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ebay Auctions

Simultaneous Auctions

Combinatorial Valuations

◦ Complementary Goods

– v(A) + v(B) ≤ v(A ∪B)

– camera, flash, and tripod

◦ Substitutable Goods

– v(A) + v(B) ≥ v(A ∪B)

– Canon AE-1 and Canon A-1
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Overview

I. TAC Travel

(a) Simultaneous Auctions

(b) Combinatorial Valuations

II. Bid Determination Problems

(a) Allocation

(b) Acquisition

(c) Completion

III. Bidding Heuristics

(a) Independent Valuations

(b) Marginal Valuations

(c) Marginal Utilities

IV. Trading Agent Architectures

(a) Price Prediction & Optimization

(b) Deterministic & Stochastic Variants
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I. TAC Travel

An Example

◦ Simultaneous Auctions

◦ Combinatorial Valuations
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TAC Travel

Complementary and Substitutable Goods

◦ Flights: Inbound and Outbound

◦ Hotels: Grand Hotel and Le FleaBag Inn

◦ Entertainment: Red Sox, Symphony, Theatre
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TAC Travel

Simultaneous Auctions

◦ Flights: infinite supply, prices follow random walk, clear continuously,
no resale permitted

◦ Hotels: ascending, multi-unit, 16th price auctions, random auction
closes each minute, no resale permitted

◦ Entertainment: continuous double auctions, initial endowment,
resale is permitted
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TAC Travel

Feasible Packages

◦ arrival date prior to departure date

◦ same hotel on all intermediate nights

◦ at most one entertainment event per night

◦ at most one of each type of entertainment
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TAC Travel

Client Preferences

Client IAD IDD HV R S T
1 1 3 99 134 118 65
2 1 4 131 170 47 49
3 1 2 147 13 55 49
4 3 4 145 130 60 85
5 1 4 82 136 68 87
6 2 4 53 94 51 105
7 1 3 54 156 126 71
8 1 5 113 119 187 143
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TAC Travel

Valuation = 1000 - travelPenalty + hotelBonus + funBonus

travelPenalty = 100(|IAD−AD|+ |IDD−DD|)

hotelBonus =

{

HV if H = G
0 otherwise

funBonus = entertainment values
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TAC 2000

Allocation

Client AD DD H Ticket Valuation
1 1 3 G S1, R2 1351
2 1 3 G R1 1201
3 1 2 G — 1147
4 3 4 G R3 1275
5 1 3 F R1, T2 1123
6 3 4 G T3 1058
7 1 3 F S1, R2 1282
8 1 5 G T1, S3, R4 1562

Score = Valuation − Cost + Revenue
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II. Bid Determination Problems

Definitions

◦ Allocation

◦ Acquisition

◦ Completion

Theorem

Completion � Acquisition ⇒ Completion ' Acquisition
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Bid Determination Problems

Allocation

◦ given only the set of goods I already hold, how can I allocate those goods
to packages so as to maximize my valuation?

Acquisition

◦ given ask prices in all open auctions, on what set of additional goods
should I bid so as to maximize my valuation less procurement costs,
subject to the constraint that I can only allocate goods that I buy?

Completion

◦ given ask and bid prices in all open auctions, on what set of additional
goods should I place bids or asks so as to maximize my valuation less
procurement costs plus sales revenues, subject to the constraint that I
can only allocate or sell goods that I buy?
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Winner Determination Problems

Combinatorial Auctions

◦ WDP ∼= Allocation

◦ WDR ∼= Acquisition

Combinatorial Exchanges

◦ WDP � Completion
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Allocation

An agent owns ni copies of good i

An agent has valuations of the form 〈~qb, vb〉, where

◦ ~qb denotes a package and qbi ∈ N is the quantity of good i in this package

◦ vb ∈ R+ is the bidder’s valuation of this package: the price at below which
the bidder is willing to buy this package

max
~x

∑

b

vbxb (1)

subject to
∑

b

qbixb ≤ ni ∀i (2)

xb ∈ {0,1} ∀b (3)

(4)
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Acquisition

Buyer Pricelines

◦ ~p̂i = 〈0,0,0,0,25,40,65,100,∞,∞, . . .〉

◦ ~p̂̂
i
= 〈−2,−1,25,40,65,100,∞,∞, . . .〉

max
~x,~y

∑

b

vbxb −
∑

i

yi
∑

j=1

pij (5)

subject to
∑

b

qbixb ≤ yi ∀i (6)

xb ∈ {0,1} ∀b (7)

yi ∈ N ∀i (8)
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Completion

Seller Pricelines

◦ ~π̂i = 〈20,15,10,5,0,0, . . .〉

◦ ~π̂̂
i
= 〈3,1,−2,−4,−∞,−∞, . . .〉

max
~x,~y,~z

∑

b

vbxb −
∑

i





yi
∑

j=1

pij −
zi
∑

j=1

πij



 (9)

subject to
∑

b

qbixb ≤ yi − zi ∀i (10)

xb ∈ {0,1} ∀b (11)

yi, zi ∈ N ∀i (12)
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Reduction Technique

Completion Problem (Q, P,Π) −→ Acquisition Problem (Q′, P ′)
| |

Optimal Optimal
Solver Solver
↓ ↓

Completion Solution (X∗, Y∗, Z∗)
h
←− Acquisition Solution (X ′∗, Y

′
∗)
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Completion � Acquisition

Obvious Reduction

◦ fold seller pricelines into “bids” via singleton packages

◦ problem size increases

Not-so-Obvious Reduction

◦ fold seller pricelines into buyer pricelines

◦ problem size decreases

Sandholm, et al. 02: WDP in CE is harder than WDP and WDR in CA

Corollary: Completion is no harder than WDR in CA (i.e., Acquisition)
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Notation

G is a set of types of good on the market

N ∈ N|G| is a multiset on G with N = 〈N1, . . . , N|G|〉

package M is a submultiset of N : i.e., Mg ≤ Ng for all g ∈ G

X ⊆ Q ⊆
∏

g∈G Ng × R is a set of package-value pairs

Xg =
∑

〈M,v〉∈X

Mg (13)

Valuation(X) =
∑

〈M,v〉∈X

v (14)

Cost(Y, P ) =
∑

g∈G

Yg
∑

n=1

pgn (15)

Revenue(Z,Π) =
∑

g∈G

Zg
∑

n=1

πgn (16)
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Definitions

Objective Function:

Acquisition(Q, P ) = max
X⊆Q,Y⊆N

(Valuation(X)− Cost(Y, P )) (17)

Constraints: Xg ≤ Yg, ∀g

Objective Function:

Completion(Q, P,Π) = max
X⊆Q,Y,Z⊆N

(Valuation(X)−Cost(Y, P ) + Revenue(Z,Π))

(18)

Constraints: Xg ≤ Yg − Zg, ∀g
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Obvious Reduction

(Q, P,Π) −→ (Q, P)

◦ Π′ = {〈eg, πgn〉 | ∀g ∈ G,1 ≤ n ≤ Ng}

◦ Q′ = Q ∪Π′ and P ′ = P

h(X ′, Y ′) = (X, Y, Z)

◦ X = X ′ ∩Q and Y = Y ′

◦ Zg = (X ′ ∩Π′)g, for all g ∈ G

Theorem

◦ f ′(i(X, Y, Z), P ′) = f(X, Y, Z, P,Π), ∀X ⊆ Q, Y, Z ⊆ N

◦ f(h(X ′, Y ′), P,Π) = f ′(X ′, Y ′, P ′), ∀X ′ ⊆ Q′, Y ′ ⊆ N
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Arbitrage

Objective Function:

Arbitrage(P,Π) = max
Y,Z⊆N

(Revenue(Z,Π)− Cost(Y, P )) (19)

Constraints: Zg ≤ Yg, ∀g

Lemma

If A ⊆ N is the multiset of arbitrage opportunities,
then

∀P,Π Arbitrage(P,Π) =
∑

g∈G

Ag
∑

n=1

(πgn − pgn) (20)
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Not-so-Obvious Reduction

(Q, P,Π) −→ (Q′, P)

◦ qgn = max{πgn, pgn}

◦ ~p′g = sort(~qg)

h(X ′, Y ′) = (X ′, Y, Z)

◦ for all g ∈ G

– gn ∈ Y iff gn ∈ A ∪ Y ′

– gn ∈ Z iff gn ∈ A \ Y ′

Theorem

◦ f ′(i(X, Y, Z), P ′) + Arbitrage(P,Π) ≥ f(X, Y, Z, P,Π), ∀X ⊆ Q, Y, Z ⊆ N

◦ f(h(X ′, Y ′), P,Π) = f ′(X ′, Y ′, P ′) + Arbitrage(P,Π), ∀X ′ ⊆ Q′, Y ′ ⊆ N
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Bid Determination Problems

Definitions

◦ Allocation

◦ Acquisition

◦ Completion

Theorem

Completion � Acquisition ⇒ Completion ' Acquisition
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III. Bidding Heuristics

Definitions

◦ Independent Valuations

◦ Marginal Valuations

◦ Marginal Utilities

Theorem

RoxyBot’s heuristic is optimal, assuming perfect price prediction
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Environments

Auctions

◦ simultaneous

– sealed-bid

– ascending

◦ second-price

– payment rule: pay the clearing price

– winner determination rule: win by bidding at least the clearing price
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1st Bidding Heuristic

Independent Valuation (IV)
given a set of goods X
given a valuation function v : 2X → R

for all x ∈ X,

ι(x) = v({x}) (21)

◦ For each good x, bid (up to) its independent valuation ι(x)
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Heuristic IV

Complementary Goods

v(camera + flash) = 500

v(camera) = v(flash) = 1

IV: Bid 1 on camera; Bid 1 on flash

p(camera) = 200

p(flash) = 100

Agent loses both goods, but wishes it had won both

(since 500 > 300)
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Heuristic IV

Substitutable Goods

v(Canon) = 300

v(Olympus) = 200

v(Canon + Olympus) = 400

IV: Bid 300 on Canon; Bid 200 on Olympus

p(Canon) = 275

p(Olympus) = 175

Agent wins both goods, but wishes it had lost either

(since 400 < 450)
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2nd Bidding Heuristic

Marginal Valuation (MV)
given a set of goods X
given a valuation function v : 2X → R

for all x ∈ X,

ν(x) = max
Y⊆X

v(Y )− max
Y⊆X\{x}

v(Y ) (22)

◦ For each good x, bid (up to) its marginal valuation ν(x)
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Heuristic MV

Complementary Goods

v(camera + flash) = 500

v(camera) = v(flash) = 1

MV: Bid 499 on camera; Bid 499 on flash

p(camera) = 500

p(flash) = 400

Agent wins one good, but wishes it had won neither

(since 1 < 400)
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Heuristic MV

Substitutable Goods

v(Canon) = 300

v(Olympus) = 200

v(Canon + Olympus) = 400

MV: Bid 200 on Canon; Bid 100 on Olympus

p(Canon) = 275

p(Olympus) = 175

Agent loses both goods, but wishes it had won either

(since 300 > 275 and 200 > 175)
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Summary of Bidding Heuristics

Complements Substitutes

IV Wins too few goods Wins too many goods

MV Wins too many goods Wins too few goods

Exposure Problem for Complements: Agent bids more on an

individual good than its independent valuation of that good

[e.g., Milgrom 2000]

Exposure Problem for Substitutes: Agent bids more on a set

of goods than its combinatorial valuation of that set of goods
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3rd Bidding Heuristic

Marginal Utility (MU)
given a set of goods X
given a valuation function v : 2X → R

given a pricing mechanism p : X → R

for all x ∈ X,

µ(x) =

(

max
Y⊆X

v(Y )− p(Y \ {x})

)

−

(

max
Y⊆X\{x}

v(Y )− p(Y )

)

(23)

for all Y ⊆ X,

p(Y ) =
∑

y∈Y

p(y) (24)

◦ For each good x, bid (up to) its marginal utility µ(x)
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Environments

Auctions

◦ simultaneous

– sealed-bid: predict clearing prices

– ascending: assume clearing prices = current prices

◦ second-price

– payment rule: pay the clearing price

– winner determination rule: win by bidding at least the clearing price
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Environments

Auctions

◦ simultaneous

– sealed-bid: predict clearing prices

– ascending: predict clearing prices

◦ second-price

– payment rule: pay the clearing price

– winner determination rule: win by bidding at least the clearing price
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Heuristic MU∗

Substitutable Goods

N > 1 goods up for auction, simultaneously

value of one or more goods is 2

price of each good is 1

MU: Bid 1 on each good

Agent wins all the goods, but wishes it had won only one

(2−N < 1 since N > 1)
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Heuristic MU∗

Theorem

If A∗ ⊆ X is an optimal solution to the acquisition problem

α(X, v, p), then µ(x) ≥ p(x) if and only if x ∈ A∗.

Corollary

If A∗ ⊆ X is the unique solution to the acquisition problem

α(X, v, p), then the following bidding heuristic is optimal:

bid (up to) q(x), where q(x) ≥ p(x), for all x ∈ A∗.

In particular, the bidding heuristic MU∗ is optimal.
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4th Bidding Heuristic

RoxyBot 2000

1. predict clearing prices

2a. solve completion (as acquisition)

2b. bid marginal utilities on goods in completion

Theorem

RoxyBot’s heuristic is optimal, assuming perfect price prediction
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Examples Revisited

Complementary Goods

v(camera + flash) = 500

v(camera) = v(flash) = 1

p(camera) = 200

p(flash) = 100

Bid to win camera and flash

p(camera) = 500

p(flash) = 400

Bid to lose camera and flash
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Examples Revisited

Substitutable Goods

v(Canon) = 300

v(Olympus) = 200

v(Canon + Olympus) = 400

p(Canon) = 275

p(Olympus) = 175

Bid to win Canon or Olympus
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Summary of Bidding Heuristics

Complements Substitutes

IV Wins too few goods Wins too many goods

MV Wins too many goods Wins too few goods

MU∗ Optimal Bidding Win too many goods

Roxy∗ Optimal Bidding Optimal Bidding

Exposure Problem for Complements: Agent bids more on an

individual good than its independent valuation of that good

[e.g., Milgrom 2000]

Exposure Problem for Substitutes: Agent bids more on a set

of goods than its combinatorial valuation of that set of goods
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IV. Trading Agents

Architecture

1. Price Prediction

2. Optimization

Variants

◦ Deterministic

◦ Stochastic
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Trading Agent Architecture: Deterministic

REPEAT

0. Update current prices and holdings for each auction.

1. Estimate prices, in the form of supply and demand curves, for each good.

2a. Determine supply and demand sets: i.e., # of each good to buy and sell.

2b. Bid marginal utilities strategically, given the auction designs.

FOREVER
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Trading Agent Architecture: Stochastic

REPEAT

0. Update current prices and holdings for each auction.

1. Estimate distributions of auction prices.

2. Calculate optimal bids.

FOREVER

44



Example

v(camera + flash) = 750

v(camera) = v(flash) = 0

p(camera) = 500, with probability 1
2

p(camera) = 1000, with probability 1
2

p(flash) = 50, with probability 1

Policy A: (500,50) is optimal, with probability 1
2

Policy B: (0,0) is optimal, with probability 1
2

Value(A) = 1
2(200) + 1

2(−50) = 75

Value(B) = 0
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Expected Value Method

v(camera + flash) = 750

v(camera) = v(flash) = 0

p(camera) = 750, with probability 1

p(flash) = 50, with probability 1

Policy B: (0,0) is optimal

Value(B) = 0

Value of Stochastic Information = 75
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Stage 2: Allocation

vi: value of package i

bjk ∈ R+: bid on copy k of good j

pjk ∈ R+: price of the kth copy of good j

nij ∈ N: number of copies of good j in package i

binary decision variables aijk ∈ {0,1}: is copy k of good j is allocated to i?

π(~a,~b, ~p, ~v) =
∑

i

vi

(

∏

j∈i

1

[

nij ≤
∑

k

aijk1[pjk ≤ bjk]

])

−
∑

jk

pjk(1[pjk ≤ bjk]) (25)

max
~a

π(~a,~b, ~p, ~v) (26)

subject to:
∑

i

aijk ≤ 1, ∀j, k (27)

aijk ∈ {0,1}, ∀i, j, k (28)
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Stage 1: Bidding

f(~p): joint probability distribution over prices ~p

continuous decision variables bjk ∈ R+: bid for copy k of good j

binary decision variables aijk ∈ {0,1}: is copy k of good j is allocated to i?

max
~b

∫

~p

max
~a

π(~a,~b, ~p, ~v)f(~p)d~p (29)

subject to:
∑

i

aijk ≤ 1, ∀j, k (30)

aijk ∈ {0,1}, ∀i, j, k (31)

bjk ∈ R+, ∀j, k (32)
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TAC Travel Offline Experimental Setup

Price Prediction

◦ Competitive Equilibrium Prices

– Walverine: Tatonnement [Cheng, et al. 04]

– Simultaneous Ascending Auction [Milgrom 00]

Optimization

◦ Sample Average Approximation [Kleywegt, et al. 01]

– E: evaluations; S: scenarios; P: policies

◦ Expected Value Method

– Marginal Utility Bidding [UAI 04]

– RoxyBot 2000: Completion + MU [EC 01]

◦ ATTac 2001: Average Marginal Utility Bidding [Stone, et al. 01]
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TAC Travel Offline Experimental Results

Time Reward E S P
1.47 3318 64 1 1
1.48 3456 128 1 1
1.48 3502 2 1 1
1.49 3548 16 1 1
2.45 3550 32 4 1
2.45 3577 2 4 1
3.38 3695 2 1 2
3.89 3705 4 1 2
4.12 3912 128 8 1
4.16 3947 32 8 1
8.43 3967 2 16 1
10.55 4014 8 8 2
16.75 4043 32 8 2
17.95 4045 64 32 1
18.09 4064 1 32 1
18.12 4065 32 32 1
33.50 4077 32 8 4
38.52 4099 16 32 2
41.26 4132 32 64 1
82.20 4134 1 64 2
84.81 4136 32 32 4
85.99 4141 16 64 2
88.81 4142 32 64 2
115.27 4146 128 64 2

TAC Travel Bidding Problem
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TAC Travel Offline Experimental Results

Time Reward E S P
1.47 3318 64 1 1
1.48 3456 128 1 1
1.48 3502 2 1 1
1.49 3548 16 1 1
2.45 3550 32 4 1
2.45 3577 2 4 1
3.38 3695 2 1 2
3.89 3705 4 1 2
4.12 3912 128 8 1
4.16 3947 32 8 1
8.43 3967 2 16 1
10.55 4014 8 8 2
16.75 4043 32 8 2
17.95 4045 64 32 1
18.09 4064 1 32 1
18.12 4065 32 32 1
33.50 4077 32 8 4
38.52 4099 16 32 2
41.26 4132 32 64 1
82.20 4134 1 64 2
84.81 4136 32 32 4
85.99 4141 16 64 2
88.81 4142 32 64 2
115.27 4146 128 64 2

Time Lower Upper E S P
0.03 468310 754507 10 1 1
0.04 517559 688963 10 2 1
0.07 535059 657833 10 3 1
0.11 548218 647722 10 4 1
0.29 550930 639010 10 5 1
0.38 554046 637546 100 5 1
0.40 559796 630666 10 6 1
0.56 561418 628053 100 6 1
1.31 562798 624235 100 7 1
1.36 567807 661136 100 3 8
1.58 575676 647877 100 4 7
2.84 577965 646174 100 4 13
3.06 579369 638006 100 5 9
4.13 581433 636296 100 5 13
5.47 582306 629457 100 6 9
5.65 582504 635982 100 5 17
7.30 583621 637376 100 5 21
8.50 583998 630956 100 6 13
9.44 584043 646170 100 4 43
10.00 584287 636188 100 5 29
10.92 585094 645841 100 4 49
12.63 585543 636626 100 5 37

TAC Travel Bidding Problem TAC SCM Scheduling Problem
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TAC Travel Offline Experimental Results
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TAC Travel Experimental Results

Teams Means z-test Wilcoxon Games
Average MU < MU 964 1908 .999 .999 25
MU < RoxyBot 2000 1508 1612 .793 .803 75
RoxyBot 2000 < RoxyBot 2002 1837 2031 .977 .996 50
Average MU < RoxyBot 2000 1334 2034 .999 .999 25
MU < RoxyBot 2002 1705 1987 .976 .993 50
Average MU < RoxyBot 2002 915 1920 .999 .999 25
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Trading Agent Architecture

REPEAT

1. Price Prediction

2. Optimization

(a) Deterministic: Completion Problem + MU

(b) Stochastic: Bidding Problem

FOREVER
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Summary

Theory

Completion � Acquisition ⇒ Completion ' Acquisition

RoxyBot’s heuristic is optimal, assuming perfect price prediction

Experiments

Stochastic � Deterministic
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Future Directions

Optimal Simultaneous Sequential

Deterministic Roxy MU

Stochastic SP DP

Heuristics Simultaneous Sequential

Deterministic Roxy MU

Stochastic SAA Average MU

Given this set of bidders, what is the preferred auction design?

◦ from the point of view of the auctioneer

◦ from the point of view of the bidders
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Thank You!

Amy Greenwald

amy@brown.edu

http://www.cs.brown.edu/people/amy

http://www.sics.se/tac


