A General Class of No-Regret Learning Algorith and

Game-Theoretic Equilibria

Amy Greenwald Brown University

and

Amir Jafari Northwestern University

Computational Learning Theory 200

Background

No-external-regret learning converges to the set of mini [e.g., Freund and Schapire 1996]

No-internal-regret learning converges to the set of correlege, Foster and Vohra 1997]

Three Theorems

1. Existence Theorem

 \circ Φ -no-regret learning algorithms exist, for all Φ .

2. Convergence Theorem

Φ-no-regret learning converges to the set of Φ-ed

3. Negative Result

No-internal-regret is the strongest form of Φ-no-i

Single Agent Model

- \circ a set of agent's actions A $(a \in A)$
- \circ a set of opponents' actions A' $(a' \in A')$
- \circ vector-valued outcome function $\rho: A \times A' \to V$
- o bounded reward function $r: A \times A' \to \mathbb{R}$

A learning algorithm $\mathcal A$ is a sequence of functions $q_t:(A imes_A)$ for $t=1,2,\ldots$, where $\Delta(A)$ is the set of all probability r

Regret

Let Φ be a finite subset of the set of linear maps $\{\phi: \Delta \in A \cap A' \to \mathbb{R}^{\Phi} \}$ is defined as follows

$$\rho_{\Phi}(a, a') = (r(\phi(\delta_a), a') - r(a, a'))_{\phi \in \Phi}$$

Here δ_a is the Dirac δ function: i.e., all mass is concenti

No-External-Regret

 $\Phi_{\mathsf{EXT}} = \{\phi_a | a \in A\}$ be the set of constant maps: i.e., ϕ_a

If |A| = 4, and if a = 2, then

$$\phi_a = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

Thus, $\langle q_1,q_2,q_3,q_4\rangle\phi_a=\langle 0,1,0,0\rangle$, for all $\langle q_1,q_2,q_3,q_4\rangle\in$

No-Internal-Regret

 $\Phi_{\text{INT}} = \{\phi_{ab} | a \neq b \in A\}, \text{ where }$

$$(\phi_{ab}(q))_c = \begin{cases} q_c & \text{if } c \neq a, b \\ 0 & \text{if } c = a \\ q_a + q_b & \text{if } c = b \end{cases}$$

If |A| = 4, and if a = 2 and b = 3, then

$$\phi_{ab} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Thus, $\langle q_1, q_2, q_3, q_4 \rangle \phi_{ab} = \langle q_1, 0, q_2 + q_3, q_4 \rangle$, for all $\langle q_1, q_2, q_4 \rangle \phi_{ab} = \langle q_1, 0, q_2 + q_3, q_4 \rangle$,

Approachability

 $G\subseteq V$ is said to be ho-approachable iff there exists lear $\mathcal{A}=q_1,q_2,\ldots\,s.t.$ for any sequence of opponents' action

$$\lim_{t \to \infty} d(G, \bar{\rho}_t) = \lim_{t \to \infty} \inf_{g \in G} d(g, \bar{\rho}_t) = 0$$

almost surely, where $\bar{\rho}_t$ denotes the average value of ρ ti.e., $\bar{\rho}_t = \frac{1}{t} \left(\rho(a_1, a_1') + \ldots + \rho(a_t, a_t') \right)$.

Φ-No-Regret

A Φ -no-regret learning algorithm is one that ho_{Φ} -approach

$$\lim_{t\to\infty}d(\mathbb{R}^{\Phi}_-,\bar{\rho}_{\Phi,t})=0$$

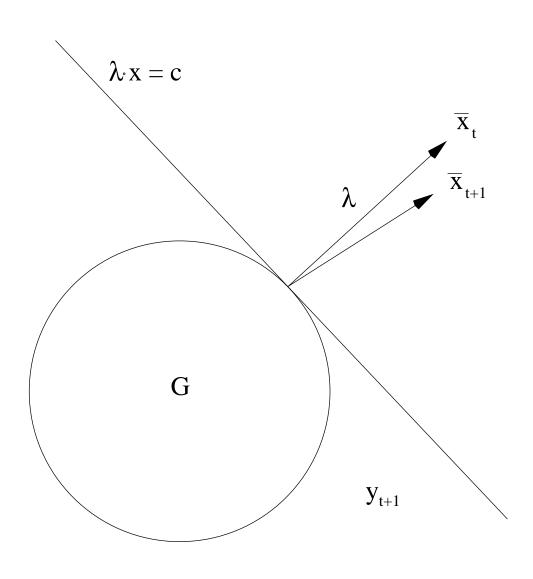
$$\inf \ \limsup_{t \to \infty} \bar{\rho}_{\Phi,t} \leq 0$$

iff
$$\limsup_{t\to\infty} \frac{1}{t} \sum_{\tau=1}^t \left(r(\phi(\delta_{a_\tau}), a_\tau') - r(a_\tau, a_\tau') \right) \le 0$$
, for

A no-external-regret algorithm ρ_{Φ} -approaches $\mathbb{R}^{\Phi}_{\underline{}}$ for Φ

A no-internal-regret algorithm ho_{Φ} -approaches \mathbb{R}^{Φ}_{-} for Φ

Blackwell's Theorem



Blackwell's Theorem

Any convex subset $G \subseteq V$ is ρ -approachable if there exalgorithm \mathcal{A} s.t. for all times t and for all $a' \in A'$, $\lambda(\bar{\rho}_t)$ where $\lambda(x)$ is the vector between $\bar{\rho}_t$ and the closest point

Moreover, the following procedure can be used to approon $\bar{\rho}_t \in G$, play arbitrarily; but if $\bar{\rho}_t \in V \setminus G$, play according

Existence Theorem

For all finite subsets Φ of the set of continuous, linear retrieved there exists a learning algorithm that satisfies Φ -no-regret

Proof

By Blackwell's theorem, it suffices to show that for all there exists $q \in \Delta(A)$ s.t. for all $a' \in A$, $x^+ \cdot \rho_{\Phi}(q, a') \leq 0$

Proof of Existence Theorem

$$0 = x^{+} \cdot \rho_{\Phi}(q, a')$$

$$= \sum_{\phi \in \Phi} x_{\phi}^{+}(r(\phi(q), a') - r(q, a'))$$

$$= \sum_{\phi \in \Phi} x_{\phi}^{+}r(\phi(q), a') - \sum_{\phi \in \Phi} x_{\phi}^{+}r(q, a')$$

$$= r\left(\left(\sum_{\phi \in \Phi} x_{\phi}^{+}\phi\right)(q), a'\right) - r\left(\left(\sum_{\phi \in \Phi} x_{\phi}^{+}\right)q, a'\right)$$

Now it suffices to show

$$\left(\sum_{\phi \in \Phi} x_{\phi}^{+} \phi\right) (q) = \left(\sum_{\phi \in \Phi} x_{\phi}^{+}\right) q$$

But by Brouwer's fixed point theorem, $M = \frac{\sum_{\phi \in \Phi} x_{\phi}^{+} \phi}{\sum_{\phi \in \Phi} x_{\phi}^{+}}$ ha

Multiagent Model

- \circ a set of players I $(i \in I)$
- \circ for all players i,
 - a set of actions A_i $(a_i \in A_i, a_{-i} \in \prod_{j \neq i} A_j)$
 - a reward function $r_i:\prod_{i\in I}A_i\to\mathbb{R}$
 - a set Φ_i $(\phi_i \in \Phi_i)$

Φ-Equilibrium

An element $q \in \Delta(\prod_{i \in I} A_i)$ is a Φ -equilibrium iff $r_i(\phi_i(q))$ for all players i and for all $\phi_i \in \Phi_i$.

Examples

Correlated Equilibrium: $\Phi_i = \Phi_{\text{INT}}$, for all players iGeneralized Minimax Equilibrium: $\Phi_i = \Phi_{\text{EXT}}$, for all pla

Convergence Theorem

If all players i play via some Φ_i -no-regret algorithm, empirical distribution of play converges to the set of almost surely.

Proof

For all players i, for all $\phi_i \in \Phi_i$,

$$\begin{aligned} &\limsup_{t\to\infty} r_i(\phi_i(z_t)) - r_i(z_t) \\ &= \limsup_{t\to\infty} \frac{1}{t} \sum_{\tau=1}^t r_i(\phi_i(\delta_{a_{i,\tau}}), a_{-i,\tau}) - \frac{1}{t} \sum_{\tau=1}^t r_i(a_{i,\tau}) \\ &\leq &0 \end{aligned}$$

almost surely.

Negative Result

If learning algorithm $\mathcal A$ satisfies no-internal-regret, then Φ -no-regret for all finite subsets Φ of the set of stochastic st

Lemma

If learning algorithm $\mathcal A$ satisfies Φ -no-regret, then $\mathcal A$ also Φ' -no-regret, for all finite subsets $\Phi' \subseteq SCH(\Phi)$, the sup

SCH(
$$\Phi$$
) =
$$\begin{cases} \sum_{i=1}^{k+1} \alpha_i \phi_i \mid \phi_i \in \Phi, \text{ for } 1 \leq i \leq k, \ \phi_{k+1} = I, \end{cases}$$

$$\alpha_i \geq 0$$
, for $1 \leq i \leq k$, $\alpha_{k+1} \in \mathbb{R}$,

Proof of Negative Result

Proof

An elementary matrix is one with one 1 per row, and 0' Let $M(n_1,\ldots,n_m)$ denote the elementary matrix with except 1's at entries (i,n_i) for $1\leq i\leq m$. If $\phi_{in_i}\in\Phi_{\text{INT}}$,

$$M(n_1,\ldots,n_m) = \phi_{1n_1} + \ldots + \phi_{mn_m} - (m-1)$$

Applications of Lemma

- 1. If \mathcal{A} is Φ -NR for $\Phi = \Phi_{INT}$, then \mathcal{A} is Φ -NR for $\Phi =$
- 2. If \mathcal{A} is Φ -NR for Φ = EM, then \mathcal{A} is Φ -NR for all Φ \subseteq

Summary and Conclusions

No-external- and no-internal-regret can be defined along of No-internal-regret learning is the strongest form of Φ -no-Therefore, Nash equilibrium cannot be learned via Φ -no-