create random shapes and poses from SCAPE
 – Create random cameras
 – Project 3D body to 2D (but keep the body-part segmentation)
Shape training examples

Example #1

$D^{(1)}_{\text{shape}}$

$C^{(1)}_{\text{shape}}$
Shape training examples

Example #170

T

$D_{\text{shape}}^{(170)}$

$C_{\text{shape}}^{(170)}$
Shape training examples

Example #519

$D^{(519)}_{\text{shape}}$

$C^{(519)}_{\text{shape}}$
Pose training examples

Example #1

$D^{(1)}_{\text{pose}}$

$C^{(1)}_{\text{pose}}$

T
Pose training examples

Example #22

T

$D^{(22)}_{\text{pose}}$

$C^{(22)}_{\text{shape}}$
Pose training examples

Example #450
Camera training examples

Example #1

$D_{\text{camera}}^{(1)}$

$C_{\text{camera}}^{(1)}$
Camera training examples

Example #71

$D^{(71)}_{\text{camera}}$

$C^{(71)}_{\text{camera}}$
Camera training examples

Example #645

$D^{(645)}_{\text{camera}}$

$C^{(645)}_{\text{camera}}$
Training set

\[D^{2 \times 2}_i = S_i \begin{pmatrix} \cos \theta_i & -\sin \theta_i \\ \sin \theta_i & \cos \theta_i \end{pmatrix} \]

\[s_i = \log(S_i) \]

\[D^{(j)}_{\text{shape}} \]

The deformation of the \(j^{\text{th}} \) contour person

\[A_{\text{shape}} = \begin{pmatrix} \cdots & s_1^{(j)} & \cdots \\ \cdots & \theta_1^{(j)} & \cdots \\ \vdots & \vdots & \vdots \\ \cdots & s_n^{(j)} & \cdots \\ \cdots & \theta_n^{(j)} & \cdots \end{pmatrix} \]

\(n = \# \text{line segments} \)
Principal Component Analysis

• PCA on A_{shape}:

$$\theta_i = \bar{\theta}_i + \sum \beta_k \theta^k_i$$

$$s_i = \bar{s}_i + \sum \beta_k s^k_i$$

$$\Theta_{\text{shape}} = (\beta_1, \ldots, \beta_K)$$

k stands for the k^{th} eigenvector
Principal Component Analysis

- PCA on A_{shape}:
 \[
 \theta_i = \bar{\theta}_i + \sum \beta_k \theta_i^k \\
 s_i = \bar{s}_i + \sum \beta_k s_i^k \\
 \Theta_{\text{shape}} = (\beta_1, \ldots, \beta_K)
 \]

k stands for the k^{th} eigenvector

- This defines
 \[D_{\text{shape}} = D_{\text{shape}}(\Theta_{\text{shape}})\]

- We do the same for A_{camera} and this defines
 \[D_{\text{camera}} = D_{\text{camera}}(\Theta_{\text{camera}})\]
Principal Component Analysis

• Why use angle and log-scale? Interpretation: PCA in a Lie-algebra

\[S_i \left(\begin{array}{cc} \cos \theta_i & -\sin \theta_i \\ \sin \theta_i & \cos \theta_i \end{array} \right) = \exp \left(\left(\begin{array}{cc} s_i & 0 \\ 0 & s_i \end{array} \right) + \left(\begin{array}{cc} 0 & -\theta_i \\ \theta_i & 0 \end{array} \right) \right) \]
Eigen-shapes

$-3\sigma \quad 0 \quad + 3\sigma$

Principal component #1
Eigen-shapes

Principal component #1 Principal component #2
Eigen-shapes

$-3\sigma \quad 0 \quad +3\sigma \quad -3\sigma \quad 0 \quad +3\sigma \quad -3\sigma \quad 0 \quad +3\sigma$

Principal component #1 Principal component #2 Principal component #3
Eigen-cameras

\[-3\sigma \quad 0 \quad +3\sigma\]

Principal component #1
Eigen-cameras

Principal component #1

Principal component #2
Eigen-cameras

$-3\sigma \quad 0 \quad +3\sigma \quad -3\sigma \quad 0 \quad +3\sigma \quad -3\sigma \quad 0 \quad +3\sigma$

Principal component #1 Principal component #2 Principal component #3
Pose: **rigid** + **non-rigid** deformations

(PS meets SCAPE)

\[D_{\text{pose}} = D_{\text{pose}}(\Theta_{\text{pose}}) \]
Pose: **rigid** + **non-rigid** deformations
(PS meets SCAPE)

∀ \(i \in \text{arm}\)
\[\theta_i = \theta_{\text{RIGID}} \]
\[s_i = s_{\text{RIGID}} \]
Pose: \textcolor{blue}{rigid} + \textcolor{red}{non-rigid} deformations \\
(PS meets SCAPE)

\[
\begin{pmatrix}
 \Delta \theta_i \\
 \Delta s_i
\end{pmatrix} = H_i(\theta_{\text{RIGID}}, s_{\text{RIGID}}, 1)^T
\]

\[
\theta_i = \theta_{\text{RIGID}} + \Delta \theta_i
\]

\[
s_i = s_{\text{RIGID}} + \Delta s_i
\]
Pose: rigid + non-rigid deformations

(PS meets SCAPE)

\[
\begin{pmatrix}
\Delta \theta_i \\
\Delta s_i
\end{pmatrix}
= H_i (\theta_{\text{RIGID}}, s_{\text{RIGID}}, 1)^T
\]

The matrix H_i is learned from examples.
Synthesis

\[\Theta = (\Theta_{\text{shape}}, \Theta_{\text{pose}}, \Theta_{\text{camera}}) \]
\[C = E^\dagger D(\Theta) E^T \]
Fitting CP to silhouettes

- We minimize a cost function of the form
 \[F(\text{mask}, \Theta) = d(\text{mask}, E^\dagger D(\Theta) E T) \]

E.g., \(d \) can the bi-directional Chamfer distance
Selected results
Combine pose/shape estimation with segmentation

• Similar to PoseCut and ObjCut
 \[\text{[Bray et al. ECCV '06, Pawan et al. PAMI '10]}\]

• We minimize a cost function of the form

\[F(I, \Theta) = F_{\text{region}}(I, \Theta) + F_{\text{edge}}(I, \Theta) + F_{\text{prior}}(\Theta)\]

• We used a PS algorithm as an initialization
 \[\text{[Andriluka et al. CVPR '09]}\]
Selected results

PS

CP
Future work

• Inference over discrete views
• Tracking
• Clothing [Guan et al. ECCV ’10]
• Coarse-to-fine inference (PS to CP)
Future work

- Inference over discrete views
- Tracking
- Clothing [Guan et al. ECCV ’10]
- Coarse-to-fine inference (PS to CP)
Future work

- Inference over discrete views
- Tracking
- Clothing [Guan et al. ECCV ’10]
- Coarse-to-fine inference (PS to CP)

Big question

- PS-like inference using a part-based structure?
Conclusions

• A new 2D part-based generative model of humans
 – Beyond previous deformable template models [Cootes et al. CVIU ‘95, Baumberg & Hogg ECCV ‘94, and many others...]

• Factors shape, pose, and camera deformations

• Has advantages of PS models with the detail of a SCAPE-like model

• Initial application: Human-specific image segmentation
Acknowledgments

• This work was funded in part by
 – NIH EUREKA 1R01NS066311-01 grant
 – NSF IIS-0812364 grant
• We thank D. Hirshberg and A. Balan for their assistance with the code
• We thank Andriluka et al. for their PS implementation