
Botticelli: A Supply Chain Management Agent

M. Benisch, A. Greenwald, I. Grypari, R. Lederman, V. Naroditskiy, and M. Tschantz

Department of Computer Science, Brown University, Box 1910, Providence, RI 02912

{mbenisch,amygreen,vnarodit,mtschant}@cs.brown.edu
{Ioanna Grypari}@brown.edu, {rogerl}@alumni.brown.edu

Abstract

The paper describes the architecture of Brown Univer-
sity’s agent, Botticelli, a finalist in the 2003 Trading
Agent Competition in Supply Chain Management (TAC
SCM). In TAC SCM, a simulated computer manufactur-
ing scenario, Botticelli competes with other agents to
win customer orders and negotiates with suppliers to pro-
cure the components necessary to complete its orders.

In this paper, two subproblems that dictate Botti-

celli’s behavior are formalized: bidding and schedul-
ing. Mathematical programming approaches are applied
in attempt to solve these problems optimally. In addition,
greedy methods that yield useful approximations are de-
scribed. Test results compare the performance and com-
putational efficiency of these alternative techniques.

1. Introduction

A supply chain is a network of autonomous enti-
ties, or agents, engaged in procurement of raw materi-
als, manufacturing—converting raw materials into fin-
ished products—and distribution of finished products.
The Trading Agent Competition in Supply Chain Man-
agement (TAC SCM) is a simulated computer manu-
facturing scenario in which software agents tackle com-
plex problems in supply chain management. This pa-
per describes the structure of Brown University’s agent
Botticelli, a finalist in TAC SCM 2003.

TAC SCM agents face uncertainty about the future,
but they must make decisions before the uncertainty is
resolved: e.g., agents must procure raw materials and
manufacture finished products before customer orders
arrive. Botticelli handles the uncertainty in man-
ufacturing and distribution using stochastic program-
ming techniques (see Benisch et al. [1]). Here, we focus
on our approach to the bidding problem: find an op-
timal set of bids to place on customer RFQs, balanc-
ing the tradeoff between maximizing profits—by plac-

ing high bids—and maximizing the likelihood of win-
ning multiple customer orders—by placing low bids.

This paper is organized as follows. In Section 2, we
give an overview of TAC SCM. Next we describe the
architecture of our agent, Botticelli. This architec-
ture emphasizes three problems—bidding, production
scheduling, and delivery scheduling. Section 4 describes
a heuristic approach to these problems: greedy schedul-
ing and bidding via hill-climbing. Section 5 details so-
lutions that approximate optimal stochastic program-
ming solutions. Section 6 presents experimental results.

2. TAC SCM

In TAC SCM, six software agents compete in a sim-
ulated sector of a market economy, specifically the
personal computer (PC) manufacturing sector. Each
agent can manufacture 16 different types of computers,
characterized by different stock keeping units (SKUs).
Building each SKU requires a different combination
of components, of which there are 10 different types.
These components are acquired from a common pool of
suppliers at costs that vary as a function of demand. Af-
ter assembly, each agent can sell its PCs to a common
pool of customers by underbidding the other agents.
The agents are ranked based on their profits over 220
days, each of which lasts 15 seconds.

Each day in the TAC SCM simulation customers
send a set of requests for quotes (RFQs) to the agents.
Each RFQ contains a SKU, a quantity, a due date, a
penalty rate, and a reserve price—the highest price the
customer is willing to pay. Each agent sends an offer to
each customer for each RFQ, representing the price at
which it is willing to satisfy that RFQ. After the cus-
tomer receives all its offers, it selects the agent with the
lowest-priced offer and awards that agent with an or-
der. Either: the winning agent delivers the entire order
by its due date, in which case it is paid in full; it de-
livers the entire order within five days of its due date,
in which case it is paid the amount of its offer less a

penalty based on the number of late days; or, it can-
not deliver the entire order within five days of its due
date, in which case the order is canceled, no revenues
are accrued, and the maximum penalty is incurred.

Meanwhile, the agents themselves are sending RFQs
to suppliers, requesting a specific quantity of a compo-
nent to arrive on a particular day. The suppliers re-
spond to these requests the next day with either par-
tial or full offers, indicating the price per unit at which
the RFQ can be satisfied. If an agent receives a partial
offer, the supplier cannot deliver the requested quan-
tity of the component on the day on which it was re-
quested, but it can deliver a lesser quantity on that
day. Full offers either have a delivery date on the day re-
quested, or a delivery date later than the one requested,
in which case they are often accompanied by partial of-
fers. Among these offers, an agent can choose to accept
at most one, in which case agent and supplier enter
into a contract agreeing that the agent will be charged
for the components upon their arrival.

At the end of each day, each agent converts the com-
ponents it acquired from suppliers into SKUs accord-
ing to a production schedule it generates for its fac-
tory. It also reports a delivery schedule assigning the
SKUs in its inventory to customer orders.

3. Agent Architecture

Each simulated TAC day represents a decision cy-
cle for an agent, during which time the agents must
solve four problems: procurement, bidding, produc-
tion scheduling, and delivery scheduling. The procure-
ment problem involves communicating with suppliers
via RFQs, and selecting supplier offers to accept among
those which are received in response to these RFQs.
The bidding problem is to decide how to assign offer
prices to each customer RFQ. The production schedul-
ing problem is to decide how many of each SKU to as-
semble each day. The delivery scheduling problem is to
decide which orders to ship to which customers, using
product inventory. The objective in all of these prob-
lems is to maximize expected profits, given some prob-
abilistic model that captures the uncertainty in the
game. A high-level description of the TAC SCM de-
cision problem is presented in Figure 1.

An artifact in the design of TAC SCM 2003 (namely,
negligible component prices on day 1), resulted in us
placing little emphasis on procurement. Rather, we fo-
cused on the development of solutions to the bidding,
scheduling, and delivery problems. High-level descrip-
tions of the three problems are given in Figures 4, 6,
and 7. These three problems are highly interconnected.
Indeed, an optimal solution to the production schedul-

TAC SCM Decision Problem

Objective:
Maximize Expected Profits

Inputs:
Product Pricing Model
Component Cost Model
Set of Supplier Offers
Set of Customer RFQs
Set of Customer Orders
Procurement Schedule
Component Inventory
Product Inventory

Outputs:
Procurement Schedule: set of Supplier RFQs and Orders
Bidding Policy: map from Customer RFQs to Prices
Production Schedule: map from Cycles to SKUs
Delivery Schedule: map from SKUs to Customer Orders

Figure 1. TAC SCM Decision Problem

ing problem yields an optimal solution to the deliv-
ery scheduling problem, since ultimately revenues de-
pend on which orders are successfully delivered to their
respective customers. Moreover, an optimal solution
to the bidding problem yields an optimal solution to
both scheduling problems, since bidding decisions de-
pend on manufacturing and distribution constraints:
too few winning bids lead to missed revenue opportu-
nities; too many winning bids lead to late penalties.

The architecture of Botticelli was designed with
these relationships in mind, and thus the bidding mod-
ule envelops the scheduling module, which in turn en-
velops the delivery module as shown in Figure 2. Once
a bidding policy is determined by the bidding module,
the scheduling module finds a production schedule, and
the delivery module ships products to customers.

The flow of information through the agent is as fol-
lows: Each day the modeling module receives informa-
tion about other agents’ actions on the previous day
as well as information about the offers the bidding
module submitted and the orders that resulted from
those offers. The modeling module uses this informa-
tion to update its models and passes an updated model
to the bidding module. The bidding module uses the
new model to produce an offer for each of the day’s
RFQs. The offer prices are determined with the aid of
the scheduling module. When invoked, the scheduling
module learns from the procurement module the quan-
tity of each component that is expected to be in inven-
tory on any particular day. It then determines how to
allocate machine cycles to make products for existing
orders and likely future orders. The scheduling module
relies on the delivery module to determine how to al-
locate product inventory to existing orders and likely

Suppliers

Procurement
Module

Component
Inventory

Factory

Product
Inventory

Bidding Module

Scheduling Module

Delivery Module

M
odelling M

odule

Bid Prices

Other Agents

Customers

RFQs & Orders

Offers

PC Deliveries

Components

RFQs & Orders

Offers

Botticelli

Figure 2. Botticelli: A Modular Design

future orders. After the bidding, scheduling, and deliv-
ery modules finalize their decisions, the procurement
module sends to suppliers RFQs for additional compo-
nents and orders based on the current offers.

4. Bidding: A Hill-Climbing Approach

In the preliminary rounds, Botticelli relied on
a hill-climbing bidder, which successively adjusts bid
prices according to the results of a scheduler. At a
high-level, the bidder is initialized with some set of
bid prices; given these prices, a production and deliv-
ery schedule is computed; and, based on the results of
the scheduler, bid prices are tweaked. The goal of this
hill-climbing algorithm is to fill our production sched-
ule, which we assume is positively correlated with max-
imizing expected profits. TacTex utilizes a similar so-
lution to the bidding problem [5].

In a preprocessing step, we schedule only orders, no
offers. As long as all orders can be scheduled for deliv-
ery, we proceed with the hill-climbing bidder.

It is crucial to our approach that the scheduler make
use of the probabilities of winning each offer: the sched-
uler must schedule offers based on expected quantities.

We initialize bids to prices at which, according to
our pricing model, we will win every RFQ with cer-
tainty. At these initial prices, if the scheduler cannot
fit every order and RFQ into the schedule, then those
RFQs which are not deemed profitable enough to in-
clude in the schedule at their current prices form a
natural set of RFQs for which to raise prices. Indeed,
we increase the prices of these RFQs, thereby decreas-
ing their winning probabilities. In the next iteration,
the scheduler, which schedules according to expected
quantities, may be able to schedule these RFQs for pro-
duction. Prices are increased (i.e., probabilities are de-

creased) until all RFQs can be scheduled. This process
is guaranteed to converge, since the winning probabil-
ity of RFQs above their reserve prices is zero, yielding
a corresponding expected quantity of zero.

4.1. Scheduling: A Greedy Approach

Our greedy scheduler is passed both orders and of-
fers, which it sorts as follows:

• Orders are placed before offers, since offers might not be
won.

– Orders are sorted by ascending due date, then by
descending penalty.

– Offers are sorted by descending profit per cycle
(pι/cj , where j = fι), then by ascending due date,
and lastly by descending penalty.

Note that offers are not sorted by probability. We ex-
perimented with this ordering, but profitability proved
to be more important than probability.

Let o be the current order or offer and let j be o’s
SKU. The greedy scheduler addresses the orders and
offers in sorted order as follows:

1. Schedule backwards from o’s due date. That is, start by
scheduling as much as possible of SKU j on the day o
is due. If more needs to be scheduled, then schedule as
much as possible on each successively earlier day until
either no more is needed or the current day is reached.

2. If more of SKU j still needs to be produced, allocate as
much as possible from product inventory.

3. If still more of SKU j is needed, schedule forwards from
o’s due date until either all of order o is scheduled or the
cancellation date is reached.

4. If the cancellation date is reached, then cancel all sched-
uled production of SKU j for o.

Note that if o’s due date is the current day, then there
is no time to produce any more of SKU j. In this case,
the greedy scheduler begins at step 2.

5. Bidding: A Mathematical Program-

ming Approach

We now formulate mathematical programs to solve
the delivery scheduling, production scheduling, and
bidding problems. Our proposed solution to the bid-
ding problem relies on a solution to the production
scheduling problem. Similarly, our proposed solution to
the production scheduling problem relies on a solution
to the delivery scheduling problem. In our exposition,
we distinguish between simple optimization problems,
in which there is no uncertainty, and stochastic opti-
mization problems. We present optimal solutions to the
simple subproblems before describing our approximate
solutions to the stochastic optimization problems. All
solutions are described in terms of the variables, con-
stants, and abbreviations listed in Figure 3.

5.1. Simple Scheduling

In simple scheduling, there is no uncertainty because
there are no customer RFQs. The sole purpose of sim-
ple scheduling is to fill standing customer orders.

5.1.1. Simple Delivery Scheduling The (sim-
ple) delivery scheduling problem is one of allocating
SKUs in product inventory to customer orders, given a
(D + E)-day production schedule (see Figure 4). The
following integer program solves the delivery schedul-
ing problem. (Note: yjl is constant in this formulation.)

max
z

O
∑

i=1

[(

di+E
∑

l=1

zilπil

)

− ζiρi(di+E)

]

(1)

subject to:

zil ∈ {0, 1}, ∀i, l (2)
di+E
∑

l=1

zil ≤ 1, ∀i (3)

t
∑

l=1

∑

{i | fij=1}

qizil ≤ bj +

t−1
∑

l=1

yjl, ∀j, t = 1, . . . , D + E

The objective (Equation 1) is to maximize revenue
and minimize penalties; but, no order can be delivered
more than once (Equation 3); and, the total quantity
of SKU j associated with orders delivered by day t can-
not exceed the total inventory of SKU j produced by
day t − 1 plus any initial inventory (Equation 4).

5.1.2. Simple Production Scheduling The sim-
ple production scheduling problem is one of allocating
cycles to SKUs, given a set of customer orders, initial
component and product inventory, and a (D + E)-day
procurement schedule (see Figure 5).

Variables
xι bidding policy: bid price for RFQ ι
yjl production schedule: quantity of SKU j

scheduled for production on day l
zil delivery schedule:

1 if order i is delivered on day l; 0 otherwise
z′

ιl delivery schedule:
1 if RFQ ι is delivered on day l; 0 otherwise

Constants in the Objective Functions
R number of RFQs
O number of orders
D latest due date among all orders
E number of days before a late order is canceled
qi quantity of order i
di due date of order i
pi revenue for delivering order i on or before di + E
ρil penalty incurred if order i is delivered on day l
q′ι quantity of RFQ ι
d′

ι due date of RFQ ι
ρ′

ιl penalty incurred if RFQ ι is delivered on day l

Abbreviations in the Objective Functions
πil revenue earned by delivering order i on day l

πil =

{

qipi l ≤ di

qipi − ρil di < l ≤ di + E

π′
ιl(p) revenue earned by delivering RFQ ι on day l

at price p

π′
ιl(p) =

{

q′ιp l ≤ d′
ι

q′ιp − ρ′
ιl d′

ι < l ≤ d′
ι + E

ζi 1 if order i is not delivered at all; 0 otherwise

ζi = 1 −

di+E
∑

l=1

zil

ζ′
ι 1 if RFQ ι is not delivered at all; 0 otherwise

ζ′
ι = 1 −

d′

ι+E
∑

l=2

z′
ιl

Additional Constants in the Constraints
ak components of type k in initial inventory
αkl components of type k delivered on day l + 1
bj number of PCs of SKU j in initial inventory
cj cycles expended to produce one PC of SKU j
ejk 1 if SKU j contains component type k; 0 otherwise
fij 1 if order i is for SKU type j; 0 otherwise
f ′

ιj 1 if RFQ ι is for SKU type j; 0 otherwise
Cd number of cycles on day d

Probabilistic Pricing Model

Pι(p) probability of winning RFQ ι at price p

Figure 3.MathematicalProgrammingVariables,

Constants, and Abbreviations

Delivery Scheduling

Inputs:
Production Schedule

Set of Customer Orders
Product Inventory

Output:
Delivery Schedule: map from SKUs to Customer Orders

Figure 4. Simple Delivery Scheduling

Simple Production Scheduling

Inputs:
Set of Customer Orders
Procurement Schedule
Component Inventory
Product Inventory

Outputs:
Production Schedule: map from Cycles to SKUs
Delivery Schedule: map from SKUs to Customer Orders

Figure 5. Simple Production Scheduling

The following integer program solves the simple pro-
duction scheduling problem.

max
y,z

O
∑

i=1

[(

di+E
∑

l=1

zilπil

)

− ζiρi(di+E)

]

(5)

subject to Constraints 2, 3, 4, and the following:

yjl ∈ Z≥0, ∀j, l (6)
t
∑

l=1

∑

{j | ejk=1}

yjl ≤ ak +

t−1
∑

l=1

αkl ∀k, t (7)

∑

j

cjyjl ≤ Cl, ∀l (8)

As in delivery scheduling, the objective (Equation 5)
is to maximize revenue and minimize penalties; and, all
of the delivery scheduling constraints still apply. In ad-
dition, Equation 7 expresses the resource constraint on
components: The total quantity of component k used
through day t cannot exceed the total quantity of com-
ponent k delivered by day t − 1 plus any initial inven-
tory of component k. Equation 8 enforces the capac-
ity constraint: The total number of production cycles
used to produce all SKU types on day l cannot ex-
ceed the machine’s capacity on day l.

5.2. Stochastic Scheduling and Bidding

Allowing for customer RFQs as well as standing cus-
tomer orders introduces uncertainty into the schedul-
ing problems. This uncertainty also arises in the bid-
ding problem, where its exact nature depends on bids.

To handle this uncertainty, the scheduling problem
can be formulated as a stochastic program (see Benisch
et. al. [1]). In solving this stochastic program, we
show that the sample average approximation method
(SAA) [4] outperforms the expected value method [2]
on this problem. Nonetheless, we relied on the expected
value method in our implementation of Botticelli-
2003 because it readily applies to the bidding problem,
whereas SAA does not.

5.2.1. Expected Production Scheduling In the
production scheduling problem, the objective is to al-
locate cycles to SKUs not only to fill existing customer
orders, but in addition to fill offers—customer RFQs
equipped with bid prices—which may or may not be-
come orders. We model this uncertainty by associat-
ing probabilities with offers: offers with low bid prices
are assigned high probabilities, whereas offers with high
bid prices are assigned low probabilities.

Production Scheduling

Additional Inputs:
Bidding Policy

Product Pricing Model
Set of Customer Orders
Procurement Schedule
Component Inventory
Product Inventory

Outputs:
Production Schedule: map from Cycles to SKUs
Delivery Schedule: map from SKUs to Customer Orders

Figure 6. Production Scheduling

The following integer program approximates the
production scheduling problem. (Note: xι is constant
in this formulation.)

max
y,z,z′

O
∑

i=1

[(

di+E
∑

l=1

zilπil

)

− ζiρi(di+E)

]

+

R
∑

ι=1

Pι(xι)









d′

ι+E
∑

l=2

z′
ιlπ

′
ιl(xι)



− ζ′
ιρ

′
ι(d′

ι+E)



 (9)

subject to Constraints 2, 3, 6, 7, 8, and the following:

z′
ιl ∈ {0, 1}, ∀ι, l (10)

d′

ι+E
∑

l=2

z′
ιl ≤ 1, ∀ι (11)

t
∑

l=1

∑

{i | fij=1}

qizil +

t
∑

l=2

∑

{ι | f ′

ιj
=1}

Pι(xι)q
′
ιz

′
ιl ≤

bj +

t−1
∑

l=1

yjl, ∀j, t (12)

The objective function (Equation 9) maximizes prof-
its from orders and expected profits from RFQs. Equa-
tion 11 states that no RFQ can be delivered more than
once. Equation 12, which considers RFQs as well as
orders, replaces Equation 4. Note the use of expected
quantity Pι(xι)q

′

ι regarding RFQs in Equation 12.

Bidding

Inputs:
Product Pricing Model
Set of Customer RFQs
Set of Customer Orders
Procurement Schedule
Component Inventory
Product Inventory

Outputs:
Bidding Policy: map from Customer RFQs to Prices
Production Schedule: map from Cycles to SKUs
Delivery Schedule: map from SKUs to Customer Orders

Figure 7. Bidding

5.2.2. Bidding The objective in the bidding prob-
lem is to find an optimal bidding policy. We solve
this problem by extending the solution to the pro-
duction scheduling problem based on the expected
value method. In production scheduling, all RFQs
are equipped with bid prices, which are constants.
In the bidding problem, the prices at which to offer
to fill RFQs are variables. Once prices become vari-
ables rather than constants, the objective function is
no longer linear. (In fact, in our formulation, it is not
even quadratic.) Thus, in our implementation we dis-
cretize prices to recover a linear formulation:

M number of prices

µmι price of RFQ ι with index m

z′
ιlm 1 if RFQ ι is delivered on day l at price indexed by m;

0 otherwise

Now the following integer program approximates the
bidding problem.

max
y,z,z′

O
∑

i=1

[(

di+E
∑

l=1

zilπil

)

− ζiρi(di+E)

]

+

M
∑

m=1

R
∑

ι=1

Pι(µmι)









d′

ι+E
∑

l=2

z′
ιlmπ′

ιl(µmι)



− ζ′
ιρ

′
ι(d′

ι+E)





(13)

subject to Constraints 2, 3, 6, 7, 8, and the following:

z′
ιlm ∈ {0, 1}, ∀ι, l, m (14)

M
∑

m=1

d′

ι+E
∑

l=2

z′
ιlm ≤ 1, ∀ι (15)

t
∑

l=1

∑

{i | fij=1}

qizil +

M
∑

m=1

t
∑

l=2

∑

{ι | f ′

ιj
=1}

Pι(z
′
ιlm)q′ιz

′
ιlm ≤

bj +

t−1
∑

l=1

yjl, ∀j, t (16)

6. Experiments

In this section we report on experiments designed to
compare the performance of three bidding algorithms,
one based on our mathematical programming solution,
one hill-climbing bidder, and one blend of the two.

6.1. Heuristics

To bid optimally in TAC SCM, an agent would have
to optimize with respect to (i) each of the other agent’s
individual strategies; and (ii) all possible future sce-
narios, weighted by their likelihoods. Agent modeling
is not feasible in TAC, since the behavior of individ-
ual agents is observed only by the server. Thus, we
collapse all agents’ behaviors into one model (see Sec-
tion 6.1.1). Furthermore, since it would be intractable
to consider all possible futures, we rely on an heuris-
tic that stands in the place of simulating the future—
specifically, future orders (see Section 6.1.2).

6.1.1. Modeling The modeling module predicts the
relationship between the bid price of an offer and the
probability of winning that offer. There are several
sources of information available for modeling this re-
lationship. In our implementation, we utilize two: the
first is a report provided by the server each day with the
maximum and minimum closing prices for each SKU on
the previous day; the second is Botticelli’s past of-
fer prices and the orders that resulted. Our modeling
module is concerned only with price and probability re-
lationships for each SKU, rather than for each RFQ,
since maximum and minimum prices are SKU-specific.

For each SKU, the modeler plots the minimum and
maximum prices from the previous day at probabil-
ities 1 and 0, respectively. Intuitively, low prices are
likely to be winning prices, while high prices are likely
to be losing prices. In addition, for each of the previ-
ous d days, Botticelli’s average offer prices are plot-
ted against the ratio of the number of offers won to the
number of offers issued. In total, our modeling mod-
ule is provided with d + 2 points, which it fits using a
least-squares linear regression. This linear cdf (price vs.
probability graph) is adopted as the model that is in-
put to the bidding module. (See Figure 8.)

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1200 1400 1600 1800 2000

Figure 8. Price vs. Probability for a SKU. Dia-
monds are data points from offers sent during

the past d days. Squares are data points from the

previous day’s minimum and maximum prices.

By experimentation, we found the value of 5 to be
a good choice for d. This value allowed Botticelli to
be responsive enough to the changes in price that of-
ten accompanied another agent receiving a shipment of
supplies, but prevented any drastic overreactions. We
experimented with using additional information to cre-
ate more stable models, such as providing weights for
points based on the number of offers they represented,
and maintaining the average of the d previous days’
minimum and maximum prices. These methods, how-
ever, did not respond well to price jumps that were typ-
ical of the 2003 TAC SCM competition.

6.1.2. The Triangle Method In scheduling for
multiple days of production, Botticelli’s scheduling
module relies on the following heuristic: do not use all
cycles on all days, but rather save production cycles
on future days for future RFQs (see Figure 9). This
heuristic is motivated by two assumptions. First, higher
revenues can be earned by winning the same quan-
tity of RFQs over multiple days, rather than winning a
large quantity of RFQs on one day, since, according to
our model, an agent can only win a large quantity on
one day by bidding low prices. Second, the “character”
RFQs of tomorrow will not differ significantly from the
RFQs of today, since all RFQs are drawn from a uni-
form distribution. In particular, future RFQs will not
be significantly better or worse than today’s RFQs in
terms of quantity, due date, etc. If, however, a change in
the number of RFQs is predicted,1 Botticelli saves
more (less) cycles if the number of RFQs is predicted
to increase (decrease), since prices tend to increase (de-
crease) accordingly.

1 Botticelli predicts the level of demand using a particle filter.
Details of this approach are beyond the scope of this paper.

d1
0

C

D

C
ycles

Days

C

Orders
Existing

Future
Orders

Current
RFQs

d

Figure 9. On day d, only Cd = C((D−d)+1)
D

cycles
are made available to the scheduler. Cycles out-

side the triangle are reserved for future orders. D

is the number of days of production in the sched-
ule. C is the daily production capacity.

6.2. Experimental Setup

Our experiments consisted of 20 day trials, which
proceeded as follows: On each day, the algorithms re-
ceived a randomly generated set of RFQs drawn from
a distribution similar to that of the TAC SCM game
specification. Specifically, 300 RFQs were generated at
random, with parameters uniformly distributed in the
ranges shown in Table 1. Given these RFQs, the algo-
rithms produced a bidding policy as well as produc-
tion and delivery schedules for D = 10 days. Based on
its bid prices and the corresponding probabilities, an
algorithm won orders for some of the RFQs. The al-
gorithms were then responsible for producing and de-
livering the products for these RFQs before their due
dates or they were penalized according to the rate spec-
ified in the RFQ. The tests continued in this fashion for
20 days; this number was long enough to allow the al-
gorithms to distinguish themselves, but short enough
to allow several hundred iterations.

In order to mitigate any start effects in our exper-
iments, the algorithms were initialized with the same
set of 150 customer orders (thus, the first day looked
like all other days). We made the simplifying assump-
tion that all algorithms had an infinite component in-
ventory, which, as alluded to earlier, is an artifact of
the TAC SCM game design in 2003. Finally, to isolate
the effects of the bidding algorithms, we relied on mod-
els that could perfectly predict the likelihood of win-
ning any RFQ at any price.

Parameter Range
Price [$1600, $2300]
Quantity [1, 20]
SKU [1, 16]
Penalty [5%, 15%] of Price

Table 1. Uniform Distribution Ranges

Profits Deliveries Price Penalty
HG $7,781,100 6,847 $1,193 $505,610
HE $8,019,600 7,286 $1,095 $285,950
EB $9,600,900 7,860 $1,222 $113,660

Table 2. Experimental Results

6.3. Experimental Results

The algorithms included in our experiments were the
hill-climbing bidder with a greedy production scheduler
(HG), the hill-climbing bidder with an expected pro-
duction scheduler (HE), and the expected bidder (EB),
which used its own schedule for production. Both of the
hill-climbing bidders utilized a greedy scheduler to eval-
uate candidate bidding policies, as such policies needed
to be evaluated hundreds of times. (The greedy sched-
uler completed in .01 seconds, on average, whereas the
expected production scheduler completed in 1 second.)
However, we allowed one of the hill-climbing bidders to
utilize an expected scheduler for production scheduling
only. Our hypothesis was that the expected bidder with
built in scheduling and delivery modules would out per-
form all of the others, as it would be capable of per-
forming a more global optimization while solving the
bidding problem.

Relevant statistics of the 500 trials are given in Ta-
ble 2. The mean profits of each algorithm over 20
days with 95% confidence intervals are shown in Ta-
ble 3. These results validated our hypothesis. The ex-
pected bidder outperformed both instances of the the
hill-climbing bidders in every category in Table 2. The
95% confidence intervals shown in Table 3 reveal that
the difference in profits is statistically significant. The
addition of the expected scheduling algorithm to the
hill-climbing bidder helped it to achieve fewer penal-
ties by improving the production scheduling solutions;
however, the lack of a global bidding strategy still crip-
pled its abilities. It seems that the expected bidder pro-
duced results that were close to optimal, since its to-
tal penalty was relatively small and it managed to uti-
lize its factory at nearly full capacity each day without
wasting many finished products.

Low High
HG $7,756k $7,804k
HE $7,988k $8,050k
EB $9,585k $9,617k

Table 3. Mean Profits—95% Confidence Intervals

7. Conclusion

Following Kiekintveld [3], we identify three key is-
sues in supply chain management that are modeled in
TAC SCM: (i) uncertainty about the future; (ii) strate-
gic behavior among the entities; and (iii) dynamism:
i.e., the temporal nature of the chain. Botticelli

adequately handles uncertainty (in the bidding prob-
lem), but makes simplifying assumptions to handle
the strategic and dynamic components of the game.
Rather than model each competing agent’s strategic
behavior individually, we collapse all agents’ behav-
iors into one model, and optimize with respect to
this model. In essence, we use decision-theoretic opti-
mization techniques to approximate solutions to game-
theoretic problems. Dynamic optimization models and
techniques (e.g. MDPs) might be applicable in TAC
SCM, but to optimize with respect to all possible fu-
ture scenarios is clearly intractable. Instead, we rely on
an heuristic we call the triangle method, by which we
save production cycles on future days for future RFQs,
particularly if prices are predicted to increase. In future
versions of Botticelli, we plan to build more power-
ful models of the agents’ strategic environment, and
to incorporate more sophisticated methods of dynamic
optimization, particularly in the procurement problem.

References

[1] M. Benisch, R. Bent, A. Greenwald, V. Naroditskiy, and
M. Tschantz. A stochastic programming approach to tac
scm. Submitted for publication, November 2003.

[2] J. Birge and F. Louveaux. Introduction to Stochastic Pro-

gramming. Springer, New York, NY, 1997.

[3] C. Kiekintveld, M. Wellman, S. Singh, J. Estelle,
Y. Vorobeychik, V. Soni, and M. Rudary. Distributed
feedback control for decision making on supply chains. In
Fourteenth InternationalConference onAutomatedPlan-

ning and Scheduling, 2004. To appear.

[4] A. Kleywegt, A. Shapiro, and T. Homen-De-Mello. The
sample average approximation method for stochastic
discrete optimization. SIAM Journal of Optimization,
12:479–502, 2001.

[5] D. Pardoe and P. Stone. Tactex-03: A supply chain man-
agement agent. Submitted for publication, Jan 2004.

