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Background

No-external-regret learning converges to the set of minimax equilibria

in zero-sum games. [e.g., Freund and Schapire 1996]

No-internal-regret learning converges to the set of correlated equilibria

in general-sum games. [e.g., Foster and Vohra 1997]



Foreground

1. Definitions
o A continuum of no-regret properties, called no-®d-regret.

o A continuum of game-theoretic equilibria, called ®-equilibria.

2. EXxistence Theorem

o Constructive proof: No-d-regret learning algorithms exist, V.

3. Convergence Theorem

o No-®P-regret learning converges to the set of ®d-equilibria, V.

4. Surprising Result
o No-internal-regret is the strongest form of no-d-regret learning.

o Therefore, no no-®d-regret algorithm learns Nash equilibria.



Outline

o Game Theory
o Single Agent Learning Model

o Multiagent Learning & Game-Theoretic Equilibria



Game Theory: A Crash Course

1. General-Sum Games
o Nash Equilibrium

o Correlated Equilibrium

2. Zero-Sum Games

o Minimax Equilibrium



An Example

Prisoners’ Dilemma

C | D
Cl44]0,5
D50 1,1

C': Cooperate
D: Defect



One-Shot Games

A one-shot game is a 3-tuple I' = (I, (A;, r)icr) Where
o I is a set of players

o for all players : e I
— a set of pure actions A;

— a reward function r; : A — R, where A =1][._; A



One-Shot Games

A one-shot game is a 3-tuple I' = (I, (A;, r)icr) Where
o I is a set of players

o for all players : e I
— a set of pure actions A;

— a reward function r; : A — R, where A =1][._; A

The players can employ randomized or mixed actions:

o for all players €1
— a set of mixed actions Q; = A(4;)

— an expected reward function r; : Q — R, where Q = A(A)
s.t. for all g € Q, ri(q) = > ,c49(a)ri(a)



Nash Equilibrium

Notation
Write a = (aj,a_;) € A fora; € A; and a_; € A_; = Hj#z. Aj.
Write ¢ = (¢i,q-i) € Q for ¢ € Qi and ¢g—; € Q- = [[,; Qs-

Definition
A Nash equilibrium is a mixed action profile ¢* € Q s.t. r;(¢*) > ri(q;, q*;),

for all players ¢ and for all mixed actions ¢; € Q;.

Theorem [Nash 51]
Every finite strategic form game has a mixed strategy Nash equilibrium.



Correlated Equilibrium

Chicken
L R
T | 6,6 2,7
B|7,2]0,0

CE

L | R
T | 1/2 | 1/4
B|1/4| 0

max 127, + OmrRr + O, + OmBRr
subject to

mrr, + mrr + 7L + T™Br = 1
TTL, TTR, TBL, TBR = O

6 + 27 R
(7 g+ OmgB
67 L + 271
(g + Omp|R

IV IV IV IV

(7 + Omgr
67 + 27R B
r(7r i, + O7pL
67 R + 27BR



Correlated Equilibrium

Chicken
L R
T | 6,6 2,7
B|7,2]0,0

CE

L | R
T | 1/2 | 1/4
B|1/4| 0

max 127, + OmrRr + O, + OmBRr
subject to

mrr, + mrr + 7L + T™Br = 1
TTL, TTR, TBL, TBR = O

Oy + 27rR
(mpr + OmBRr
6y + 27y
(g + OmgR

IV IV IV IV

(mrr + Omrr
67 + 27BR
(mrr, + OmpyL
6mrRr + 27BR

10



Correlated Equilibrium

Definition
A mixed action profile ¢* € ) is a correlated equilibrium iff
for all pure actions j,k € A;,

> qGa) (ri(Ga—) —ri(k,a-3)) > 0 (1)

a_ €A,

Observe
Every Nash equilibrium is a correlated equilibrium =
Every finite strategic form game has a correlated equilibrium.
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Zero-Sum Games

Matching Pennies

H

T

—1,1

1,1

H
T

1,-1

—1,1

Rock-Paper-Scissors

R P S
R| 0,0 | —1,1]1,-1
P 17_1 O,O —1,1
S _171 1,_1 0,0

Sieyri(a) =0, for alla € A
S ria) = ¢, for all a € A, for some ¢ € R
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Minimax Equilibrium

Example

L
T 1
B4

w| V|

Definition
A mixed action profile (qi,¢%) € Q is a minimax equilibrium in a two-player,
zero-sum game iff

o r1(q],q5) > r1(J4,¢5), Vj € Ax
o lx(q7,q5) <la(qi, k), Vk € As
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Single Agent Learning Model

o set of actions N ={1,...,n}

o for all times t,
— mixed action vector ¢t € Q = A(N)
— pure action vector a! = e; for some ¢

— reward vector r* = (r1,...,m,) € [0,1]"

A learning algorithm A is a sequence of functions ¢t : History!’™! — Q,

where a History is a sequence of action-reward pairs (at,r!), (a?,r?),....
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Transformations

Mixed Transformations

{6:Q—Q}
the set of all linear transformations
the set of all row stochastic matrices

P INEAR

Pswap = {0 : Q — Q | ¢ deterministic} C PLinear

Pure Transformations
Fswap ={F : N — N}
— the set of all pure transformations
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Isomorphism

The operation of elements of Fswap On N =
the operation of elements of gwap ON Q

o
Vk €k¢

OF(i)=j (2)

Example If n=4and F={1—2,2+— 3,3— 4,4 +— 1}, then

= OOO
O OO

OO0 oOok
OoOoOr O

(91,92, 93,94)¢ = (q4,41,92,93), Tor all {q1,92,q3,q4) € Q.
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External Regret Matrices

Fext = {FJ € Fswar|j € N}, where FI(k) = j
PexT = {(/5] c CDSWAPU c N}, where ep¢) = €;

Example If n = 4, then

0100
> _|0100
“=1010 0

0100

(41,92, 93, 94)%% = (0,1,0,0), for all {(q1,92,93,494) € Q.



Internal Regret Matrices

k otherwise
er. Ootherwise

Fint = {FY € Fswaprlij € N}, where FU(k) = {9 T k=1

PinT = {¢7’] € CDS\/\/Ap|ij c N}, where ek¢ij = {

Example If n =4, then

1 00O
>3 |00 10
P = O 010
|0 0 0 1|

(q1,42, 93, 94)9>> = {q1,0, g2 + q3,q4), for all {q1,q2,q3,q4) € Q.
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Regret Vector

p € R® with py(r,a) =r-ap—r-a

Approachability

U CV is said to be approachable iff there exists learning algorithm

A =q' q¢°, ... s.t. for any sequence of rewards r!,r? ...,

lim d(U, ") = lim inf d(u,p') =0
t—o00 t—oo uclU

a.s., where p' denotes the average value of p through time ¢.

No-Regret Learning

A no-d-regret learning algorithm is one whose average regret
approaches the negative orthant R®.
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Blackwell’'s T heorem

The negative orthant R® is approachable iff there exists a learning algorithm
A=ql ¢ ... s.t. for any sequence of rewards rl,r2, ...,

p(r' T g *th - (pHT <0 (4)

for all times ¢, where z1T = max{z, 0}.

Moreover, this procedure can be used to approach the negative orthant R®:
o if pt € R®, play arbitrarily;

o if pt € R®\ R®, play according to \A.
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Regret Matching Algorithm

Given &
Given Y ¢ R$

If Z¢E¢ Y, = 0, play arbitrarily
If Y seq Yo > 0, define stochastic matrix
ZngCD PYy
- (5)
ZngCD ¢

A=A(DP,Y) =

play mixed strategy q = gA

Regret Matching Theorem

Regret matching satisfies the generalized Blackwell condition:
10<T7 Q) Y =0
21



Proof
p(r,q) - Y =
= ZP¢(T,Q)Y¢
peED
: Z(T . (6)
2 q Q)Y
: ' (7)
; (g6Yy — qYy)
: (8)
T qZ¢Y—
<¢ed> ’ q;}%)
: e (9)
<ZY¢> Zqﬁecb
sed Zgbeb q)
: (Z (10)
Y, | r-
2 ¢> (¢A —q)
_ (11)
— Y,
(; ¢>>7“ (¢ —q)
= 0
(12)
(13)
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Generic Regret Matching Algorithm (&, g)

fort=1,...,
1. play mixed strategy ¢’
2. realize pure action at
3. observe rewards rt
4. for all p € @
— compute instantaneous regret p = rt-al¢p —rt-al

— update cumulative regret vector X} = X(’;‘l + o,

5. compute Y = g(X?)

Z¢€¢ Yy

6. compute A = ==—
D oo Vo
PpED

7. solve for a fixed point ¢/t = ¢tt1 A



Special Cases of Regret Matching

Foster and Vohra 97 (®dinT)
Hart and Mas-Colell 00 (®exT)
Choose G(X) = £3°,(X;1)? so that g,(X) = X;

Freund and Schapire 95 (®exT)
Cesa-Bianchi and Lugosi 03 (dinT)
Choose G(X) = %In (-, e™) so that gip(X) = e/ >, e
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Multiagent Model

o a set of players I (v € 1)

o for all players z,

a set of pure actions A;
a set of mixed actions @Q; = A(A;)
a reward function r; : A — [0, 1], where A =], A;

an expected reward function r; : Q — [0, 1], where Q = A(A)
s.t. for all g € Q, ri(q) = > ,c49(a)ri(a)

a set &,
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Pd-Equilibrium

A mixed action profile ¢* € Q is a ®-equilibrium iff
ri(;(¢)) < r;(¢*), for all players i and for all ¢; € ®,.

Examples
Correlated Equilibrium: &; = $inT, for all players ¢
Generalized Minimax Equilibrium: &, = ®ex1, for all players 2
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Convergence Theorem

Each player ¢ plays via some no-d,-regret algorithm on the path of play iff
the joint empirical distribution of play converges to the set of d-equilibria,
almost surely.

Proof Sketch
For all players 2, for all ¢; € P;,

lim sup ri(¢i(2")) —ri(2") (14)

= Ilmsup Zn(qbz(cf) a’, —%Zn(az,azi (15)
T=1

= limsup~ Z (ri(¢i(al),a”;) — ri(al,a”;)) (16)

< 0 (17)

almost surely.

27



Zero-Sum Games

Matching Pennies

H

T

1,1

1,1

H
T

1,1

1,1

Rock-Paper-5Scissors

R P S
R| 0,0 | —-1,1[1,—-1
P|l1,-1] 0,0 | —-1,1
S| —-1,111,-1] 0,0
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Matching Pennies

Weights

NER exponential [n = 0.037233]: Matching Pennies

""""""""
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Frequencies

NER exponential [n = 0.037233]: Matching Pennies

1
0.9 — Player 1: H i
— Player1: T
0.8 — Player 2: H B
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0 200 400 ] 600 800 1000
Time
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Rock-Paper-Scissors

Weights Frequencies
NER polynomial [p = 2]: Rock, Paper, Scissors NER polynomial [p = 2]: Rock, Paper, Scissors
1 I T 1 T T T T
R R
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General-Sum Games

Shapley Game

L | C | R
T | 0,0 1,0 0,1
M|[0,100]1,0
B|1,0]0,1]0,0

Y

Correlated Equilibrium

L | C | R
T 0 [1/6]1/6
M|[1/6] 0 |1/6
B|1/6|1/6| O
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Shapley Game: No Internal Regret Learning

Frequencies

NIR polynomial [p = 2]: Shapley Game
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NIR exponential [n = 0.014823]: Shapley Game
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Shapley Game: No Internal Regret Learning

Joint Frequencies

NIR polynomial [p = 2]: Shapley Game
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NIR exponential [n = 0.014823]: Shapley Game
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Shapley Game: No External Regret Learning

Empirical Frequency

o
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NER polynomial [p = 2]: Shapley Game
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Summary

o No-external- and no-internal-regret can be defined along one continuum,
no-d-regret.

o No-d-regret learning algorithms exist, V.
o No-d-regret learning converges to the set of ®-equilibria, V.

o No-internal-regret learning is the strongest form of no-®d-regret learning.
Therefore, Nash equilibrium cannot be learned via no-®-regret learning.
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“A little rationality goes a long way" [Hart 03]

Regret Minimization vs. Utility Maximization
o RM is easy to implement.
o RM justifies randomness in actions.

o Can RM be used to explain human behavior?
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