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Abstract

This paper addresses the question what
is the outcome of multi-agent learn-
ing via no-regret algorithms in repeated
games? Speci�cally, can the out-
come of no-regret learning be charac-
terized by traditional game-theoretic
solution concepts, such as Nash equi-
librium? The conclusion of this study
is that no-regret learning is reminis-
cent of �ctitious play: play converges
to Nash equilibrium in dominance-
solvable, constant-sum, and general-
sum 2 � 2 games, but cycles exponen-
tially in the Shapley game. Notably,
however, the information required of
�ctitious play far exceeds that of no-
regret learning.

1. Introduction

Multi-agent learning arises naturally in many
practical settings, ranging from robotic soc-
cer [14] to bot economies [8]. The question that
is addressed in this paper is: what is the outcome
of multi-agent learning via no-regret algorithms
in repeated games? A learning algorithm is said
to exhibit no-regret i� average payo�s that are
achieved by the algorithm exceed the payo�s
that could be achieved by any �xed strategy in

the limit. We are interested in whether the out-
come of no-regret learning can be characterized
by traditional game-theoretic solution concepts,
such as Nash equilibrium, where all agents play
best-responses to one another's strategies. In-
terestingly, we observe that the behavior of no-
regret learning closely resembles that of �cti-
tious play; however, the informational require-
ments of �ctitious play far exceed those of no-
regret learning.

Several recent authors have shown that ratio-
nal learning|playing best-replies to one's be-
liefs about the strategies of others|does not
converge to Nash equilibrium in general [4, 7].
The argument presented in Foster and Young,
for example, hinges on the fact that rational
learning yields deterministic play; consequently,
rational learning cannot possibly converge to
Nash equilibrium in games for which there ex-
ist no pure strategy (i.e., deterministic) equilib-
ria. In contrast, no-regret learning algorithms,
which are recipes by which to update probabil-
ities that agents assign to actions, could poten-
tially learn mixed strategy (i.e., probabilistic)
equilibria. Thus, we investigate the question of
whether Nash equilibrium in general is perhaps
learnable via no-regret algorithms. We �nd an
aÆrmative answer in constant-sum games and
2�2 general-sum games, and we present coun-
terexamples for larger general-sum games.



2. De�nition of No-Regret

Consider an in�nitely repeated game �1 =
hI; (Si; ri)i2I i1. The set I = f1; : : : ; ng lists
the players1 of the game. For all 1 � i � n,
Si is a �nite set of strategies for player i. The
function ri : S ! R de�nes the payo�s for
player i as a function of the joint strategy space
S =

Q
i Si. Let s = (si; s�i) 2 S, where si 2 Si

and s�i 2
Q

j 6=i Sj . Finally, Qi is the set of
mixed strategies for player i, and as above, let
q = (qi; q�i) 2 Q, where Q =

Q
iQi, qi 2 Qi,

q�i 2
Q

j 6=i Qj . Note that payo�s are bounded.

At time t, the regret �i player i feels for playing
strategy qti rather than strategy si is simply the
di�erence in payo�s obtained by these strate-
gies, assuming that the other players jointly play
strategy pro�le st�i:

�i(si; q
t
i jst�i) = ri(si; s

t
�i)� ri(q

t
i ; s

t
�i) (1)

Note that ri(q
t
i ; s

t
�i) � E [ri (q

t
i ; s

t
�i)] =P

si2Si
q(si)ri(si; s

t
�i) is in fact an expectation;

for notational convenience, we suppress the E . It
suÆces to compute the regret felt for not hav-
ing played pure strategies; no added power is
obtained by allowing for mixed strategies.

Let us denote by hti the subset of the history
of repeated game �t that is known to player i
at time t. Also, let Ht

i denote the set of all
such histories of length t, and let Hi =

S1
0 Ht

i .
A learning algorithm Ai is a map Ai : Hi !
Qi. Player i's mixed strategy at time t + 1 is
contingent on the elements of the history known
to player i through time t: i.e., qt+1i = Ai(h

t
i).

De�ne a model as an opposing sequence of play,
say fst�ig, possibly dependent on player i's se-
quence of plays. Given a history hti and a learn-
ing algorithm Ai that outputs a sequence of
weights fqtig for player i, and given a model
fst�ig for player i's opponents, algorithm Ai is
said to exhibit �-no-regret w.r.t. model fst�ig i�
for all strategies qi,

lim
T!1

sup
1

T

TX
t=1

�i(qi; q
t
i jst�i) < � (2)

1We use the terms agent and player interchange-
ably throughout.

In other words, the limit of the sequence of
average regrets between player i's sequence of
mixed strategies and all possible �xed alterna-
tives is less than �. As usual, if the algorithm
exhibits �-no-regret for all � > 0, then it is said
to exhibit no-regret. A related but signi�cantly
stronger property of learning algorithms is that
of Hannan-consistency [9]. By de�nition, the
algorithm Ai is (�-)Hannan-consistent i� it is
(�-)no-regret w.r.t. all possible models fst�ig.

3. No-Regret Algorithms

The informational requirements for no-regret
learning are far less than those of traditional
learning algorithms such as �ctitious play [13]
and Bayesian updating. A �ctitious player is
one who observes (i) the strategies of all players
and (ii) the matrix of payo�s he would have ob-
tained had he and the other players played any
other possible combination of strategies. An in-
formed player is one who observes (i) the strat-
egy he plays and (ii) the vector of payo�s he
would have obtained had he played any of his
possible strategies. A naive player is one who
observes only (i) the strategy he plays and (ii)
the payo� he obtains. No-regret algorithms ex-
ist for naive (e.g., Auer, et al. [1]), and therefore
informed and �ctitious, players.

In this section, we give examples of no-regret
algorithms. We also describe two procedures:
the �rst is a technique for converting no-regret
algorithms for informed players into approxi-
mate no-regret algorithms for naive players, and
the second converts approximate no-regret algo-
rithms into no-regret algorithms. The upshot of
this discussion is that any no-regret algorithm
for informed players can be transformed into a
no-regret algorithm for naive players.

It is convenient to describe the properties of an
algorithm, say Ai, that yields weights fqtig, in
terms of the error it incurs. Let errAi

(T ) be an
upper bound on the average regret incurred by
algorithm Ai through time T : i.e., errAi

(T ) �
1=T

PT
t=1 �(si; q

t
i jst�i), for all strategies si and

models fst�ig. Now an algorithm Ai achieves
no-regret i� errAi

(T )! 0 as T !1.



3.1 Examples of No-Regret Algorithms

Freund and Schapire study an algorithm (so-
called Hedge) that uses an exponential updating
scheme to achieve �=2-Hannan-consistency [5].
Their algorithm is suited to informed play-
ers since it depends on the cumulative payo�s
achieved by all strategies, including the sur-
mised payo�s of strategies which are not in fact
played. Let pti(si) denote the cumulative payo�s
obtained by player i through time t via strat-
egy si: i.e., pti(si) =

Pt
x=1 ri(si; s

x
�i). Now the

weight assigned to strategy si at time t+ 1, for
� > 0, is given by:

qt+1i (si) =
(1 + �)p

t
i(si)P

s0
i
2Si

(1 + �)p
t
i(s
0

i
)

(3)

Theorem 3.1 (Freund and Schapire, 1995)
errHedge(T ) � �=2 + ln jSij=�T .

Corollary 3.2 Hedge is �=2-no-regret.

The Hannan-consistent algorithm of Hart and
Mas-Colell [11] that we choose as our second
example is also suited to informed players, but
it updates based on cumulative regrets, rather
than cumulative payo�s. The cumulative re-
gret felt by player i for not having played strat-
egy si through time t is given by rti(si) =Pt

x=1 �
x
i (si; s

x
i jsx�i). The update rule is:

qt+1i (si) =
[rti(si)]

+P
s0
i
2Si

[rti(s
0
i)]

+
(4)

where X+ = maxfX; 0g. By applying Black-
well's approachability theorem, Hart and Mas-
Colell argue that this algorithm and others in
its class are Hannan-consistent [10].

3.2 From Informed to Naive No-Regret
Algorithms

These examples of no-regret algorithms are both
suited to informed players. Following Auer, et
al. [1], who describe how Hedge can be modi-
�ed for naive players, we demonstrate how to
transform any algorithm that achieves no-regret
for informed players into an approximation algo-
rithm that achieves �-no-regret for naive players.

Consider an in�nitely repeated game �1 and
an informed player that employs learning algo-
rithm Ai that generates weights fqtig. We now

de�ne learning algorithm Âi for a naive player
that produces weights fq̂tig using algorithm Ai

as a subroutine. Âi updates using A's update
rule and a hypothetical reward function r̂i that
is de�ned in terms of the weights q̂ti as follows:

r̂i(si; s
t
�i) =

(
ri(si;s

t
�i)

q̂t
i
(si)

if sti = si

0 otherwise
(5)

Now, assuming algorithm A returns weights qti ,

algorithm Âi outputs: q̂
t
i = (1��)qti+�=jSij, for

some � > 0.

Theorem 3.3 If an informed player's learning
algorithm Ai exhibits no-regret, then a naive
player's algorithm Âi exhibits �-no-regret, as-
suming payo�s are bounded in the range [0; 1].

3.3 From Approximate No-Regret to
No-Regret Algorithms

We now present an adaptive method by which to
convert algorithms that exhibit �-no-regret into
algorithms that are truly no-regret (i.e., �-no-
regret, for all � > 0). Suppose fAng is a se-
quence of algorithms that incur sequence of er-
rors ferrn(n)g where errn(n) ! 0 as n! 1.
Using this sequence, we construct an algorithm
A1 as follows. Let T0 = 0 and Tn = Tn�1 + n
for n = 1; 2; : : :. Now, for all t 2 fTn�1; : : : ; Tng,
use algorithm An and only the history observed
since time Tn�1 to generate weights qti .

Theorem 3.4 A1 satis�es no-regret.

As an example, we study the algorithm fs1,
which repeatedly implements Hedge (hereafter
called fs(�)) varying the parameter � with n.
For n 2 N, play fs(1=

p
n) for n trials, reset-

ting the history whenever n is reset. By The-
orem 3.1, errn(n) = 1=(2

p
n) + ln jSij=pn.

Thus, errn(n) ! 0 as n ! 1. This procedure
improves upon the standard doubling technique,
(see, for example, [1]) which requires that n be
a power of 2: i.e., n 2 f1; 2; 4; 8; : : :g.
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Figure 1. PNE Games.

4. Simulations of Informed Players

The remainder of this paper contains an investi-
gation of the behavior of no-regret algorithms
in multi-agent repeated games. In this sec-
tion, we present simulation experiments of the
algorithms of Freund and Schapire [5] (fs(�))
and Hart and Mas-Colell [11] (hm) described in
Sec. 3 for informed players. We �rst consider
games for which pure strategy Nash equilibria
(PNE) exist, and then study games for which
only mixed strategy Nash equilibria (MNE) ex-
ist. We compare the behavior of these algo-
rithms with that of fs1. In the next section,
we modify these algorithms for naive players.

4.1 Pure Strategy Nash Equilibria

Our �rst set of simulations show that learning
via no-regret algorithms converges to Nash equi-
librium in games for which PNE exist. In games
such as the Prisoners' Dilemma (see Fig. 1(a)),
for which there exist unique, dominant strategy
equilibria, no-regret learning is known (in the-
ory) to converge to equilibrium [6]. In games for
which there exist multiple PNE, such as the co-
ordination game shown in Fig. 1(b), both fs(�)
and hm generate play that converges to Nash
equilibrium, although not necessarily to the op-
timal equilibrium (T; L).

Simulations of fs(0.05) on the two aforemen-
tioned games are depicted in Figs. 2(a) and 2(b).
Speci�cally, we plot the weight of the strate-
gies for the two players over time. In Fig. 2(a),
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Figure 2. Convergence of weights to PNE: (a) Pris-
oners' Dilmemma. (b) Coordination Game.

we observe that play converges directly to the
pure strategy Nash equilibrium, as the weight
of strategy D converges to 1 for both players.
In Fig. 2(b), although play ultimately converges
to the PNE (M;C), the path to convergence is
a bit rocky. Initially, the players prefer (T; L),
but due to the e�ects of randomization, they
ultimately coordinate their behavior on a non-
Pareto-optimal equilibrium. Note that this out-
come, while possible, is not the norm; more often
than not play converges to (T; L). In any case,
play converges to a PNE in this coordination
game. The hm algorithm behaves similarly.

4.2 Mixed Strategy Nash Equilibria

We now consider mixed strategy equilibria in
both constant-sum2 and general-sum games. We
present simulations of hm on matching pennies
(see Fig. 3(a)), rock paper scissors (not shown),
and the Shapley game (see Fig. 3(b)). As in the

2A constant-sum generalizes a zero-sum game:
all players' payo�s sum to some constant.
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case of PNE, the behaviors of hm and fs(0.05)
are not substantially di�erent.

In the game of matching pennies, a 2 � 2
constant-sum game, the players' weights exhibit
�nite cyclic behavior, out-of-sync by roughly 50
time steps, as the players essentially chase one
another. But the empirical frequencies of play
ultimately converge to the unique mixed strat-
egy Nash equilibrium, (0:5; 0:5). Early signs of
convergence appear in Fig. 4(a) where the play-
ers again chase one another, but the amplitude
of the cycles dampens with time; at time 1,000
the amplitude is 0.02, but by time 10,000 (not
shown) the amplitude decreases to 0.0075.

Interestingly, similar behavior arises in the game
of rock, paper, scissors, a 3 strategy, constant-
sum game that resembles the Shapley game, but
the cells with payo�s of 0,0 in the Shapley game
yield payo�s of 1/2,1/2 in rock, paper, scissors.
Thus, the fact that we observe convergence to
Nash equilibrium in matching pennies is not an
artifact of the game's 2 � 2 nature; instead like
�ctitious play, this behavior of no-regret algo-
rithms appears typical in constant-sum games.

Now we turn to the Shapley game. In the
Shapley game, �ctitious play is known to cycle
through the space of possible strategies, with the
length of the cycles growing exponentially. Sim-
ilarly, hm exhibits exponential cycles, in both
weights and frequencies (see Fig. 4(b)). The
amplitude of these cycles does not dampen with
time, however, as they did in the simulations of
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Figure 4. Mixed Strategy Equilibria: (a) Matching
Pennies: Convergence of frequencies. (b) Shapley
Game: Nonconvergence of frequencies.

constant-sum games, and the empirical frequen-
cies are non-convergent.

4.3 Conditional Regrets

To substantiate our claim that no-regret learn-
ing converges in constant-sum games, but does
not converge in the Shapley game, we consider
conditional regrets. Conditional regrets can be
understood as follows: given sequence of plays
fstg, the conditional regret RT

i player i feels to-
ward strategy s0i conditioned on strategy si at
time T is simply the average through time T
of the di�erence in payo�s obtained by these
strategies at all times t that player i plays strat-
egy si, assuming some model, say fst�ig:

RT
i (s

0
i; si) =

1

T

X
f1�t�T jst

i
=sig

�i(s
0
i; sijst�i) (6)

An algorithm exhibits no-conditional-regret i�
in the limit it yields no conditional regrets for
any choice of model. Expressed in terms of ex-
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pectation, a learning algorithmAi that gives rise
to a sequence of weights qti is said to exhibit no-
conditional-regret i� for all strategies si; s

0
i, for

all models fst�ig, for all � > 0,

lim
T!1

sup
1

T

TX
t=1

qti(si)�i(s
0
i; sijst�i) < � (7)

Correlated equilibrium generalizes the notion
of Nash equilibrium by allowing for correla-
tions among the players' strategies. An algo-
rithm achieves no-conditional-regret i� its em-
pirical distribution of play converges to corre-
lated equilibrium (see, for example, [3, 11]). In
general, no-conditional-regret implies no-regret,
and these two properties are equivalent in two
strategy games. Hence, no-regret algorithms are
guaranteed to converge to correlated equilibrium
in 2 � 2 games. By studying the conditional
regret matrices|RT

i (s
0
i; si) for all strategies si,

s0i|we now take a second look at the conver-
gence properties of no-regret algorithms in our
sample games of three strategies.

Figs. 5(a) and (b) depict player 1's conditional
regrets using the hm algorithm in the Shapley
game and rock, paper, scissors. The regrets ap-
pear to be converging in the latter, but not in
the former. Let us �rst examine Fig. 5(a). Three
of the non-convergent lines in this plot|those
describing R(B; T ), R(T;M), and R(M;B)|
always remain below zero. This implies that the
player does not feel regret for playing strategy
T instead of strategy B, for example, implying
that his opponent plays either L or C but not R
when he plays T . On the other hand, the lines
describing the regrets R(M;T ), R(B;M), and
R(T;B) are often above zero, implying that the
player often feels regret for playing strategy T
instead of M , since his opponent indeed some-
times plays C when he plays T . Following hm's
strategic weights and empirical frequencies, the
conditional regrets cycle exponentially.

In contrast, consider Fig. 5(b). The bottom
three lines in this plot, which describe the re-
grets R(M;T ), R(B;M), and R(T;B), are all
below zero, implying that the player feels no re-
gret for playing, for example, strategy T instead
of strategyM . In this case, whenever the player
plays strategy T , his opponent plays either L
or R but not C. On the other hand, the top
three lines, which describe R(B; T ), R(T;M),
and R(M;B), are all above zero, implying that
the player does indeed feel some regret when he
plays, for example, strategy T instead of strat-
egy B. Apparently, his opponent sometimes
plays R when he plays T . Although these lines
exhibit small oscillations in the neighborhood of
zero, it appears that the empirical distribution
of play is converging to Nash equilibrium.

The behavior of fs1 is rather di�erent from that
of fs(�), hm, and �ctitious play on the Shap-
ley game: it does not exhibit exponential cycles.
The conditional regrets obtained by fs1 on the
Shapley game are depicted in Fig. 6(a). Notice
that these regrets converge to zero. Thus, the
empirical distribution of play converges to corre-
lated (speci�cally, Nash) equilibrium. For com-
parion, Fig. 6(b) depicts the conditional regrets
of fs(�) modi�ed as prescribed by the standard
doubling technique.
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Figure 6. Conditional Regrets: (a) Algorithm fs1.
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5. Simulations of Naive Players

We now turn our attention to no-regret learn-
ing in larger games. Speci�cally, we simulate
the serial cost sharing game, which is favored
by members of the networking community as an
appropriate mechanism by which to allocate net-
work resources to control congestion [12].

In the serial cost sharing game, a group of n
agents share a public good. Each agent i an-
nounces its demand qi for the good, and the to-
tal cost C(

Pn
i=1 qi) is shared among all agents.

W.L.O.G, suppose q1 � : : : � qn. Agent 1
pays 1=n of the cost of producing nq1; agent
2 pays agent 1's cost plus 1=(n� 1) of the incre-
mental cost incurred by the additional demand
(n� 1)q2. In general, agent i's cost share is:

ci(q1; : : : ; qn) =

iX
k=1

C(qk)� C(qk�1)

n+ 1� k
(8)

Finally, agent i's payo� ri = �iqi�ci, for �i > 0.

Chen [2] conducts economic|mostly human|
experiments comparing serial and average cost
pricing. She assumes 12 strategies, 2 players,
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�1 = 16 and �2 = 20 s.t. the unique (pure strat-
egy) Nash equilibrium is (4; 6). Under these
assumptions, we found that fs(0.05) learns the
Nash equilibrium within roughly 200 iterations,
as does hm within roughly 400 iterations.

In networking scenarios, however, it is natural
to assume players are naive [7]. A simulation
of fs(0.05) modi�ed for naive players (� = 0:1)
is depicted in Fig. 7. This game is limited to
6 strategies: player 2 quickly �nds his equilib-
rium strategy (6), but player 1 does not settle
on his equilibrium strategy (4) until about iter-
ation 2000. Increasing the number of strategies
increases search time, but once the agents learn
the Nash equilibrium, they seem to stay put.

We have also experimented with no-regret learn-
ing in games for which pure strategy Nash equi-
librium do not exist. In the Santa Fe Bar Prob-
lem, a game with only 2 strategies but many
(100+) players, no-regret learning converges to
Nash equilibrium [7]. In the game of shop-
bots and pricebots, however, a game with many
(50+) strategies and several (2+) players, play
cycles exponentially as in the Shapley game [8].



A. Proofs

Proof A.1 [Theorem 3.3] Observe the following:
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The last step follows from the de�nition of q̂ti , which implies

that q̂ti � (1 � �)qti . Computing averages over the �rst and
last terms above yields: for arbitrary si 2 Si,
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Now, the expected value of r̂i(si; s�i) = q̂i(si)
ri(si;s�i)

q̂i(si)
+

(1 � q̂i(si))(0) = ri(si; s�i), for all strategies si; s�i. Now
take expectations and note that errAi (T ) ! 0 as T ! 1.
Finally, assuming ri(si; s�i) 2 [0; 1], for all strategies s�i,

lim
T!1
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1

T

TX
t=1

�i(si; q̂
t
i js

t
�i) � �

Since si was arbitrary, algorithm Âi exhibits �-no-regret.

Proof A.2 [Theorem 3.4] By assumption, for
all �xed strategies si and for all models fst

�ig,P
Tn

t=Tn�1
�i(si; q

t
i js

t
�i) � nerrn(n). Thus,
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The left side of the last equation is equivalent to the cumu-
lative regret felt through time 1+: : :+T . Thus, it suÆces to
show that the limit of the right side approaches 0 as T !1.
The result follows from a simple calculus lemma: if am is a
sequence that converges to 0, then

lim
m!1

a1 + 2a2 + : : :+mam

1 + 2 + : : :+m
! 0
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