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Overview

1. Introduction to Game Theory

2. Regret Matching Learning Algorithms

◦ Regret Matching Learns Equilibria

3. Machine Learning Applications



Introduction to Game Theory

1. General-Sum Games

◦ Nash Equilibrium

◦ Correlated Equilibrium

2. Zero-Sum Games

◦ Minimax Equilibrium



Regret Matching Learning Algorithms

1. Regret Variations

◦ No Φ-Regret Learning

◦ External, Internal, and Swap Regret

2. Sufficient Conditions for No Φ-Regret Learning

◦ Blackwell’s Approachability Theorem

◦ Gordon’s Gradient Descent Theorem

– Potential Function Argument

3. Expected and Observed Regret Matching Algorithms

◦ Polynomial and Exponential Potential Functions

◦ External, Internal, and Swap Regret

4. No Φ-Regret Learning Converges to Φ-Equilibria

So Φ-Regret Matching Learns Φ-Equilibria



Machine Learning Applications

1. Online Classification

2. Offline Boosting



Game Theory and Economics

◦ Perfect Competition agents are price-takers

◦ Monopoly single entity commands all market power

◦ Game Theory payoffs in a game are jointly determined by
the strategies of all players



Knowledge, Rationality, and Equilibrium

Assumption

Players are rational: i.e., optimizing wrt their beliefs.

Theorem

Mutual knowledge of rationality and common knowledge of beliefs

is sufficient for the deductive justification of Nash equilibrium.

(Aumann and Brandenburger 95)

Question

Can learning provide an inductive justification for equilibrium?



Dimensions of Game Theory

◦ zero-sum vs. general-sum

◦ simultaneous vs. sequential-move

– deterministic vs. stochastic transitions

◦ cooperative vs. non-cooperative

◦ one-shot vs. repeated

Learning in Repeated Games



Rational Learning in Repeated Games

◦ An Iterative Method of Solving a Game
Robinson 51

◦ Rational Learning Leads to Nash Equilibrium
Kalai and Lehrer 93

◦ Prediction, Optimization, and Learning in Repeated Games
Nachbar 97



Low-Rationality Learning in Repeated Games

Evolutionary Learning

No-Regret Learning

◦ No-external-regret learning converges to minimax equilibrium

◦ No-internal-regret learning converges to correlated equilibrium

◦ No-Φ-regret learning does not converge to Nash equilibrium,



One-Shot Games

1. General-Sum Games

◦ Nash Equilibrium

◦ Correlated Equilibrium

2. Zero-Sum Games

◦ Minimax Equilibrium



An Example

Prisoners’ Dilemma

C D

C 4,4 0,5

D 5,0 1,1

C: Cooperate

D: Defect

Unique Nash, Correlated, and “Minimax” Equilibrium



Normal Form Games

A normal form game is a 3-tuple Γ = (I, (Ai, ri)i∈I), where

◦ I is a set of players

◦ for all players i ∈ I,

– a set of actions Ai with ai ∈ Ai

– a reward function ri : A → R, where A =
∏

i∈I Ai

Normal form games are also called strategic form, or matrix, games.

Notation

Write a = (ai, a−i) ∈ A for ai ∈ Ai and a−i ∈ A−i =
∏

j 6=i Aj.

Write q = (qi, q−i) ∈ Q for qi ∈ Qi and q−i ∈ Q−i =
∏

j 6=i Qi,

where Qi = {qi ∈ RAi|
∑

j qij = 1 & qij ≥ 0,∀j}.



Nash Equilibrium

Preliminaries

E[ri(q)] =
∑

a∈A

q(a)ri(a), where q(a) =
∏

i

qi(ai)

BRi(q) ≡ BRi(q−i) = {q∗i ∈ Qi | ∀qi ∈ Qi, E[ri(q
∗
i , q−i)] ≥ E[ri(qi,

Definition

A Nash equilibrium is an action profile q∗ s.t. q∗ ∈ BR(q∗).

Theorem [Nash 51]

Every finite strategic form game has a mixed strategy Nash equilib



General-Sum Games

Battle of the Sexes Stag Hunt

B F

B 2,1 0,0
F 0,0 1,2

C D

C 2,2 0,1
D 1,0 1 + ε,1 + ε

Coordination Game Shapley Game

L C R

T 3,3 0,0 0,0
M 0,0 2,2 0,0
B 0,0 0,0 1,1

L C R

T 0,0 1,0 0,1
M 0,1 0,0 1,0
B 1,0 0,1 0,0



Correlated Equilibrium

Chicken
L R

T 6,6 2,7
B 7,2 0,0

CE
L R

T 1/2 1/4
B 1/4 0

max12πTL + 9πTR + 9πBL + 0πBR

subject to

πTL + πTR + πBL + πBR = 1

πTL, πTR, πBL, πBR ≥ 0

6πL|T + 2πR|T ≥ 7πL|T + 0πR|T

7πL|B + 0πR|B ≥ 6πL|B + 2πR|B

6πT |L + 2πB|L ≥ 7πT |L + 0πB|L

7πT |R + 0πB|R ≥ 6πT |R + 2πB|R



Correlated Equilibrium

Definition

An action profile q∗ ∈ Q is a correlated equilibrium iff for all strategies

if q(ai) > 0,
∑

a−i∈A−i

q(a−i|ai) ri(ai, a−i) ≥
∑

a−i∈A−i

q(a−i|ai) ri(a
′
i, a−i)

Observe

Every Nash equilibrium is a correlated equilibrium ⇒

Every finite normal form game has a correlated equilibrium.



Prisoners’ Dilemma

Weights Frequencies
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NIR polynomial [p = 2]:  Prisoners’ Dilemma

Player 1: C
Player 1: D
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NIR polynomial [p = 2]:  Prisoners’ Dilemma



Battle of the Sexes

Weights Frequencies
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NIR polynomial [p = 2]:  Battle of the Sexes

Player 1: B
Player 1: F
Player 2: B
Player 2: F
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Stag Hunt

Weights Frequencies
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NIR exponential [η = 0.052655]:  Stag Hunt

Player 1: T
Player 1: B
Player 2: L
Player 2: R
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NIR exponential [η = 0.052655]:  Stag Hunt



Coordination Game

Weights Frequencies
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NIR exponential [η = 0.066291]:  Coordination Game

Player 1: T
Player 1: M
Player 1: B
Player 2: L
Player 2: C
Player 2: R
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NIR exponential [η = 0.066291]:  Coordination Game

Player 1: T
Player 1: M
Player 1: B
Player 2: L
Player 2: C
Player 2: R



Shapley Game: No Internal Regret Learning

Frequencies
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NIR polynomial [p = 2]:  Shapley Game

Player 1: T
Player 1: M
Player 1: B
Player 2: L
Player 2: C
Player 2: R
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NIR exponential [η = 0.014823]:  Shapley Game

Player 1: T
Player 1: M
Player 1: B
Player 2: L
Player 2: C
Player 2: R



Shapley Game: No Internal Regret Learning

Joint Frequencies
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NIR polynomial [p = 2]:  Shapley Game
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NIR exponential [η = 0.014823]:  Shapley Game

(T,L)
(M,L)
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Shapley Game: No External Regret Learning

Frequencies
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NER polynomial [p = 2]:  Shapley Game

Player 1: T
Player 1: M
Player 1: B
Player 2: L
Player 2: C
Player 2: R
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NER exponential [η = 0.014823]:  Shapley Game

Player 1: T
Player 1: M
Player 1: B
Player 2: L
Player 2: C
Player 2: R



Zero-Sum Games

Matching Pennies

H T

H −1,1 1,−1
T 1,−1 −1,1

Rock-Paper-Scissors

R P S

R 0,0 −1,1 1,−1
P 1,−1 0,0 −1,1
S −1,1 1,−1 0,0

Definition
∑

k∈I rk(a) = 0, for all a ∈ A
∑

k∈I rk(a) = c, for all a ∈ A, for some c ∈ R



Zero-Sum Games: Pure Actions

Two Players mkl ≡ M(k, l) = r1(k, l) = −r2(k, l)

◦ Maximizer k∗ ∈ argmaxk∈A1
minl∈A2

mkl

v(k∗) = maxk∈A1
minl∈A2

mkl

◦ Minimizer l∗ ∈ argminl∈A2
maxk∈A1

mkl

v(l∗) = minl∈A2
maxk∈A1

mkl

Example

L R

T 1 2

B 4 3



Zero-Sum Games: Mixed Actions

Two Players M(p, l) =
∑

k∈A1
p(k)M(k, l)

M(k, q) =
∑

l∈A2
q(l)M(k, l)

◦ Maximizer p∗ ∈ argmaxp∈Q1
minl∈A2

M(p, l)
v(p∗) = maxp∈Q1

minl∈A2
M(p, l)

◦ Minimizer q∗ ∈ argminq∈Q2
maxk∈A1

M(k, q)
v(q∗) = minq∈Q2

maxk∈A1
M(k, q)

Example

L R

T +1 −1

B −1 +1



Minimax Theorem
von Neumann 28

Theorem

In two player, zero-sum games, the minimax value equals the maximin

Easy Direction v(p∗) ≤ v(q∗)

◦ analogous to weak duality in linear programming

Hard Direction v(q∗) ≤ v(p∗)

◦ akin to strong duality in linear programming



Proof of Easy Direction

Observe

M l l∗

k ∗
≥

k∗ ∗ ≤ ∗

Therefore, v(k∗) = M(k∗, l) ≤ M(k, l∗) = v(l∗)

Proof of Hard Direction

Corollary of the existence of no-external-regret learning algorithms

Freund & Schapire 96



Matching Pennies
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Player 1: H
Player 1: T
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Rock-Paper-Scissors

Weights Frequencies
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Summary of Part I

“A little rationality goes a long way” [Hart 03]

No-Regret Learning

◦ No-external regret learning converges to minimax equilibrium

◦ No-internal regret learning converges to correlated equilibrium


