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Abstract

Shopbots are agents that automatically search
the Internet to obtain information about prices
and other attributes of goods and services.
They herald a future in which autonomous
agents profoundly in
uence electronic markets.
In this study, a simple economic model is pro-
posed and analyzed, which is intended to quan-
tify some of the likely impacts of a proliferation
of shopbots and other economically-motivated
software agents. In addition, this paper reports
on simulations of pricebots | adaptive, price-
setting agents which �rms may well implement
to combat, or even take advantage of, the grow-
ing community of shopbots. This study forms
part of a larger research program that aims to
provide insights into the impact of agent tech-
nology on the nascent information economy.

1 Introduction

Shopbots, agents that automatically search the Inter-
net for goods and/or services on behalf of consumers,
herald a future in which autonomous agents become
an essential component of nearly every facet of elec-
tronic commerce [Chavez and Maes, 1996; Kephart et
al., 1998; Tsvetovatyy et al., 1997]. In response to a
consumer's expressed interest in a speci�ed good or ser-
vice, a typical shopbot can query several dozen web
sites, and then collate and sort the available informa-
tion for the user | all within seconds. For example,
www.shopper.com claims to compare 1,000,000 prices
on 100,000 computer-oriented products! In addition,
www.acses.com compares the prices and expected de-
livery times of books o�ered for sale on-line, while
www.jango.com and webmarket.junglee.com o�er ev-
erything from apparel to gourmet groceries. Shopbots
can out-perform and out-inform even the most patient,
determined consumers, for whom it would take hours to
obtain far less coverage of available goods and services.
Shopbots deliver on one of the great promises of elec-

tronic commerce and the Internet: a radical reduc-
tion in the cost of obtaining and distributing informa-
tion. It is generally recognized that freer 
ow of infor-

mation will profoundly a�ect market eÆciency, as eco-
nomic friction will be reduced signi�cantly [Lewis, 1997;
DeLong and Froomkin, 1998]. Transportation costs,
menu costs | the costs to �rms of evaluating, updating,
and advertising prices | and shopping costs | the costs
to consumers of seeking out optimal price and quality |
will all decrease, as a consequence of the digital nature
of information as well as the presence of autonomous
agents that �nd, process, collate, and disseminate that
information at little cost. What are the implications
of the widespread use of shopbots and related types of
autonomous agents in electronic marketplaces, and how
might species of computational agents evolve?

DeLong and Froomkin [1998] qualitatively investigate
the ongoing emergence of shopbots; in particular, they
note that short of violating anti-trust laws, �rms will
be hard pressed to prevent their competitors from spon-
soring shopbots, in which case those who do not do so
will experience decreased sales. In this paper, we utilize
quantitative techniques to address the aforementioned
questions. We propose, analyze, and simulate a simple
economic model designed to capture the present role of
shopbots as agents of economic change, particularly with
regard to consumer preferences, as they decrease the cost
of obtaining information in markets known to exhibit
price dispersion. Looking ahead several years into the fu-
ture, we project that shopbots will evolve into economic
entities (i.e., utility maximizers) in their own right, in-
teracting with billions of other self-interested software
agents. Moreover, we predict the emergence of pricebots
| economically-motivated agents that set prices so as
to maximize the pro�ts of �rms, just as shopbots seek
prices that minimize costs for consumers. Accordingly,
we study adaptive price-setting algorithms which price-
bots might utilize to combat the growing community of
shopbots, in a full-
edged agent-based economy.

This paper is organized as follows. The next section,
Section 2, presents our model, which is analyzed in Sec-
tion 3 from a game-theoretic point of view. Section 4 de-
scribes various adaptive price-setting algorithms and the
results of their simulation under the prescribed model. A
possible evolution of shopbots and pricebots is discussed
Section 5. Concluding remarks and ideas for future work
appear in Section 6.



2 Model

We consider an economy in which there is a commodity
that is o�ered for sale by S sellers and of interest to B
buyers, with B � S. Each buyer b generates purchase
orders at random times, with rate �b, while each seller
s resets its price ps at random times, with rate �s. The
value of the good to buyer b is vb; the cost of production
for seller s is cs.
A buyer b's utility for a good is a function of price:

ub(p) =

�
vb � p if p � vb
0 otherwise

(1)

This states that a buyer purchases a good from a given
seller if and only if the seller's price is less than the
buyer's valuation of the good; if price equals valuation,
we make the behavioral assumption that a transaction
occurs. We do not assume that buyers are utility maxi-
mizers; instead we assume that they consider the prices
o�ered by sellers using one of the following strategies:

1. Any Seller: buyer selects seller at random, and pur-
chases the good if the price charged by that seller is
less than the buyer's valuation.

2. Bargain Hunter: buyer checks the o�er price of all
sellers, determines the seller with the lowest price,
and purchases the good if that lowest price is less
than the buyer's valuation. (This type of buyer cor-
responds to those who take advantage of shopbots.)

The buyer population consists of a mixture of buyers
employing one of these strategies, with a fraction wA

using the Any Seller strategy and a fraction wB using
the Bargain Hunter strategy; wA + wB = 1. Buyers
employing these respective strategies are referred to as
type A and type B buyers.
A seller s's expected pro�t per unit time �s is a func-

tion of the price vector ~p:

�s(~p) = (ps � cs)Ds(~p) (2)

whereDs(~p) is the rate of demand for the good produced
by seller s. This rate of demand is the product of the
overall buyer rate of demand � =

P
b �b, the likelihood

of a given buyer selecting seller s as their potential seller,
hs(~p), and the fraction of buyers whose valuations satisfy
vb � ps, denoted g(ps):

Ds(~p) = �Bhs(~p)g(ps): (3)

Note that g(ps) =
R
1

ps

(x)dx, where 
(x) is the prob-

ability density function describing the likelihood that a
given buyer has valuation x. If vb = v for all buyers b,
then 
(x) is the Dirac delta function Æ(v � x), and the
integral yields a step function g(ps) = �(v � ps):

�(v � ps) =

�
1 if ps � v
0 otherwise

(4)

Without loss of generality, we de�ne the time scale such
that �B = 1. It follows that Ds(~p) = hs(~p)g(ps), and �s
is seller s's expected pro�t per unit sold systemwide.

The probability hs(~p) that buyers select seller s as
their potential seller depends on the distribution of the
buyer population, namely (wA; wB). In particular,

hs(~p) = wAfs;A(~p) + wBfs;B(~p) (5)

where fs;A(~p) and fs;B(~p) are the probabilities that seller
s is selected by buyers of type A and B, respectively. The
probability that a buyer of type A select a seller s is in-
dependent of the ordering of sellers' prices; in particular,
fs;A(~p) = 1=S. Buyers of type B, however, select a seller
s if and only if s is one of the lowest price sellers. Given
that the buyers' strategies depend on the relative order-
ing of the sellers' prices, it is convenient to de�ne the
following functions:

� �s(~p) is the number of sellers charging a lower price
than s, and

� �s(~p) is the number of sellers charging the same price
as s, excluding s itself.

Now buyers of type b select seller s i� s is s.t. �s(~p) = 0,
in which case a buyer selects a particular such seller s
with probability 1=(�s(~p) + 1). Therefore,

fs;B(~p) =
1

�s(~p) + 1
Æ�s(~p);0 (6)

where Æi;j is the Kronecker delta function, equal to 1,
whenever i = j, and 0, otherwise.
The preceding results can be assembled to express the

pro�t function �s for seller s in terms of the distribution
of strategies and valuations within the buyer population.
In particular, assuming (as we do from here forward)
that all buyers share the same valuation v, and all sellers
share the same cost c, then

�s(~p) =

�
(ps � c)hs(~p) if ps � v
0 otherwise

(7)

where

hs(~p) = wA

1

S
+ wB

1

�s(~p) + 1
Æ�s(~p);0 (8)

3 Analysis

In this section, we perform a game-theoretic analysis as-
suming sellers are pro�t maximizers. In particular, we
�rst show that there is no pure strategy Nash equilib-
rium, and we then compute and describe the symmetric
mixed strategy Nash equilibrium. Recall that B � S;
in particular, the number of buyers is assumed to be
very large, while the number of sellers is a great deal
smaller. In accordance with this assumption, it is rea-
sonable to consider the strategic decision-making of the
sellers alone, since their relatively small number suggests
that the behavior of individual sellers indeed in
uences
market dynamics, while the large number of buyers ren-
ders the e�ects of individual buyers' actions negligible.
A Nash equilibrium is a vector of prices ~p � at which
sellers maximize their individual pro�ts and from which



they have no incentive to deviate [Nash, 1951]. Through-
out this exposition, we adopt the notation ~p = (ps; p�s),
which distinguishes the price o�ered by seller s from the
prices o�ered by the remaining sellers.
Traditional economic models consider the case in

which all buyers are bargain hunters: i.e., wB = 1. In
this case, prices are driven down to marginal cost; in
particular, p�s = c, for all sellers s (see, for example, Ti-
role [1988]). In contrast, consider the case in which all
buyers are of type A, meaning that they randomly select
a potential seller: i.e., wA = 1. In this situation, tacit
collusion arises, in which all sellers charge the monop-
olistic price, in the absence of explicit coordination; in
particular, p�s = v, for all sellers s. Of particular inter-
est in this study, however, is the dynamics of interaction
among buyers of various types: i.e., 0 < wA; wB < 1.
We begin our analysis with the following observation:

at equilibrium, at most one seller s charges p�s < v. Sup-
pose that two distinct sellers s0 6= s set their equilibrium
prices to be p�s0 = p�s < v, while all other sellers set their
equilibrium prices at the buyers' valuation v. In this
case, �s(p

�

s � �; p�
�s) = [(1=S)wA + wB ](p

�

s � � � c) >
[(1=S)wA + (1=2)wB](p

�

s � c) = �s(p
�

s ; p
�

�s), for small
values of �, whenever wB > 0, which implies that p�s is
not an equilibrium price for seller s. Now suppose that
two distinct sellers s0 6= s set their equilibrium prices
to be p�s0 < p�s < v, while all other sellers set their
equilibrium prices at v. In this case, seller s prefers
price v to p�s , since �s(v; p

�

�s) = [(1=S)wA](v � c) >
[(1=S)wA](p

�

s�c) = �s(p
�

s ; p
�

�s), which implies that p�s is
not an equilibrium price for seller s. Therefore, at most
one seller charges p�s < v.
On the other hand, at equilibrium, at least one seller

s charges p�s < v. Given that all sellers other than s set
their equilibrium prices at v, seller smaximizes its pro�ts
by charging price v��, since �s(v��; p�

�s) = [(1=S)wA+
wB ](v � �� c) > [(1=S)(wA + wB)](v � c) = �s(v; p

�

�s),
for small values of �, whenever wB > 0. Thus v is not an
equilibrium price for seller s. It follows from these two
observations that at equilibrium, exactly one seller s sets
its price below the buyers' valuation v, while all other
sellers s0 6= s set their equilibrium prices p�s0 � v. Note,
however, that �s0 (v; p

�

�s0) = [(1=S)wA](v � c) > 0 =
�s0(v

0; p�
�s0), for all v

0 > v, if wA > 0, implying that all
other sellers s0 maximize their pro�ts by charging price
v. Thus, the unique form of pure strategy equilibrium
which arises in this setting requires that a single seller
s set its price p�s < v while all other sellers s0 6= s set
their prices p�s0 = v. The price vector (p�s ; p

�

�s), with
p�
�s = (v; : : : ; v), however, is not a Nash equilibrium.
While v is in fact an optimal response to p�s , since the
pro�ts of seller s0 6= s are maximized at v given that there
exists low-priced seller s, p�s is not an optimal response to
v. On the contrary, �s(p

�

s ; v; : : : ; v) < �s(p
�

s+�; v; : : : ; v).
In particular, the low-priced seller s has incentive to de-
viate. It follows that there is no pure strategy Nash
equilibrium in the proposed model of shopbots.
There does, however, exist a symmetric mixed strategy

Nash equilibrium. Let f(p) denote the density function

according to which sellers set their prices, and let F (p)
be the corresponding cumulative distribution function. 1

The event that seller s is the low-priced seller occurs with
probability [1 � F (p)]S�1. Substituting this into Eq. 5,
we obtain the demand expected by seller s:

hs(p) = wA

1

S
+ wB [1� F (p)]S�1 (9)

The precise value of F (p) is determined by noting that
at equilibrium expected pro�ts are equal for all sell-
ers, and moreover the expected pro�t level is given by
the guaranteed minimum achieved at price v, namely
(1=S)wA(v � c). Now, by setting �s(p) = hs(p)(p � c)
equal to this value and solving for F (p), we obtain:

F (p) = 1�

��
wA

wBS

��
v � p

p� c

�� 1

S�1

(10)

Notice that F (p) = 0 for p = p� de�ned as follows:

p� = c+
wA(v � c)

wA + wBS
(11)

and F (p) = 1 for p = v. Thus, Eq. 10 is valid only in
the range p� � p � v. 2

The functions F (p) and f(p) are plotted in Figure 1.

When wB exceeds a critical threshold wcritB = S�2
S2+S�2

(equal to 0.1071 for S = 5), f(p) is bimodal. In this
regime, as either wB or S increases, the probability den-
sity concentrates either just below v, where sellers expect
high margins but low volume, or just above p�, where
they expect low margins but high volume; moreover, the
latter solution becomes increasingly probable. Since p�

itself decreases under these conditions (see Eq. 11), it
follows that both the average price paid by buyers and
the average pro�t earned by sellers decrease. These re-
lationships have a simple interpretation: buyers' use of
shopbots catalyzes competition among sellers, and more-
over, smaller fractions of shopbot users induce competi-
tion among larger numbers of sellers.

4 Simulations

When suÆciently widespread adoption of shopbots by
buyers forces sellers to become more competitive, it
seems likely that sellers will respond by creating price-
bots that automatically set prices so as to maximize
pro�tability. It is unrealistic, however, to expect that
pricebots will simply compute the mixed strategy Nash
equilibrium and distribute their prices accordingly. The
real business world is fraught with uncertainties that un-
dermine the validity of traditional game-theoretic anal-
yses: sellers lack perfect knowledge of buyer demands,
and have an incomplete understanding of competitors'
strategies. In order to be pro�table, pricebots will need
to continually adapt to changing market conditions.

1As the equilibrium is symmetric, we abbreviate p � ps
and we suppress dependence on ~p.

2A similar derivation of the mixed strategy equilibrium
appears in Varian [1980].



In this section, we discuss simulations of two adaptive
pricing strategies, and we compare the resulting price
and pro�t dynamics with the game-theoretic equilib-
rium. Recently, empirical studies of sophisticated learn-
ing algorithms have revealed that learning tends to con-
verge to pure strategy Nash equilibria in games for which
such equilibria exist [Greenwald et al., 1998]. As there
does not exist a pure strategy Nash equilibrium in the
shopbot model, it is of particular interest to study the
outcome of adaptive pricing schemes.

4.1 Pricing Strategies

We consider three pricing strategies, each of which makes
very di�erent demands on the required level of informa-
tional and computational power of agents:

GT The game-theoretic strategy is designed to repro-
duce the mixed strategy game-theoretic equilibrium
computed in the previous section, provided that it
is employed by all seller agents. It makes use of
full information about the buyer population, and
assumes that its competitors also use the GT strat-
egy. It therefore generates a price chosen randomly
from the probability density function derived in the
previous section.

MY The myopically optimal, or myoptimal , 3 pricing
strategy [Kephart et al., 1998] uses information
about all the buyer characteristics that factor into
the buyer demand function, as well as the competi-
tors' prices, but makes no attempt to account for
competitors' pricing strategies. Instead, it is based
on the assumption of static expectations: even if one
seller is contemplating a price change under myop-
timal pricing, this seller does not assume that this
will elicit a response from its competitors; instead it
assumes that competitors' prices will remain �xed.

The myoptimal seller uses all of the available infor-
mation and the assumption of static expectations to
perform an exhaustive search for the price p� that
maximizes its expected pro�t �. In our simulations,
we compute � according to Eqs. 7 and 8. The op-
timal price p� is guaranteed to be either the valu-
ation v or � below some competitor's price, where
� is the price quantum, or the smallest amount by
which one seller may undercut another, set to 0.002
in these simulations. This limits the search for p�

to S possible values.

DF The derivative-following strategy is far less informa-
tionally intensive than either the myoptimal pricing
strategy or the game-theoretic strategy. In particu-
lar, this strategy can be used in the absence of any
knowledge or assumptions about one's competitors
or the buyer demand function. A derivative follower
simply experiments with incremental increases (or
decreases) in its price, continuing to move its price
in the same direction until the observed pro�tability

3In the game-theoretic literature, this adaptive strategy is
known as Cournot best-reply dynamics [Cournot, 1838].

level falls, at which point the direction of movement
is reversed. The price increment Æ is chosen ran-
domly from a speci�ed probability distribution; in
the simulations described here the distribution was
uniform between 0.01 and 0.02.

4.2 Price and Pro�t Dynamics

We have simulated an economy with 1000 buyers and 5
sellers employing various mixtures of pricing strategies.
In each of the simulations depicted below, each buyer's
valuation of the good v = 1, and each seller's production
cost c = 0:5. The mixture of buyer types is set at wB =
0:75, i.e., 75% are bargain hunters.
The simulation is asynchronous: at each time step, a

buyer or seller is randomly selected to carry out an action
(e.g., buying an item or resetting a price). The chance
that a given agent is selected for action is determined by
its rate; the rate �b at which a given buyer b attempts
to purchase the good is set to 0.001, while the rate �s
at which a given seller reconsiders its price is 0.00002.
Each simulation was iterated for 100 million time steps.

GT Pricing Strategy

Simulations verify that, if agents are GT strategists, the
cumulative distribution of prices closely resembles the
derived F (p) (to within statistical error), and moreover,
the time-averaged pro�t for each seller is �� = 0:0255�
0:0003, which is nearly the theoretical value of 0.0250.

MY Pricing Strategy

Fig. 2(a) illustrates the cyclical price wars that typically
occur when all 5 sellers use the myoptimal pricing strat-
egy. Regardless of the initial value of the price vector,
a pattern quickly emerges in which prices are positioned
near the monopolistic price v = 1, followed by a long
episode during which the sellers successively undercut
one another by �. During this latter phase, no two prices
di�er by more than (S � 1)�, and the prices fall linearly
with time. Eventually, when the lowest-priced seller is
within � above the value p� = 0:53125, the next seller
�nds it unpro�table to undercut, and instead resets its
price to v = 1. The other sellers follow suit, until all
but the lowest-priced seller are charging v = 1. At this
point, the lowest-priced seller �nds that it can maintain
its market share but increase its pro�t dramatically |
from p�� :5 = 0:03125 to 0:5��| by raising its price to
1 � �. No sooner than the lowest-priced seller raises its
price does the next seller who resets its price undercut,
thereby igniting the next cycle of the price war.
Fig. 3(a) shows the sellers' pro�ts averaged during the

intervals between successive resetting of prices. The up-
per curve represents a linear decrease in the average
pro�t attained by the lowest-priced seller as price de-
creases, whichever seller that happens to be. The lower
curve represents the average pro�t attained by sellers
that are not currently the lowest-priced; near the end of
the cycle they su�er from both low market share and low
margin. The expected average pro�t can be computed
by averaging the pro�t given by Eqs. 7 and 8 over one
price-war cycle: �mys = (1=S)[(1=2)(v + p�) � c], which



yields �mys = 0:053125 in this instance. The simulation
results match this closely: the average pro�t per time
step is 0.0515, which is just over twice the average pro�t
obtained via the game-theoretic pricing strategy.
Since prices 
uctuate over time, it is of interest to

compute the probability distribution of prices. Fig. 4(a)
depicts the cumulative distribution function for myopti-
mal pricing. This measured cumulative density function
has exactly the same endpoints p� = 0:53125 and v = 1
as those of the mixed strategy equilibrium, but the linear
shape between those endpoints (which re
ects the linear
price war) is quite di�erent from what is displayed in
Fig. 1(a).

DF Pricing Strategy

Fig. 2(b) shows the price dynamics that result when 5
derivative followers are pitted against one another. Re-
call that derivative followers do not base their pricing de-
cisions on any information that pertains to other agents
in the system | neither sellers' price-setting tenden-
cies nor buyers' preferences. Nonetheless, their behavior
tends towards what is in e�ect a collusive state in which
all sellers charge nearly the monopolistic price. This is
tacit collusion as de�ned, for example, in Tirole [1988],
so-called because the agents do not communicate at all
and there is consequently nothing illegal about their col-
lusive behavior. Note that DF sellers accumulate greater
pro�ts than myoptimal or game-theoretic sellers. Ac-
cording to Fig. 3(b), sellers that are currently lowest-
priced can expect an average pro�t of 0.30 to 0.35, while
the others can expect roughly the game-theoretic pro�t
of 0.025. Averaging over the last 90 million time steps
(to eliminate transient e�ects), we �nd that the aver-
age pro�t per seller is 0.0841. This is near the absolute
collusive limit of (1=S)(v � c) = 0:10, which would be
obtained if all sellers were to �x their prices at 1.
How do derivative followers manage to collude? Like

myoptimal sellers, DF sellers are capable of engaging in
price wars; such dynamics are visible in Fig. 2(b). How-
ever, these price wars tend to involve only two sellers,
and the positive feedback that drives them depends crit-
ically on both the sequence of price increments and the
timing of the asynchronous moves by the sellers. Down-
ward trends are therefore very easily disrupted. For ex-
ample, if A's price is currently above B's, but A reduces
its price by an amount insuÆcient to undercut B, then
A's pro�ts decrease, so that A raises its price in sub-
sequent time steps. Soon after A breaks the downward
cycle, B discovers that it can improve pro�ts by increas-
ing its price, and does so. Simulations clearly show that
upward trends in price are much faster and more certain
than downward trends. The tendency of a society of DF
sellers to reach and maintain high prices is re
ected in
the cumulative distribution function, shown in Fig. 4(b).
It is also of interest to study the interplay among GT,

MY, and DF sellers. Typically, we �nd that, when a
myoptimal seller is introduced into a population of DF
or GT sellers, it substantially outplays them, and their
pro�ts decline signi�cantly.
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5 Evolution of Shopbots and Pricebots

In additional simulations, we investigated a situation in
which all �ve sellers use identical pricing strategies, but
one of the sellers resets its price more quickly than the
others. We observed that the faster price-setter earns
substantially more pro�t than the others because, for
example, in the case of myoptimal agents, it undercuts
far more often than it itself is undercut. In the absence of
any throttling mechanism, it is advantageous for sellers
to re-price their goods as quickly as possible, but this
could potentially lead to an arms race in which sellers
do so with ever-increasing frequency. In such a world, a
human price setter would undoubtedly be too slow and
costly, and would be replaced with a pricebot (likely one
based on a more sophisticated algorithm than any ex-
plored in Section 4!). Almost certainly, this strategy
would make use of information about the buyer popula-
tion, which could be purchased from other agents. Even
more likely, however, the strategy would require knowl-
edge of competitors' prices. How would the pricebot
obtain this information? From a shopbot, of course!

With each seller seeking to re-price its products
faster than its competitors, shopbots would quickly be-
come overloaded with requests. A pricebot representing
amazon.commight submit a million or more queries (one
per book title) to a shopbot every hour | or maybe even
every minute! Since shopbots must query individual sell-
ers for prices, they would in turn pass this load back to
amazon.com's competitors: e.g., barnesandnoble.com,
kingbooks.com. The rate of pricing requests made by
sellers could easily dwarf the rate at which similar re-
quests would be made by human buyers, eliminating the
potential of shopbots to ameliorate market frictions.

A typical solution to an excess demand for shopbot
services would be for shopbots to charge pricebots for
price information. Today, shopbots tend to make a liv-
ing by selling advertising space on their Web pages. This
appears to be an adequate business model so long as re-
quests are made by humans. Agents, however, are un-
welcome customers because they are are not in
uenced
by advertisements; as a result, agents are either barely
tolerated or excluded intentionally. By charging for the
information services they provide, shopbots would be
economically-motivated agents, creating the proper in-
centives to deter excess demand, and welcoming busi-
ness from other agents. Once shopbots begin to charge
for pricing information, it would seem natural for sell-
ers | the actual owners of the desired information |
to themselves charge the shopbots for their information.
The sellers could use another form of pricebot to dynam-
ically price this information. This scenario illustrates
how the need for agents to dynamically price their ser-
vices could quickly percolate through an entire economy
of software agents. The alternative is \meltdown" due
to overload which could occur as agents become more
prevalent on the Internet. Rules of etiquette followed
voluntarily today by web crawlers and related programs
could be trampled in the rush for competitive advantage.

6 Conclusion

Game-theoretic analysis of a model of a simple com-
modity market established a quantitative relationship
between the degree of shopbot usage among buyers and
the degree of price competition among sellers. This moti-
vated a comparative study of various pricebot algorithms
that sellers might employ in an e�ort to gain an edge in
a market in which shopbots have increased the level of
competition. Pricebots were shown to be capable of in-
ducing price wars, yet even so they may earn pro�ts that
are well above game-theoretic equilibrium levels. Future
work will explore the dynamics of markets in which more
sophisticated shopbots base their search on product at-
tributes as well as price, and in which pricebots use more
sophisticated learning algorithms such as Q-learning.
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