TAC 2000: Bid Determination in Simultaneous Auctions

AMY GREENWALD Mike Kirby and Jon Reiter

Brown University

and

JUSTIN BOYAN

ITA Software

eBay Auctions

Complements

- $\circ \ u(A\bar{B}) + u(\bar{A}B) \le u(AB)$
- camera, flash, and tripod

Substitutes

- $\circ \ u(A\bar{B}) + u(\bar{A}B) \ge u(AB)$
- Canon AE-1 and Canon A-1

BD Problems

Allocation

 given only the set of goods I already hold, what is the maximum utility I can attain?

Acquisition

 given the set of goods I already hold, and given ask prices in all open auctions, on what set of additional goods should I bid to maximize utility less costs?

Completion

 given the set of goods I already hold, and given ask and *bid* prices in all open auctions, on what additional set of goods should I place bids or *asks* to maximize my utility plus profits less costs?

TAC Market Game

Agent's Score = Utility – Costs + Profits

Supply

- Flights: Inbound and Outbound
- Hotels: Grand Hotel and Le FleaBag Inn
- Entertainment: Red Sox, Symphony, Phantom

Auctions

- Flights: infinite supply, prices follow random walk, clear continuously, no resale permitted
- Hotels: ascending, multi-unit, 16th price auctions, transactions clear at auction close (early closings after random period of inactivity), no resale
- Entertainment: continuous double auctions, initial endowment, resale is permitted

TAC Market Game

Demand

Client	IAD	IDD	ΗV	BRS	SY	PH
1	1	3	99	134	118	65
2	1	4	131	170	47	49
3	1	2	147	13	55	49
4	3	4	145	130	60	85
5	1	4	82	136	68	87
6	2	4	53	94	51	105
7	1	3	54	156	126	71
8	1	5	113	119	187	143

Feasible Packages

- arrival date prior to departure date
- same hotel on all intermediate nights
- $\circ~$ at most one entertainment event per night
- $\circ\,$ at most one of each type of entertainment

TAC Market Game

Utility = 1000 - travelPenalty + hotelBonus + funBonus

travelPenalty =
$$100(|IAD - AD| + |IDD - DD|)$$

hotelBonus = $\begin{cases} HV & \text{if } H = G \\ 0 & \text{otherwise} \end{cases}$
funBonus = entertainment values

Allocation

Client	AD	DD	Н	Ticket	Utility
1	1	3	G	SY1, BRS2	1351
2	1	3	G	BRS1	1201
3	1	2	G		1147
4	3	4	G	BRS3	1275
5	1	3	F	BRS1, PH2	1123
6	3	4	G	PH3	1058
7	1	3	F	SY1, BRS2	1282
8	1	5	G	PH1, SY3, BRS4	1562

TAC Agent Architecture

(A) While some auctions remain open, do

- 1. Update current prices and holdings
- 2. Estimate future prices, supply, and demand
- 3. Run completer to determine buy/sell quantities
- 4. Place bid/ask prices strategically
- (B) After all auctions close, run allocator

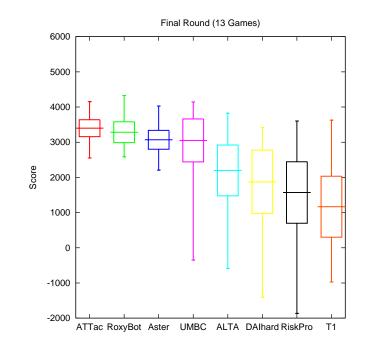
Overview

Theoretical Observations

- BD in double auctions can be reduced to BD in single-sided auctions
- BD in simultaneous auctions are isomorphic to WD in combinatorial auctions

Empirical Tests: TAC-2000

• Heuristic search vs. Integer linear programming



Pricelines

Buying Priceline $\vec{p_g} = \langle 0, 0, 0, 0, 20, 30 \rangle$

Given a set of buying pricelines $P = \{\vec{p}_g \mid g \in G\}$ and a set of packages S, we define the utility and cost of S:

$$\begin{aligned} & \text{Util}(S) = \sum_{\vec{q} \in S} u(\vec{q}) \\ & \forall g, \quad \text{Used}(S,g) = \sum_{\vec{q} \in S} q_g \\ & \forall g, \quad \text{Cost}_g(S,P) = \sum_{n=1}^{N} \sum_{n=1}^{N} p_{gn} \\ & \text{Cost}(S,P) = \sum_{g \in G} \text{Cost}_g(S,P) \end{aligned}$$

Pricelines

Selling Priceline $\vec{\pi}_g = \langle 10, 5, 0, 0 \rangle$

Given a set of selling pricelines $\Pi = \{\vec{\pi}_g \mid g \in G\}$ and a set of packages S, we define profit analogously to cost:

$$\forall g, \quad \text{Unused}(S, g, \Pi) = \max\{|\vec{\pi}_g| - \text{Used}(S, g), 0\}$$

$$\forall g, \quad \text{Profit}_g(S, \Pi) = \sum_{n=1}^{\text{Unused}(S, g, \Pi)} \pi_{gn}$$

$$\text{Profit}(S, \Pi) = \sum_{g \in G} \text{Profit}_g(S, \Pi)$$

Formalization

Acquisition

Inputs: set of packages Qset of buying pricelines Putility function $u : Q \to \mathbb{R}^+$ Output: $S^* \in \arg \max_{S \subseteq Q}(\text{Util}(S) - \text{Cost}(S, P))$

Completion

Inputs: set of packages Qset of buying pricelines Pset of selling pricelines Π utility function $u : Q \to \mathbb{R}^+$ Output: $S^* \in \arg \max_{S \subseteq Q}(\text{Util}(S) - \text{Cost}(S, P) + \text{Profit}(S, \Pi))$

Theoretical Observation 1

BD in double auctions reduces to BD in singlesided auctions: *i.e.*, completion \mapsto acquisition

Buying Priceline $\vec{p}_g = \langle 0, 0, 0, 0, 20, 30 \rangle$

Selling Priceline $\vec{\pi}_g = \langle 10, 5, 0, 0 \rangle$

1st Reduction

• extend package input set with single-item packages, one for each copy of each item in selling pricelines; assign selling prices as utilities for these packages: $\vec{\pi}_q \mapsto 4$ new packages with utilities 10, 5, 0, 0

2nd Reduction

• add reversed selling pricelines to buying pricelines: $\vec{p}_g + \text{reverse}(\vec{\pi}_g) = \langle 0, 0, 5, 10, 20, 30, \infty, \infty, \ldots \rangle$

1st Reduction

Theorem For all P, Π , Q, and u,

 $Completion(P, \Pi, Q, u) = Acquisition(P, Q \cup Q', u \cup u') \cap Q$

where $Q' = \{ \vec{e}_{gn} \mid g \in G, n = 1 \dots | \vec{\pi}_g | \}$ and $u' = \{ \vec{e}_{gn} \mapsto \pi_{gn} \mid g \in G, n = 1 \dots | \vec{\pi}_g | \}$

Proof

A solution to the completion problem is a subset of ${\boldsymbol{Q}}$ that maximizes the function

$$f(X) = \text{Util}(X) - \text{Cost}(X, P) + \text{Profit}(X, \Pi)$$

A solution to the acquisition problem posed in the statement of the theorem is a subset of $Q \cup Q'$ that maximizes

$$f'(X) = \text{Util}(X) - \text{Cost}(X, P)$$

We show that for all $S \subseteq Q$ and $S' \subseteq Q'$, $f(S) = f'(S \cup S')$

1st Reduction (Continued)

$$f'(S \cup S') = \mathsf{Util}(S) + \mathsf{Util}(S') - (\mathsf{Cost}(S, P) + \mathsf{Cost}(S', P))$$

since S and S' are disjoint and the functions Util and Cost are summations. Cost(S', P) = 0 because, by the definition of Q', all goods in S' are owned by the agent. A short calculation also shows $Profit(S, \Pi) = Util(S')$:

Profit(S, Π) =
$$\sum_{g \in G} \sum_{n=1}^{\text{Unused}(S,g,\Pi)} \pi_{gn}$$
$$= \sum_{\vec{q} \in S'} u'(\vec{q})$$
$$= \text{Util}(S')$$

Therefore,

$$f'(S \cup S') = Util(S) + Util(S') - (Cost(S, P) + Cost(S', P))$$

= Util(S) + Profit(S, \Pi) - Cost(S, P)
= f(S)

Finally, for S, S' that maximize g, S also maximizes $f. \Box$

2nd Reduction

Theorem For all P, Π , Q, and u,

Completion (P, Π, Q, u) = Acquisition(P', Q, u)

where $P' = \{ \vec{p}_g + \text{reverse}(\vec{\pi}_g) \mid g \in G \}$

Proof

A solution to the completion problem is a subset of \boldsymbol{Q} that maximizes the function

$$f(S) = \text{Util}(S) - \text{Cost}(S, P) + \text{Profit}(S, \Pi)$$

A solution to the acquisition problem posed in the statement of the theorem is a subset of Q that maximizes

$$f'(S) = \operatorname{Util}(S) - \operatorname{Cost}(S, P')$$

Thus, it suffices to show that there exists some constant C s.t. for all $S \subseteq Q$, f(S) = f'(S) + C.

2nd Reduction (Continued)

Let C_g represent the total profits the agent could earn if it were to sell all its copies of good g:

$$C_g = \sum_{n=1}^{|\vec{\pi}_g|} \pi_{gn}$$

We show that for all goods g,

 $\operatorname{Profit}_{g}(S, \Pi) - \operatorname{Cost}_{g}(S, P) = C_{g} - \operatorname{Cost}_{g}(S, P')$

Therefore

$$f(S) = \text{Util}(S) - \text{Cost}(S, P) + \text{Profit}(S, \Pi)$$

= Util(S) - $\sum_{g} \text{Cost}_{g}(S, P) + \sum_{g} \text{Profit}_{g}(S, \Pi)$
= Util(S) - $\sum_{g} \text{Cost}_{g}(S, P') + \sum_{g} C_{g}$
= Util(S) - $\text{Cost}(S, P') + C$
= $f'(S) + C$

2nd Reduction (Continued)

Two cases arise. In the first case, $|\vec{\pi}_g| \geq \text{Used}(S,g)$, which implies that $\text{Unused}(S,g,\Pi) \geq 0$, $\text{Cost}_g(S,P) = 0$. The agent does not use all the goods it owns; it earns profit on unused goods and incurs no additional costs:

$$C_{g} - \operatorname{Cost}_{g}(S, P') = \sum_{n=1}^{|\vec{\pi}_{g}|} \pi_{gn} - \sum_{n=1}^{\operatorname{Used}(S,g)} p'_{gn}$$

$$= \sum_{n=1}^{|\vec{\pi}_{g}|} \pi_{gn} - \sum_{n=1}^{\operatorname{Used}(S,g)} \pi_{gn}$$

$$= \sum_{n=1}^{|\vec{\pi}_{g}|} \pi_{gn} - \left(\sum_{n=1}^{|\vec{\pi}_{g}|} \pi_{gn} - \sum_{n=1}^{\operatorname{Unused}(S,g,\Pi)} \pi_{gn}\right)$$

$$= \sum_{n=1}^{\operatorname{Unused}(S,g,\Pi)} \pi_{gn}$$

$$= \operatorname{Profit}_{g}(S,\Pi) - \operatorname{Cost}_{g}(S,P)$$

2nd Reduction (Continued)

In the second case, $|\vec{\pi}_g| \leq \text{Used}(S,g)$, which implies that Unused $(S,g,\Pi) = 0$, $\text{Profit}_g(S,\Pi) = 0$. The agent uses all the goods it owns; it earns no profits and perhaps incurs additional costs buying further copies of goods:

$$C_g - \operatorname{Cost}_g(S, P') = \sum_{n=1}^{|\vec{\pi}_g|} \pi_{gn} - \sum_{n=1}^{\operatorname{Used}(S,g)} p'_{gn}$$

$$= \sum_{n=1}^{|\vec{\pi}_g|} \pi_{gn} - \left(\sum_{n=1}^{|\vec{\pi}_g|} \pi_{gn} + \sum_{n=|\vec{\pi}_g|+1}^{\operatorname{Used}(S,g)} p_{gn}\right)$$

$$= -\sum_{n=|\vec{\pi}_g|+1}^{\operatorname{Used}(S,g)} p_{gn}$$

$$= -\sum_{n=1}^{\operatorname{Used}(S,g)} p_{gn}$$

$$= \operatorname{Profit}_g(S, \Pi) - \operatorname{Cost}_g(S, P) \square$$

Theoretical Observation 2

BD in simultaneous auctions are isomorphic to WD in combinatorial auctions

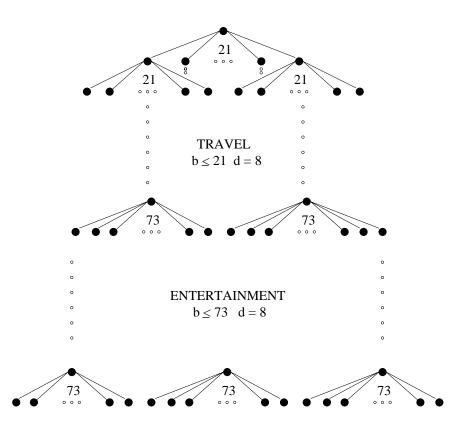
$\mathsf{WD}\cong\mathsf{Allocation}$

 WD: auctioneer seeks the set of combinatorial bids maximizes profits, given feasibility constraints

WDR \cong Acquisition \cong Completion

 WDR (WD with reserve prices): auctioneer seeks the set of combinatorial bids that maximizes the difference between profits and reserve prices

Heuristic Search Solutions



A* Search (provably optimal)

 intricate set of admissible heuristics [Greenwald and Boyan, 2001]

Beam Search (approximately optimal)

 \circ "rollout" heuristic: at each node x, the heuristic value is that of a greedy assignment initiated at x

ILP Solution: Allocation

Index	Description	Number	TAC Values
i	clients	Ι	8
j	days	J	4
k	event types	K	3
l	hotel types	L	2
m	flight types	M	2
t	travel packages	T	20
S	entertainment tickets	S	12

Constant	Description
U_{it}	utility to client i of travel package t
U_{is}	utility to client i of entertainment ticket s
X_{jk}	number of entertainment tickets of type k for day j
Y_{il}	number of hotel reservations of type l for day j
Z_{jm}	number of flights of type m for day j

Variable	Description	Number	TAC Values
v_{it}	is client i assigned package t ?	$I \times T$	160
w_{is}	is client i entertainment ticket s ?	$I \times S$	96

ILP Solution: Allocation (Continued)

Objective Function

$$\max\left(\sum_{i,t} U_{it}v_{it} + \sum_{i,s} U_{is}w_{is}\right)$$

Constraints

- 0. all variables are non-negative integers: $\forall i, s, t, v_{it}, w_{is} \in \mathbb{Z}^+$
- 1. I (8) constraints: cannot assign more than 1 travel package per client $\forall i, \sum_t v_{it} \leq 1$
- 2. cannot assign more tickets than number available
 - $J \times K$ (12) constraints: can assign at most X_{jk} entertainment tickets of type k for day j

$$\forall j, k \sum_{i} \sum_{\{s | \mathsf{DAY}(s) = j, \mathsf{TYPE}(s) = k\}} w_{is} \leq X_{jk}$$

 $\circ~J\times(L+M)$ (16) constraints: analogously, for hotels and flights

ILP Solution: Allocation (Continued)

3. $I \times K$ (24) constraints: can assign at most 1 entertainment ticket of type k per client

$$\forall i, k \sum_{j} \sum_{\{s | \mathsf{DAY}(s) = j, \mathsf{TYPE}(s) = k\}} w_{is} \leq 1$$

4. $I \times J$ (32) constraints: if client is in town on day j, can be assigned at most 1 ticket; if client is not in town on day j, cannot be assigned any tickets

$$\forall i, j \sum_{k} \sum_{\{s | \mathsf{DAY}(s) = j, \mathsf{TYPE}(s) = k\}} w_{is} \leq \mathsf{INTOWN}_{ij}$$

where

$$INTOWN_{ij} = \sum_{\{t | IN(t) \le j \le OUT(t)\}} v_{it}$$

ILP Solution: Completion

Constant	Description
C_{jg}	denote the supply of good g on day j
D_{jg}	denote the demand of good g on day j
P_{jgn}	price of buying the n th copy of good g on day j
\Box_{jgn}	price of selling the n th copy of good g on day j

Variable	Description
q_{jgn}	is the quantity of good g bought on day $j \ge n$?
σ_{jgn}	is the quantity of good g sold on day $j \ge n$?

Objective Function

$$\max\left(\sum_{i,t} U_{it}v_{it} + \sum_{i,s} U_{is}w_{is} + \sum_{j,k,n} \prod_{jkn} \sigma_{jkn} - \sum_{j,k,n} P_{jkn}q_{jkn}\right)$$

Abbreviations

$$\mathsf{BUY}_{jg} = \sum_{n=1}^{C_{jg}} q_{jgn} \qquad \mathsf{SELL}_{jg} = \sum_{n=1}^{D_{jg}} \sigma_{jgn}$$

ILP Solution: Completion (Continued)

Constraints

- 2'. cannot assign more goods than the number owned plus what is bought
 - $J \times K$ (12) constraints: can assign at most X_{jl} entertainment tickets of type k on day j plus the number bought minus the number sold

$$\forall j, k, \sum_{i} \sum_{\{s | \mathsf{DAY}(s) = j, \mathsf{TYPE}(s) = k\}} w_{is} \leq X_{jk} + \mathsf{BUY}_{jk} - \mathsf{SELL}_{jk}$$

- $J \times (L + M)$ (16) constraints: analogously, for hotels and flights
- 5. constrained by market supply and demand
 - $J \times (K + L + M)$ (28) constraints: cannot buy more goods than market supply

$$\forall j, g, \mathsf{BUY}_{jg} \leq C_{jg}$$

 $- J \times (K + L + M)$ (28) constraints: cannot sell more goods than market demand

$$\forall j, g, \mathsf{SELL}_{jg} \leq D_{jg}$$

ILP Solution: Completion (Revisited)

Constant	Description
C_{jg}	denote the supply of good g on day j
P_{jgn}	price of buying the n th copy of good g on day j

Variable	Description
q_{jgn}	is the quantity of good g bought on day $j \ge n$?

Objective Function

$$\max\left(\sum_{i,t} U_{it}v_{it} + \sum_{i,s} U_{is}w_{is} - \sum_{j,k,n} P_{jkn}q_{jkn}\right)$$

Abbreviation

$$\mathsf{BUY}_{jg} = \sum_{n=1}^{C_{jg}} q_{jgn}$$

ILP Solution: Completion (Continued)

Constraints

- 2'. cannot assign more goods than the number bought
 - $J \times K$ (12) constraints: can assign at most the number of entertainment tickets bought of each type k on each day j

$$\forall j,k,\sum_{i}\sum_{\{s|\mathsf{DAY}(s)=j,\mathsf{TYPE}(s)=k\}}w_{is}\leq \mathsf{BUY}_{jk}$$

- $J \times (L + M)$ (16) constraints: analogously, for hotels and flights
- 5. constrained by market supply and demand
 - $J \times (K + L + M)$ (28) constraints: cannot buy more goods than market supply

$$\forall j, g, \mathsf{BUY}_{jg} \leq C_{jg}$$

Experimental Setup

ALLOCATION

Raw Data

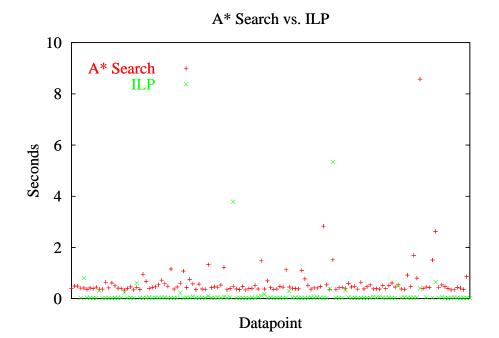
- $\circ~$ 16 games of the TAC finals
- 128 agents: 8 clients per agent

Compiled Data

- 128 agents: 8 clients per agent
- 64 agents: 16 clients per agent
- 32 agents: 32 clients per agent
- 16 agents: 64 clients per agent

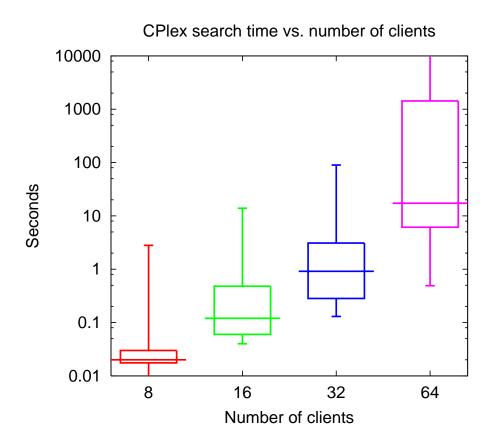
A* Search vs. ILP: Raw Data

- $\circ~A^*:$ median run time 0.59 sec on a 600 MHz PC; worst run time 8.6 sec
- ILP: median run time 0.02 sec using CPLEX 6.5.3 on a 400 MHz SPARCstation with 2Gb of RAM; worst run time 419.4 sec



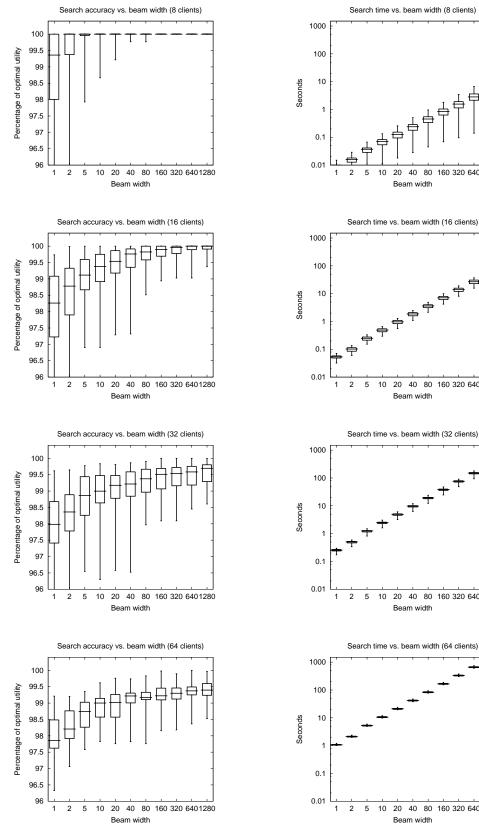
ILP: Compiled Data

- $\circ~$ ILP solved all but one of the 64 client cases
- ILP is fast on average, but its variance is high

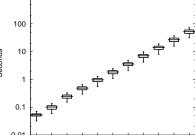


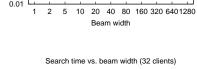
Beam Search: Compiled Data

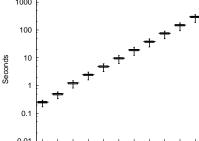
- Beam width of 1 (best-first search) yielded median accuracy of 99.4% for 8 clients with run times less than 0.01 sec
- Beam width of 1 (best-first search) yielded median accuracy of 97.9% for 64 clients in roughly 1 sec
- Beam width of 1280 yielded median accuracy of 99.4% for 64 clients, but run time was near 22 min
- Run times have low variance, and accuracy is always above 96% for all but the smallest of beam widths



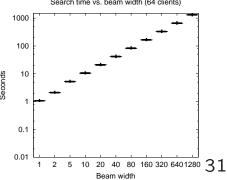
20 40 80 160 320 640 1280







10 20 40 80 160 320 640 1280



Summary

Theoretical Observations

- BD in double auctions can be reduced to BD in single-sided auctions
- BD in simultaneous auctions are isomorphic to WD in combinatorial auctions

Empirical Observations

- for TAC's dimensions, BD problems are tractable
- A^* scales poorly ILP fares better on average, but its variance is high
- heuristic approximation scales well: it produced nearoptimal solutions with predictable time and space requirements