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1. INTRODUCTION
Suppose you want to buy a used Canon AE-1 SLR camera

and 
ash at an on-line auction. At last count, over 4000 links
to on-line auction sites were available at advocacy-net.com.
It would be quite a daunting task to manually monitor prices
and make bidding decisions at all sites currently o�ering the
camera|especially if the 
ash accessory is sometimes bun-
dled with the camera, and sometimes auctioned separately.
But for the next generation of automated trading agents,
this will be a routine task.
Simultaneous auctions, or parallel auctions, present a chal-

lenge to bidders, particularly when complementary and sub-
stitutable goods are on o�er. Complementary goods are
items such as a 
ash, a tripod, and a case, that would com-
plement a camera|but a bidder desires any of the former
only if s/he is certain to acquire the latter. Substitutable
goods are goods such as the Canon AE-1 and the Canon
A-1|a bidder desires one or the other, but not both. In
contrast to combinatorial auctions, in which bids may be
placed for combinations of items (e.g., \camera and 
ash
for $295"), simultaneous auctions require separate bids to be
placed for each individual item. In combinatorial auctions,
the problem of choosing a set of winning bids that maxi-
mizes revenue|the so-called winner determination problem
(WD)|falls in the hands of the auctioneer; in simultaneous
auctions, the complexity burden lies with the bidders.
In this paper, we present an agent architecture for intel-

ligent bidding in simultaneous auctions. Our architecture
is centered on a class of problems we call bid determina-
tion (BD): determining what bids to place in simultaneous
auctions, given current market conditions and utilities on
combinations of items. We present two theoretical results:
1. BD in double auctions, where goods can be sold as well
as bought, can be formally reduced to the problem of BD in
single-sided auctions. 2. BD problems in simultaneous auc-
tions are isomorphic to common variants of WD in combina-
torial auctions. In a longer version of this paper, we propose
and experiment with algorithmic approaches to BD.
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2. BID DETERMINATION
The key challenge that bidding agents face in simultane-

ous auctions is determining how to bid on complementary
and substitutable goods. Complementary goods are goods
with superadditive utilities: i.e., u(A �B) + u( �AB) < u(AB).
For example, in TAC, the utility of airline tickets without ho-
tel reservations (or of hotel reservations without airline tick-
ets) is zero, whereas the utility of complete travel packages
is strictly positive. Substitutable goods are goods with sub-
additive utilities: u(A �B) + u( �AB) > u(AB). For example,
in TAC, the utility of both a theater ticket and a symphony
ticket for the same night is bounded above by the higher of
the individual utilities of the two separate events. It does
not make sense to assign individual utilities to complemen-
tary goods (which are worthless in isolation) or substitutable
goods (which are worthwhile only in isolation). Thus, simple
bidding strategies such as \for each good x in auction x, bid
up to its utility" are inapplicable in simultaneous auctions.
Instead, bidding agents must reason directly about sets of

goods|the utilities of which are well-de�ned. While making
bidding decisions in simultaneous auctions, a bidding agent
may pose and solve questions such as the following:

� \Given only the set of goods I already hold, what is
the maximum utility I can attain?" We call this the
allocation problem, since the agent's utility is deter-
mined by the choice of how to allocate its set of held
goods into useful subsets.

� \Given the set of goods I already hold, and given mar-
ket prices and supply in all open auctions, what set of
additional goods should I acquire so as to maximize my
utility less purchase costs?" This more general prob-
lem, which we term acquisition, provides a foundation
for bidding strategies in single-sided auctions.

� \Given the set of goods I already hold, and given mar-
ket prices, supply, and demand, on what set of addi-
tional goods should I place bids or asks so as to maxi-
mize my utility plus pro�ts less costs?" This yet more
general problem, completion, provides a foundation for
bidding strategies in settings with simultaneous single-
sided and double auctions.

2.1 Agent Architecture
An agent bidding in simultaneous auctions must decide

(i) on what goods to bid, (ii) for how many to bid, (iii) at
what price to bid, and (iv) when to bid|and likewise for
asks. A completion directly answers the �rst two of these



(A) While some auction remains open, do:

1. Update current prices and holdings for each auction.

2. Estimate clearing prices, supply & demand of goods.

3. Run completion to determine the quantity of each
good that is ultimately desired; compute the di�erence
between the optimal solution and current holdings.

4. Place bids and asks strategically (with respect to cur-
rent time and the auction mechanisms) to buy and sell
goods to reach the desired quantities.

(B) After all auctions have closed, run allocation.

Table 1: A high-level architecture for bidding agents

in simultaneous auctions.

questions, and it provides a partial answer to third question,
namely bid (ask) no more (less) than the market price. (The
fourth question, which depends on the speci�c auction mech-
anisms, is addressed in [3].) Thus, a natural architecture for
a bidding agent is to repeatedly compute estimates of mar-
ket clearing prices, run a completion algorithm to determine
target holdings, and bid/ask accordingly. This architecture
is outlined in Table 1 for a simultaneous auction setup in
which there is no advantage to allocating goods early.
The remainder of this paper focuses on the computational

challenges of completion, acquisition (the special case of
completion applicable to single-sided auctions), and alloca-
tion. Two other components of our architecture|estimation
(step A2) and bid/ask tactics (step A4)|are equally chal-
lenging but problem-dependent, and are not addressed here.
(For some insights, see [2, 3, 7]).

2.2 Formal Problem Statement
We now formally de�ne allocation, acquisition, and com-

pletion, starting with acquisition. Consider an agent bid-
ding in simultaneous auctions for goods g in the set G. For
each good g, we are given the agent's current holdings of
g, the market supply, and the prices of additional copies of
g. We represent these holdings and estimates by a single
vector ~pg, which we call a buyer priceline, in which the nth
component, pgn, stores the cost the agent would incur upon
acquiring the nth copy of g. For example, if the agent cur-
rently holds four units of a good ĝ, and predicts that two
additional units of ĝ could be won at costs of $20 and $30,
respectively, the corresponding buyer priceline is given by
~pĝ = h0; 0; 0; 0; 20; 30;1;1; : : : i. The leading zeroes indi-
cate that the agent may \acquire" the four goods it already
holds at no cost. The tail of in�nite costs means that the
agent may acquire no more than six units of ĝ in total. We
assume buyer pricelines are nonnegative and nondecreasing.
In acquisition, the agent's goal is to determine how best to

augment its holdings with new purchases so as to maximize
the sum of the package utilities it can achieve less the total
cost of the goods. Let a package be represented by a vector
of quantities, one for each good, plus a unique identi�er:1

~q = hq1; : : : ; qjGj; qidi. The package's utility is denoted u(~q).

1The unique identi�er serves to guarantee that the utility
function is indeed a function even in the case where multiple
packages contain the same goods but have di�erent utilities.

Given a set of buyer pricelines P = f~pg j g 2 Gg and a set
of packages S, we de�ne the utility and cost of S as follows:

Util(S) =
X

~q2S

u(~q) (1)

8g; Used(S; g) =
X

~q2S

qg (2)

8g; Costg(S; P ) =

Used(S;g)X

n=1

pgn (3)

Cost(S; P ) =
X

g2G

Costg(S;P ) (4)

Definition 2.1. ACQ(P;Q; u). Inputs: a set of buyer
pricelines P = f~pg j g 2 Gg; a set of packages Q; a util-
ity function u : Q ! R

+. Output: an optimal subset of
packages S� 2 argmaxS�Q (Util(S)� Cost(S; P )).

Definition 2.2. Allocation is simply a special case of
the acquisition problem in which no additional goods can be
purchased. That is, all entries pgn in the buyer pricelines
are assumed to be either 0 or 1.

Completion generalizes acquisition to double-sided auc-
tion scenarios in which the agent may sell some of the goods
it holds, if it so chooses, rather than using them in pack-
ages. Let us represent the estimated market demand for
each good g the agent owns as a vector ~�g , which we call a
seller priceline. Much like a buyer priceline, the nth com-
ponent of a seller priceline stores the pro�t the agent could
earn by selling its nth copy of g on the open market. For
example, returning to the sample good ĝ above, suppose the
agent estimated that it could �nd buyers for two of its four
copies of ĝ at prices of $10 and $5, respectively. Its seller
priceline would be given by: ~�ĝ = h10; 5; 0; 0i where the
trailing zeroes re
ect that there is no market demand for
the third and fourth copies of ĝ. Note that seller pricelines
have length equal to the quantity of the good held by the
agent. We assume that seller pricelines are nonnegative and
nonincreasing.
Given a set of seller pricelines � = f~�g j g 2 Gg and a set

of packages S, we now de�ne pro�t analogously to cost:

8g; Unused(S; g;�) = maxfj~�g j �Used(S; g); 0g (5)

8g; Pro�tg(S;�) =

Unused(S;g)X

i=1

�gn (6)

Pro�t(S;�) =
X

g2G

Pro�tg(S;�) (7)

Definition 2.3. COM(P;�; Q; u). Inputs: a set of
buyer pricelines P = f~pg j g 2 Gg; a set of seller pricelines
� = f~�g j g 2 Gg; a set of packages Q; a utility function
u : Q! R

+. Output: an optimal subset of packages
S� 2 argmaxS�Q (Util(S)�Cost(S; P ) + Pro�t(S;�)).

2.3 Reducing Completion to Acquisition
Perhaps surprisingly, completion problems (for double-

sided simultaneous auctions) can be cast as acquisition (for
single-sided auctions). We demonstrate this equivalence in
two ways: by mapping the seller pricelines into dummy pack-
ages, or by augmenting the pricelines with the information
contained in the seller pricelines.



In the �rst mapping, we treat the market as an addi-
tional source of utility: each nonzero number �gn on each
seller priceline translates into a new package ~egn containing
only the single item g, with corresponding utility u(~egn) =
�gn. For example, given the example seller priceline ~�ĝ =
h10; 5; 0; 0i, we would create two dummy packages, ~eĝ1 and
~eĝ2, with utilities 10 and 5, respectively.

Theorem 2.4. Given P , �, Q, u, COM(P;�; Q; u) =
ACQ(P;Q [ Q0; u [ u0) \ Q, where Q0 = f~egn j g 2 G; n =
1 : : : j~�gjg and u0 = f~egn 7! �gn j g 2 G; n = 1 : : : j~�gjg.

In the second mapping from completion to acquisition, the
package-utility pairs are unchanged. Instead, we merge the
seller pricelines into the buyer pricelines. The intuition here
is that in a double-auction scenario, an agent cannot use
even the goods it holds at no cost; rather, the agent incurs
opportunity costs for not selling those goods on the market.
Combining a buyer priceline ~pg and a seller priceline ~�g

is a simple matter of replacing the leading j~�g j entries of
~pg|which are originally all zero, since they represent the
cost of acquiring the agent's own holdings|with the con-
tents of ~�g in reverse. Consider the sample buyer price-
line ~pĝ and sample seller priceline ~�ĝ shown earlier. Com-
bining these two pricelines produces the following result:
~pĝ + reverse(~�ĝ) = h0; 0; 5; 10; 20; 30;1;1;1; : : : i. The re-
sulting priceline should again be nonnegative and nonde-
creasing. (Otherwise, there would exist an arbitrage oppor-
tunity, which could be exploited in a preprocessing step.)
The interpretation of the new priceline is as follows: the

agent can use one or two copies of good ĝ without penalty,
since in either case it will still be able to sell at most two
further copies of ĝ. If it uses a third copy, though, it must
charge itself $5 in lost pro�ts. If it uses all four of its held
copies, it must charge itself $5+$10=$15. If it uses �ve, it
incurs the lost opportunity cost of $15, plus the $20 cost of
purchasing an additional copy on the open market; for six, it
incurs cost $65. Finally, lack of market supply (represented
by 1) prevents the agent from using more than six copies
of the good in total. We can now state our second theorem.

Theorem 2.5. For all P , �, Q, u, COM(P;�;Q; u) =
ACQ(P 0; Q; u), where P 0 = f~pg + reverse(~�g) j g 2 Gg.

2.4 Winner Determination
The BD problems formulated above are isomorphic to

variants of the winner determination (WD) problems that
arise in combinatorial auctions. In combinatorial auctions
(see, for example, [1, 6]), an auctioneer collects bids on com-
binations (i.e., packages) of goods, and then seeks the most
pro�table subset of those bids|the \winners"|that can be
ful�lled from the set of available goods. Combinatorial bids
correspond exactly to our notion of package utilities in the
allocation problem. Similarly, the bidding agent's goal in
allocation and the auctioneer's goal in WD are identical:
to choose a subset of bids/packages that maximizes util-
ity while respecting the constraint on total goods available.
Thus, allocation is isomorphic to WD in (multi-unit) com-
binatorial auctions.
More generally, the tasks of acquisition and completion

are equivalent to winner determination with reserve prices.
In this latter problem, it is assumed that there is some price
below which the auctioneer prefers not to sell each good.
Thus, the auctioneer seeks to maximize the di�erence be-
tween pro�ts and reserve prices. Similarly, in acquisition

and completion tasks, bidding agents seek to maximize the
di�erence between utilities and market prices. WD prob-
lems are themselves equivalent to maximum weighted set-
packing (and maximum weighted clique), and are therefore
NP-complete [5]. Hence, allocation, acquisition, and com-
pletion are NP-complete.
As an aside, we note that implementations of winner de-

termination have typically been evaluated on randomly gen-
erated datasets [4], since data from large-scale combinatorial
auctions is scarce. (One obvious exception is the FCC spec-
trum auction.) The equivalence between BD and WDmakes
new datasets available for testing by the combinatorial auc-
tion community|for example, the data generated by the
Trading Agent Competition (see, for example, [3]).

3. CONCLUSION
In this paper we have: (i) proposed an architecture for in-

telligent bidding in simultaneous auctions; and (ii) de�ned a
class of \bid determination" problems at the core of the pro-
posed architecture. The principal advantage of our architec-
ture is its modular design. Moreover, its core components,
allocation and completion, are well-de�ned with objective
evaluation criteria. While BD problems form the core of
the proposed architecture, the other major components|
namely, estimation and bidding|are by no means trivial.
Estimation requires predicting market dynamics on the ba-
sis of historical bid trajectories (taken over sets of goods,
not only goods in isolation), and possibly modeling oppo-
nents' behavior. Likewise, the strategic placement of bids
and asks, particularly with regard to their timing, depends
on analysis of the auction mechanism and opponent model-
ing. Moreover, even if all three major problems (estimation,
completion, and strategic bidding/asking) could be solved
optimally, the resulting behavior still need not be optimal.
Most egregiously, the architecture as shown does not ex-
plicitly plan for uncertainty in the future dynamics of the
auctions. An architecture that would be superior in this re-
spect would bid based on distributions over estimated clear-
ing prices, rather than on expected values. We see this as
an exciting direction for future research in this area.
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