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Abstract

This paper asks the question: can adaptive, but not necessarily rational, agents learn Nash equilibrium behavior in
the Santa Fe Bar Problem? To answer this question, three learning algorithms are simulated: fictitious play, no-regret
learning, andQ-learning. Conditions under which these algorithms can converge to equilibrium behavior are isolated.
But it is noted that the pure strategy Nash equilibria are unfair, while the (symmetric) mixed strategy equilibrium is
inefficient. Thus,SFBPis redesigned to induce adaptive agents to learn fair and efficient equilibrium outcomes.

1 Introduction

The Santa Fe Bar Problem(SFBP) was introduced by Brian Arthur, an economist at the Santa Fe Institute. Arthur
challenges the behavioral predictions of rational choice theory, since, inSFBP, rationality precludes learning.

N [(say, 100)] people decide independently each week whether to go to a bar that offers entertainment on
a certain night . . . Space is limited, and the evening is enjoyable if things are not too crowded – especially,
if fewer that 60 [or, some fixed but perhaps unknown capacity c] percent of the possible 100 are present
. . . a person or agent goes if she expects fewer than 60 to show up and stays home if she expects more than
60 to go, Choices are unaffected by previous visits; there is no collusion or prior communication among
the agents; the only information available is the number who came in the past weeks.[1]

The bar in Santa Fe is acongestedresource, characterized as such because the value to an agent of attending
the bar depends on the number of other agents that attend the bar. In other words, agents’ valuations of congested
resources are not exogenously-determined, but rather are endogenous functions of one another’s actions. This so-
called congestion effect is apparent in many real-world situations, ranging from fishermen fishing in common waters,
to farmers polluting common water supplies, to network users monopolizing bandwidth, to other versions of the
tragedy of the commons [6] that are characterized bynegative externalities.1

Let us analyzeSFBPunder the assumption ofrationality: i.e., agents maximize utility given their beliefs. Define
anuncrowdedbar as one in which attendance is less than or equal to the capacity, c, and define a crowded bar as one in
which attendance is strictly greater than c. Let the utility of going to an uncrowded bar be+1 and the utility of going
to a crowded bar be�1; the utility of staying home is 0, regardless of the state of the bar. In this setup, rational choice
theory dictates the following behavior: if an agent believes that the bar will be uncrowded with a probabilityp, then
his rational choices are to go to the bar ifp > 1=2 and to stay home ifp < 1=2. In the case wherep = 1=2, rational
agents are indifferent between attending the bar and staying home and may behave arbitrarily:e.g., randomize. The
true probabilityp that the bar is uncrowded is determined by the agents (possibly randomized) strategies. If all the
agents learn the correct value ofp, then we stumble upon the fundamental contradiction. Suppose the agents learn that
the bar will be uncrowded with probabilityp < 1=2; then in fact the bar will be empty with probability1. On the other
hand, suppose the agents learn that the bar will be uncrowded with probabilityp > 1=2; then the bar will be empty
with probability0.2 Thus, rational agents cannot learn inSFBP: rationality precludes learning.

1An externality is a third-party effect. An example of a negative (positive) externality is pollution (standardization).
2Schelling [11] refers to phenomena of this kind as self-negating prophecies. Yogi Berra also observed this phenomenon. He said, “Nobody

goes there anymore; it’s too crowded.”
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In his original paper, Arthur demonstrated via simulations that certain types ofboundedly rationalagents are
capable of learning to center their collective attendance around the capacity of the bar. Arthur’s approach is based
on complex modeling of cognitive aspects of inductive reasoning. In Greenwald [4], boundedly rational, no-regret
learning agents are simulated and shown to converge to the neighborhood of the symmetric mixed strategy Nash
equilibrium in which all agents attend the bar with probability� c=N . This paper continues this thread of research,
asking the question: can adaptive, but not necessarily rational, agents learn Nash equilibrium behavior inSFBP? To
answer this question, three learning algorithms are simulated: fictitious play [10], which is an example of a model-
based learning algorithm (see Sec. 3); no-regret learning [2], which minimizes the learner’s regret in the worst case
(see Sec. 4); andQ-learning [12], a reinforcement learning algorithm (see Sec. 5).

2 Game-Theoretic Analysis

The Santa Fe bar problem is a repeated game. The agents, or players, are the inhabitants of Santa Fe; notation
N = f1; : : : ; Ng, with n 2 N . For agentn, the (pure, or deterministic) strategy setSn = f0; 1g, where1 corresponds
to go to the barwhile 0 corresponds tostay home. Let Qn denote the set of probability distributions overSn, with
(mixed, or randomized) strategyqn 2 Qn. The expected utilities, or payoffs, obtained by agentn depend on the
particular strategic choice taken by agentn, the value to agentn of attending the bar, and the negative externality.

Let sn denote the realization of mixed strategyqn of agentn; thus,s =
P

n2N sn is the realized attendance at the
bar. In addition, letc 2 f0; : : : ; Ng denote the capacity of the bar. The externalityE depends ons andc as follows:
if the bar is uncrowded (i.e., s � c), thenE(s) = +1; on the other hand, if the bar is crowded (i.e., s > c), then
E(s) = �1. Let 0 � �n � 1 denote the value to agentn of attending the bar. Now the utility function for agentn is
given by:

�n(sn; s) =

8<
:

�n if s � c andsn = 1
��n if s > c andsn = 1
0 otherwise

= �nsnE(s)

2.1 Nash Equilibrium

A Nash equilibrium is a vector of strategies, one per agent, from which no agent has any incentive to deviate [8].
Since the set of Nash equilibria inSFBPis very large, we restrict our attention to equilibria that satisfy fairness and/or
efficiency. Afair outcome requires that agents with identical utilities be equally likely to attend the bar.Efficiencyis
a measure of collective, or total agent, utility achieved relative to its maximum value.

At any pure strategy Nash equilibrium ofSFBP, exactlyc agents attend the bar, whileN � c agents stay home.
Those agentsn attending the bar obtain utility�n > 0; thus, they have no incentive to stay home, where they would
obtain utility 0. On the other hand, those agentsm that stay home (and obtain utility of 0) have no incentive to attend
the bar; by doing so, they would obtain utility��m < 0, since attendance by any one of them would suddenly cause
congestion. This outcome is an efficient equilibrium, but it is obviously unfair.

Assuming�n = � for all agentsn, the (symmetric) mixed strategy Nash equilibrium is the probabilityp at which
the agents are indifferent between attending the bar and staying home—if the agents were not indifferent between their
pure strategies, then they would not employ mixed strategies. Thus,p satisfies the following equation:

�

cX
i=0

�
N

i

�
pi(1� p)N�i � �

NX
i=c+1

�
N

i

�
pi(1� p)N�i = 0 (1)

In other words, the expected utility of going to the bar equals 0, the expected utility of staying home. Equivalently,

cX
i=0

�
N

i

�
pi(1� p)N�i =

NX
i=c+1

�
N

i

�
pi(1� p)N�i (2)

The solution to this equation is approximatelyc=N . Since it is symmetric, this solution generates a fair outcome. But
notice that if all the agents employ this mixed strategy Nash equilibrium, then efficiency is near zero: half the time
the bar is uncrowded, yielding positive collective utility for the agents, but half the time the bar is crowded, yielding
negative collective utility for the agents (see Table 1).
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p Collective Utility p Collective Utility p Collective Utility
0 0.0 .450 45.8 .58 18.8
.1 10.0 .475 47.2 .6 0.5
.2 20.0 .5 47.8 .7 -67.5
.3 30.0 .52 46.5 .8 -80.0
.4 40.0 .54 41.9 .9 -90.0

.425 42.4 .56 33.0 1.0 -100.0

Table 1: Collective utility vs.p, for N = 100 andc = 60. The mixed strategy Nash equilibriump = 0:6 yields
collective utility near 0, andp = 0:5 yields the highest efficiency.

3 On Learning an Efficient Outcome

Fictitious play is a model-based learning algorithm, where agents model their opponents’ strategic behavior. In its
standard formulation [10], the model is taken to be the opponents’ empirical distribution of play. Given this model,
fictitious play dictates that an agent play one of its utility-maximizing strategies. Fictitious play converges to Nash
equilibrium in certain restricted classes of games (e.g., zero-sum games).

One straightforward implementation of fictitious play inSFBPis to simply compute the empirical distribution over
the two eventsfuncrowded, crowdedg. Formally, leta0 = 0 and

at+1 = at +

�
1 if st � c
0 otherwise

For all timest > 0, the probability that the bar is uncrowdedpt = at=t. The expected utility for agentn at timet+ 1
is computed in terms of this probabilitypt:

E
t+1 [�n(sn; s)] =

�
pt�n � (1� pt)(1� �n) if sn = 1
0 otherwise

Fictitious play prescribes that agentn play any strategyst+1n at timet+ 1 that satisfies the following:

st+1
n

2 arg max
sn2Sn

E
t+1
n

[�n(sn; s)] (3)

By definition, fictitious play agents maximize their utilities given their beliefs; thus, fictitious play is a rational learning
algorithm. By the argument put forth in the introduction, this formulation of fictitious play leads to oscillatory behavior
that does not converge to Nash equilibrium inSFBP, assuming�n = � for all agentsn.

But now consider the following variation of fictitious play: each agent computes the empirical distribution over
the two eventsfuncrowded, crowdedg, conditioned on its own action. This algorithm is not subject to the paradoxical
outcome of the previous algorithm, where beliefs were homogeneous by design, because conditioning on actions leads
to heterogeneous beliefs. In particular, letb0n = 0, c0n = 0, and

bt+1n = btn +

�
1 if st � c andstn = 1
0 if st > c andstn = 1

ct+1n = ctn +

�
1 if stn = 1
0 otherwise

Now for all timest > 0, the conditional probability that the bar is uncrowded and agentn attends the bar isptn =
btn=c

t
n. The expected utility for agentn at timet + 1 is computed exactly as before, but in terms of the conditional

probabilityptn. And as above, this version of fictitious play based on conditional probabilities prescribes play that is
utility-maximizing with respect to one’s beliefs.

Interestingly, this conditional fictitious play algorithm is not subject to the paradox of rational learning inSFBP.
Fig. 1 depicts the results of simulations of this algorithm, forN = 100, c = 60, and�n = 1 for all agentsn. Total
attendance converges to exactly 60, and the likelihood of each individual agent attending the bar converges to either
1 or 0. In other words, conditional fictitious play converges to a pure strategy Nash equilibrium inSFBP. As stated
above, this outcome is efficient, but it is not fair. In the next section, we study no-regret learning inSFBP, which
obtains an outcome that is fair, but is not efficient.
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(a) Total Attendance. (b) Individual Frequencies.

Figure 1: Conditional Fictitious Play.
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Figure 2: No-regret learning.

4 On Learning a Fair Outcome

We now study learning among agents that are not rational. On the contrary, we consider boundedly-rational agents
that exhibitno-regret. No-regret learning algorithms do not maintain models over the space of opponents’ strategies or
utility functions. Instead, they specify that agentsexploretheir own strategy space by playing all pure strategies with
some non-zero probability, andexploitsuccessful strategies by increasing the probability of employing those strategies
that generate high utilities. Unlike model-based learning, simple techniques of this nature do not rely on any complex
modeling of prior probabilities over possible states of the world. Also, unlike Arthur’s original approach, they are are
not based on inherently complex models of human cognition.

Freund and Schapire [2] study a no-regret learning algorithm based on an exponential updating scheme. Let
P t
n(sn) denote the cumulative utility obtained by agentn through timet by employing strategysn: i.e., P t

n(sn) =Pt

x=1 �n(sn; s
x). The weight assigned to strategysn at timet+ 1, for � > 0, is given by:

qt+1n (sn) =
(1 + �)P

t

n
(sn)P

s0
n
2Sn

(1 + �)P
t

n
(s0
n
)

(4)

Fig. 2(a) plots attendance at the bar over time, assuming 100 agents employ this algorithm with� = 0:01, c = 60 and
as above,�n = 1 for all agentsn. Attendance centers around 60, although it does not converge to exactly 60 as in
Fig. 1(a). Specifically, the mean attendance is 60.04 and the variance is 5.11. Moreover, these results are robust in the
sense that the agents readily adapt if ever the capacity of the bar changes (see Fig. 2(b)) (� = 0:05).

Learning via this and similar no-regret algorithms [3], which do not necessitate perfectly rational behavior, yield
mixed strategyNash equilibrium outcomes inSFBP. As argued previously, such outcomes are fair (since on average
all agents attend the bar 60% of the time) but inefficient, since collective utility is near zero. Thus, both fictitious play
and no-regret learning algorithms converge to (different) Nash equilibria inSFBP. But these algorithms have excessive
informational requirements: an agent somehow knows whether or not the bar is crowded even if s/he does not attend.
In the next section, we simulateQ-learning, a reinforcement learning algorithm that does not rely on any knowledge
other than the utility associated with the strategy that the agent actually employs.
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Figure 3:(a) A heterogeneous population ofQ-learners learn the equilibrium of the mechanism. (b) A heterogeneous population
of Q-learners learn the equilibrium of the mechanism while a derivative follower simultaneously implements an efficient outcome.
(c) A homogeneous population ofQ-learners learn the equilibrium of the mechanism while a derivative follower simultaneously
implements a fair and efficient outcome.

5 A Fair and Efficient Mechanism

In Arthur’s original formulation ofSFBP, it is assumed that all agents have identical utilities, and moreover that
these utilities are known. Now suppose that the value to each agent of going to the bar is unknown to a central
planner, say the mayor, whose goal is to design a mechanism, the equilibria of which maximize the total utility of
the townspeople. Assume each agenti’s utility ui is an endogenous function of the other agents’ actions: letui be
a concave function of the attendance at the bar, say�, and let�i be the point at which agenti’s utility peaks: i.e.,
ui(�) = maxf1 � (� � �i)

2=�2
i
; 0g for �i � 0. In this setting, total utility is maximized at the median value of the

�i’s, say��
i
, with those agents whose valuations are closest to��

i
attending the bar. Thus, if 25 agents’ utilities peak

at 25, 50 agents’ utilities peak at 50, and 25 agents’ utilities peak at 75, with�i = 50 for all agentsi, total utility is
maximized if the 50 agents for which�i = 50 go to the bar. Can the mayor elicit this efficient outcome?

Let us begin our analysis by giving the mayor access to an oracle that informs him of all the agents’ peak valuations.
In this case, he can compute the median, which is 50 in our example. But can he induce precisely those 50 agents
whose peak utilities occur at 50 to attend the bar so as to maximize total utility? The following taxation scheme
is designed to achieve this outcome [4]: charge agents that attend the bar an entrance fee, sayx, and distribute the
proceeds evenly among those agents that do not attend the bar. Suppose� agents go to the bar. The utilities to those�
agents areui(�) � x, if the bar is uncrowded, and�(ui(�) � x), if the bar is crowded. The utilities to thoseN � �
agents that do not go to the bar are�x=(N ��). An entrance feex = 0:5 yields an equilibrium in which the 50 agents
whose peak valuations are 50 attend the bar, and the remaining 50 agents stay home. All agents achieve utility 0.5
in equilibrium. AllowingQ-learning [12] agents to adapt their behavior to this mechanism, average utility per agent
approaches this equilibrium value (see Fig. 5(a)).

But in fact the mayor does not have access to an oracle that informs him of all the agents’ peak valuations. Thus, he
cannot compute the median, and he cannot compute the equilibrating fee. His knowledge is constrained; likewise, his
behavior is taken to be boundedly rational. Assume the mayor sets a fee according to his beliefs about the population
of Santa Fe, and updates the fee weekly according to the trend in utility. One simple algorithm for adjusting the fee
is derivative-following[5], which experiments with incremental changes, continuing to move in the same direction
until average utility decreases, at which point the direction of movement is reversed: given increment > 0, the fee
ft+1 = ft + [sign(ft � ft�1)sign(ut � ut�1)], whereut is the agents’ average utility at timet. Fig. 5(b) depicts
simulations not only of boundedly rational agents adapting their behavior to the mechanism, but the mayor adjusts the
mechanism in response to the agents’ collective choices as well. Both the fee and average utilities per agent converge
near the equilibrium value of 0.5.

Now suppose the agents’ valuation functions are such that�i = �i = 60 for all i. In this setting, it is appropriate
to seek not only as an efficient outcome, but among all efficient outcomes, an outcome should befair: i.e., agents with
identical utilities should be equally likely to attend the bar.Q-learning agents together with a mayor that abides by
the derivative-following algorithm generate fair outcomes in this scenario that approximate efficiency (see Fig. 5(c).)
Thus, in this paper we have achieved the following: (i) defined conditional fictitious play, a rational learning algorithm
that learns pure strategy Nash equilibria inSFBP, thereby avoiding the rational learning paradox; (ii) established
empirically that no-regret learning converges to the symmetric mixed strategy Nash equilibrium inSFBP; and (iii)
implemented a taxation mechanism that elicits fair and efficient collective behavior amongQ-learning agents.
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