
Deep and Shallow Types
for Gradual Languages

Ben Greenman
2022-06-16

Northeastern

-> Brown*

-> Utah

1

2

Typed Untyped

Q. Should your PL be typed or untyped?

3

Typed Untyped

Q. Should your PL be typed or untyped?

Gradual typing says yes to both

"best" of two worlds

4

Great Idea!
Inspired MANY Languages Over 16+ Years

5

Great Idea!
Inspired MANY Languages Over 16+ Years

AS
mypy PyType

Grift TPD

Pallene

StaticP
C#

Nom
SafeTS TS* StrS.

6

Great Idea!
Inspired MANY Languages Over 16+ Years

AS
mypy PyType

Grift TPD

Pallene

StaticP
C#

Nom
SafeTS TS* StrS.

No agreement on the semantics of gradual types

7

StaticP
C# Nom

SafeTS

TS* StrS.

Pallene

AS
mypy PyType

Grift TPD

Concrete

Transient

Erasure

Natural

3�

StaticP
C# Nom

SafeTS

TS* StrS.

Pallene

AS
mypy PyType

Grift TPD

Concrete

Transient

Erasure

Natural 4 leading
semantics because of a tradeof:

type guarantees vs. performance costs
vs. expressiveness

3�

StaticP
C# Nom

SafeTS

TS* StrS.

Pallene

AS
mypy PyType

Grift TPD

Concrete

Transient

Erasure

Natural

4�

StaticP
C# Nom

SafeTS

TS* StrS.

Pallene

AS
mypy PyType

Grift TPD

Concrete

Transient

Erasure

Natural

limited interop w/ untyped

41

StaticP
C# Nom

SafeTS

TS* StrS.

Pallene

AS
mypy PyType

Grift TPD

Concrete

Transient

Erasure

Natural

limited interop w/ untyped

unsound interop

42

StaticP
C# Nom

SafeTS

TS* StrS.

Pallene

AS
mypy PyType

Grift TPD

Concrete

Transient

Erasure

Natural

limited interop w/ untyped

unsound interop

fast, wrong types
Shallow

strong, slow types
Deep

43

TransientNatural

fast, wrong types
Shallow

strong, slow types
Deep

Starting Point

44

TransientNatural

fast, wrong types
Shallow

strong, slow types
Deep

Starting Point

RQ. Can Natural and Transient interoperate?

D

S
U

45

TransientNatural

fast, wrong types
Shallow

strong, slow types
Deep

Starting Point

RQ. Can Natural and Transient interoperate?

D

S
U

Motivations:
 - ease the guarantees vs. performance tradeof
 - no loss of expressiveness; same static types

46

TransientNatural

fast, wrong types
Shallow

strong, slow types
Deep

Starting Point

RQ. Can Natural and Transient interoperate?

D

S
U

Motivations:
 - ease the guarantees vs. performance tradeof
 - no loss of expressiveness; same static types

Orthogonal to basic improvements:
Pycket

OOPSLA'17

Corpse Reviver
POPL'21

47

Key Technical Question:
How to Enforce Types at Boundaries?

Deep Typed

Shallow Typed

Untyped

4�

Key Technical Question:
How to Enforce Types at Boundaries?

Deep Typed

Shallow Typed

Untyped

?

?

?

While preserving their formal properties

OOPSLA'19 ICFP'18

4�

Key Technical Question:
How to Enforce Types at Boundaries?

Deep Typed

Shallow Typed

Untyped

?

?

?

While preserving their formal properties

OOPSLA'19 ICFP'18

Type Soundness
Complete Monitoring

5�

Key Technical Question:
How to Enforce Types at Boundaries?

Deep Typed

Shallow Typed

Untyped

?

?

?

While preserving their formal properties

OOPSLA'19 ICFP'18

Type Soundness
Complete Monitoring

Type Soundness

51

Key Technical Question:
How to Enforce Types at Boundaries?

Deep Typed

Shallow Typed

Untyped

?

?

?

While preserving their formal properties

OOPSLA'19 ICFP'18

Type Soundness
Complete Monitoring

Type Soundness

Dyn. Soundness

52

Key Technical Question:
How to Enforce Types at Boundaries?

53

Key Technical Question:
How to Enforce Types at Boundaries?

First of all:
 Q. How does Natural enforce Deep types?

 Q. How does Transient enforce Shallow types?

54

 Q. How does Natural enforce Deep types?

Deep Typed Untyped

55

 Q. How does Natural enforce Deep types?

Deep Typed Untyped

A. Use wrappers to guard boundaries

56

 Q. How does Natural enforce Deep types?

Deep Typed Untyped

A. Use wrappers to guard boundaries

Int -> Int

fun x . e

57

 Q. How does Natural enforce Deep types?

Deep Typed Untyped

A. Use wrappers to guard boundaries

Int -> Int

[wrap] fun x . e

5�

 Q. How does Natural enforce Deep types?

Deep Typed Untyped

A. Use wrappers to guard boundaries

Int -> Int

[wrap] fun x . e

Vectorof Int

vec 1 2 3

5�

 Q. How does Natural enforce Deep types?

Deep Typed Untyped

A. Use wrappers to guard boundaries

Int -> Int

[wrap] fun x . e

Vectorof Int

vec 1 2 3 [wrap]

6�

 Q. How does Transient enforce Shallow types?

Shallow Typed Untyped

61

 Q. How does Transient enforce Shallow types?

Shallow Typed Untyped

A. With no wrappers but many tiny shape checks

62

 Q. How does Transient enforce Shallow types?

Shallow Typed Untyped

A. With no wrappers but many tiny shape checks

Int -> Int

fun x . e

63

 Q. How does Transient enforce Shallow types?

Shallow Typed Untyped

A. With no wrappers but many tiny shape checks

Int -> Int

fun x . e fun x . e

64

 Q. How does Transient enforce Shallow types?

Shallow Typed Untyped

A. With no wrappers but many tiny shape checks

Int -> Int

fun x . e fun x . e

Vectorof Int

vec A B C

65

 Q. How does Transient enforce Shallow types?

Shallow Typed Untyped

A. With no wrappers but many tiny shape checks

Int -> Int

fun x . e fun x . e

Vectorof Int

vec A B C vec A B C

66

 Q. How does Transient enforce Shallow types?

Shallow Typed Untyped

A. With no wrappers but many tiny shape checks

Int -> Int

fun x . e fun x . e

Vectorof Int

vec A B C vec A B C

Int -> Int

fun x . e'

67

 Q. How does Transient enforce Shallow types?

Shallow Typed Untyped

A. With no wrappers but many tiny shape checks

Int -> Int

fun x . e fun x . e

Vectorof Int

vec A B C vec A B C

Int -> Int

fun x . e' fun x . e'

6�

 Q. How does Transient enforce Shallow types?

A. With no wrappers but many tiny shape checks

Int -> Int

fun x . e fun x . e

Vectorof Int

vec A B C vec A B C

Int -> Int

fun x . e' fun x . e'

Shallow Typed Untyped

6�

 Q. How does Transient enforce Shallow types?

A. With no wrappers but many tiny shape checks

Int -> Int

fun x . e fun x . e

Vectorof Int

vec A B C vec A B C

Int -> Int

fun x . e' fun x . e'

Shallow Typed Untyped

Check function calls,
vector refs, etc.

7�

Deep Typed

Shallow Typed

Untyped

?

?

?

71

Deep Typed

Shallow Typed

Untyped

1. wrap

?

?

72

Deep Typed

Shallow Typed

Untyped

1. wrap

?

2. shape check

73

Deep Typed

Shallow Typed

Untyped

1. wrap

2. shape check

?

74

Deep Typed

Shallow Typed

Untyped

1. wrap

2. shape check

?
Typed to Typed = no check?

No!

75

What If: No Checks Between Deep and Shallow

Example 1:
 Deep code cannot trust Shallow types because
 they are lazily enforced

Shallow makes a function,
def f0(n : Int):

 n + 2

76

What If: No Checks Between Deep and Shallow

Example 1:
 Deep code cannot trust Shallow types because
 they are lazily enforced

Shallow makes a function,
def f0(n : Int):

 n + 2

sends it to untyped code ...

def f1 = f0

77

What If: No Checks Between Deep and Shallow

Example 1:
 Deep code cannot trust Shallow types because
 they are lazily enforced

Shallow makes a function,
def f0(n : Int):

 n + 2

sends it to untyped code ...

def f1 = f0

and back, with a new type.
f2 : Str -> Str

def f2 = f1

7�

What If: No Checks Between Deep and Shallow

Example 1:
 Deep code cannot trust Shallow types because
 they are lazily enforced

Shallow makes a function,
def f0(n : Int):

 n + 2

sends it to untyped code ...

def f1 = f0

and back, with a new type.
f2 : Str -> Str

def f2 = f1

Types say f2 : Str -> Str
Checks say f2 is a function

7�

What If: No Checks Between Deep and Shallow

Example 1:
 Deep code cannot trust Shallow types because
 they are lazily enforced

Shallow makes a function,
def f0(n : Int):

 n + 2

sends it to untyped code ...

def f1 = f0

and back, with a new type.
f2 : Str -> Str

def f2 = f1

Types say f2 : Str -> Str
Checks say f2 is a function

Deep gets a 'bad' function
f3 : Str -> Str

def f3 = f2

��

What If: No Checks Between Deep and Shallow

Example 2:
 Shallow can send a Deep value to
 Untyped code

Deep makes a function,
def g0(h : Int -> Int):

 h(3)

�1

What If: No Checks Between Deep and Shallow

Example 2:
 Shallow can send a Deep value to
 Untyped code

Deep makes a function,
def g0(h : Int -> Int):

 h(3)

sends it to Shallow,
g1 : (Int -> Int) -> Int

def g1 = g0

�2

What If: No Checks Between Deep and Shallow

Example 2:
 Shallow can send a Deep value to
 Untyped code

Deep makes a function,
def g0(h : Int -> Int):

 h(3)

sends it to Shallow,
g1 : (Int -> Int) -> Int

def g1 = g0

which sends it to untyped

def g2 = g1

g2("not a function")

�3

Deep Typed

Shallow Typed

Untyped

1. wrap

2. shape check

?
Typed to Typed = no check?

No!

�4

Deep Typed

Shallow Typed

Untyped

1. wrap

2. shape check

3. wrap

�5

Deep Typed

Shallow Typed

Untyped

1. wrap

2. shape check

3. wrap

In paper: model, type soundness, complete monitoring

�6

Implementation

Typed Racket

Deep Typed

Shallow Typed

Untyped

�7

Implementation

Typed Racket

Deep Typed

Shallow Typed

Untyped

A Transient Semantics for Typed Racket
Programming'22

��

Implementation

Typed Racket

Deep Typed

Shallow Typed

Untyped

��

Implementation

Typed Racket

Deep Typed

Shallow Typed

Untyped

In paper: general lessons (no macros)

��

Evaluation

Guarantees vs. Performance vs. Expressiveness

�1

Evaluation

Guarantees vs. Performance vs. ExpressivenessPerformance

�2

GTP Benchmarks
21 programs

docs.racket-lang.org/gtp-benchmarks

�3

GTP Benchmarks
21 programs

docs.racket-lang.org/gtp-benchmarks

Ex: One program with 3 components

�4

GTP Benchmarks
21 programs

docs.racket-lang.org/gtp-benchmarks

Ex: One program with 3 components

8 Typed / Untyped points (2^N)

�5

GTP Benchmarks
21 programs

docs.racket-lang.org/gtp-benchmarks

Ex: One program with 3 components

8 Typed / Untyped points (2^N)

27 Deep / Shallow / Untyped points (3^N)

�6

Better Performance

Q. How many points run fastest with a Deep + Shallow mix?

�7

Better Performance

Q. How many points run fastest with a Deep + Shallow mix?

��

Better Performance

Q. How many points run fastest with a Deep + Shallow mix?

forth 12%

fsm 38%

fsmoo 31%

mbta 19%

morsecode 25%

zombie 6%

dungeon 31%

jpeg 38%

zordoz 47%

lnm 66%

suffixtree 48%

kcfa 55%

snake 46%

take5 36%

acquire 64%

tetris 62%

��

Better Performance

Q. What is the worst-case overhead? Deep or Shallow

1��

Better Performance

Q. What is the worst-case overhead? Deep or Shallow

sieve 2.97x

forth 5.43x

fsm 1.91x

fsmoo 4.25x

mbta 1.71x

morsecode 1.3x

zombie 31x

dungeon 3.16x

jpeg 1.56x

zordoz 2.58x

lnm 1.17x

suffixtree 5.8x

kcfa 1.24x

snake 7.61x

take5 2.97x

acquire 1.42x

tetris 5.44x

synth 4.2x

gregor 1.51x

quadT 7.23x

quadU 7.45x

1�1

Better Performance

Q. What is the worst-case overhead? Deep or Shallow

sieve 2.97x 16x 4.36x

forth 5.43x 5800x 5.51x

fsm 1.91x 2.24x 2.38x

fsmoo 4.25x 420x 4.28x

mbta 1.71x 1.91x 1.74x

morsecode 1.3x 1.57x 2.77x

zombie 31x 46x 31x

dungeon 3.16x 15000x 4.97x

jpeg 1.56x 23x 1.66x

zordoz 2.58x 2.63x 2.75x

lnm 1.17x 1.23x 1.21x

suffixtree 5.8x 31x 5.8x

kcfa 1.24x 4.33x 1.24x

snake 7.61x 12x 7.67x

take5 2.97x 44x 2.99x

acquire 1.42x 4.22x 1.42x

tetris 5.44x 13x 9.93x

synth 4.2x 47x 4.2x

gregor 1.51x 1.72x 1.59x

quadT 7.23x 26x 7.39x

quadU 7.45x 55x 7.57x

1�2

Better Performance

Q. What is the worst-case overhead? Deep or Shallow

sieve 2.97x 16x 4.36x

forth 5.43x 5800x 5.51x

fsm 1.91x 2.24x 2.38x

fsmoo 4.25x 420x 4.28x

mbta 1.71x 1.91x 1.74x

morsecode 1.3x 1.57x 2.77x

zombie 31x 46x 31x

dungeon 3.16x 15000x 4.97x

jpeg 1.56x 23x 1.66x

zordoz 2.58x 2.63x 2.75x

lnm 1.17x 1.23x 1.21x

suffixtree 5.8x 31x 5.8x

kcfa 1.24x 4.33x 1.24x

snake 7.61x 12x 7.67x

take5 2.97x 44x 2.99x

acquire 1.42x 4.22x 1.42x

tetris 5.44x 13x 9.93x

synth 4.2x 47x 4.2x

gregor 1.51x 1.72x 1.59x

quadT 7.23x 26x 7.39x

quadU 7.45x 55x 7.57x

H.O. values and
many elim. forms

1�3

Better Performance

1�4

Better Performance

Overall: switching between Deep and Shallow
 can avoid perf. bottlenecks

Deep near the top,
to maximize the benefits of types

Shallow in the middle,
to minimize the cost of boundaries

1�5

Conclusion

1�6

D

S
UContext: Diferent GT strategies exist

 (for good reason!)

1�7

D

S
UContext: Diferent GT strategies exist

 (for good reason!)

Inquiry: Can two extreme strategies interoperate?

Deep types via Natural (wrappers)
Shallow types via Transient (no wrappers)

1��

D

S
UContext: Diferent GT strategies exist

 (for good reason!)

Inquiry: Can two extreme strategies interoperate?

Deep types via Natural (wrappers)
Shallow types via Transient (no wrappers)

Contribution: Yes! In a way that:
 - preserves their formal guarantees
 - leads to better overall performance
 - lets TR express additional programs

1��

A New Dimension for Gradual Typing

Deep Shallow Untyped

11�

A New Dimension for Gradual Typing

Deep Shallow Untyped

Natural Transient

111

A New Dimension for Gradual Typing

Deep Shallow Untyped

Natural Transient

Q. More regions along the spectrum?

112

A New Dimension for Gradual Typing

Deep Shallow Untyped

Natural Transient

Q. More regions along the spectrum?

Q. Better cooperation b/w Deep and Shallow?

113

A New Dimension for Gradual Typing

Deep Shallow Untyped

Natural Transient

Q. More regions along the spectrum?

Q. Better cooperation b/w Deep and Shallow?

Q. Solve the N^2 interop problem?

114

The End

Deep

Shallow
Untyped

Coming soon to Racket
https://racket-lang.org

Pull Request https://github.com/racket/typed-racket/pull/948

Research Repo https://github.com/bennn/g-pldi-2022

115

116

