Game-Theoretic Learning:

Regret Minimization vs. Utility Maximization

Amy Greenwald

with David Gondek, Amir Jafari, and Casey Marks
Brown University

University of California at Berkeley March 30, 2005

Background

No-external-regret learning converges to the set of minimax equilibria in zero-sum games. [e.g., Freund and Schapire 1996]

No-internal-regret learning converges to the set of correlated equilibria in general-sum games. [e.g., Foster and Vohra 1997]

Foreground

1. Definitions

- A continuum of no-regret properties, called no-Φ-regret.
- A continuum of game-theoretic equilibria, called Φ-equilibria.

2. Existence Theorem

Constructive proof: No-Ф-regret learning algorithms exist, ∀Ф.

3. Convergence Theorem

No-Φ-regret learning converges to the set of Φ-equilibria, ∀Φ.

4. Surprising Result

- ∘ No-internal-regret is the strongest form of no-Φ-regret learning.
- Therefore, no no-Φ-regret algorithm learns Nash equilibria.

Outline

- Game Theory
- Single Agent Learning Model
- o Multiagent Learning & Game-Theoretic Equilibria

Game Theory: A Crash Course

- 1. General-Sum Games
 - Nash Equilibrium
 - o Correlated Equilibrium
- 2. Zero-Sum Games
 - o Minimax Equilibrium

An Example

Prisoners' Dilemma

	C	D
C	4,4	0,5
D	5,0	1, 1

C: Cooperate

D: Defect

One-Shot Games

A one-shot game is a 3-tuple $\Gamma = (I, (A_i, r_i)_{i \in I})$ where

- \circ I is a set of players
- \circ for all players $i \in I$
 - a set of pure actions A_i
 - a reward function $r_i:A\to\mathbb{R}$, where $A=\prod_{i\in I}A_i$

 \mathbb{R}

One-Shot Games

A one-shot game is a 3-tuple $\Gamma = (I, (A_i, r_i)_{i \in I})$ where

- ∘ *I* is a set of players
- o for all players $i \in I$
 - a set of pure actions A_i
 - a reward function $r_i:A\to\mathbb{R}$, where $A=\prod_{i\in I}A_i$

The players can employ randomized or mixed actions:

- \circ for all players $i \in I$
 - a set of mixed actions $Q_i = \Delta(A_i)$
 - an expected reward function $r_i: Q \to \mathbb{R}$, where $Q = \Delta(A)$ s.t. for all $q \in Q$, $r_i(q) = \sum_{a \in A} q(a)r_i(a)$

Nash Equilibrium

Notation

Write $a = (a_i, a_{-i}) \in A$ for $a_i \in A_i$ and $a_{-i} \in A_{-i} = \prod_{j \neq i} A_j$. Write $q = (q_i, q_{-i}) \in Q$ for $q_i \in Q_i$ and $q_{-i} \in Q_{-i} = \prod_{j \neq i} Q_i$.

Definition

A Nash equilibrium is a mixed action profile $q^* \in Q$ s.t. $r_i(q^*) \ge r_i(q_i, q_{-i}^*)$, for all players i and for all mixed actions $q_i \in Q_i$.

Theorem [Nash 51]

Every finite strategic form game has a mixed strategy Nash equilibrium.

Correlated Equilibrium

Chicken

	L	R
T	6,6	2,7
B	7,2	0,0

CE

<u> </u>			
	L	R	
T	1/2	1/4	
B	1/4	0	

$$\max 12\pi_{TL} + 9\pi_{TR} + 9\pi_{BL} + 0\pi_{BR}$$

subject to

$$\pi_{TL} + \pi_{TR} + \pi_{BL} + \pi_{BR} = 1$$

 $\pi_{TL}, \pi_{TR}, \pi_{BL}, \pi_{BR} \ge 0$

$$6\pi_{L|T} + 2\pi_{R|T} \geq 7\pi_{L|T} + 0\pi_{R|T}$$

 $7\pi_{L|B} + 0\pi_{R|B} \geq 6\pi_{L|B} + 2\pi_{R|B}$
 $6\pi_{T|L} + 2\pi_{B|L} \geq 7\pi_{T|L} + 0\pi_{B|L}$
 $7\pi_{T|R} + 0\pi_{B|R} \geq 6\pi_{T|R} + 2\pi_{B|R}$

Correlated Equilibrium

Chicken

	L	R
T	6,6	2,7
B	7,2	0,0

CE

	~			
		R		
T	1/2	1/4		
B	1/4	0		

$$\max 12\pi_{TL} + 9\pi_{TR} + 9\pi_{BL} + 0\pi_{BR}$$

$$\pi_{TL} + \pi_{TR} + \pi_{BL} + \pi_{BR} = 1$$

 $\pi_{TL}, \pi_{TR}, \pi_{BL}, \pi_{BR} \ge 0$

$$6\pi_{TL} + 2\pi_{TR} \geq 7\pi_{TL} + 0\pi_{TR}$$

$$7\pi_{BL} + 0\pi_{BR} \geq 6\pi_{BL} + 2\pi_{BR}$$

$$6\pi_{TL} + 2\pi_{BL} \geq 7\pi_{TL} + 0\pi_{BL}$$

$$7\pi_{TR} + 0\pi_{BR} \geq 6\pi_{TR} + 2\pi_{BR}$$

Correlated Equilibrium

Definition

A mixed action profile $q^* \in Q$ is a correlated equilibrium iff for all pure actions $j,k \in A_i$,

$$\sum_{a_{-i} \in A_{-i}} q(j, a_{-i}) \ (r_i(j, a_{-i}) - r_i(k, a_{-i})) \ge 0 \tag{1}$$

Observe

Every Nash equilibrium is a correlated equilibrium \Rightarrow Every finite strategic form game has a correlated equilibrium.

Zero-Sum Games

Matching Pennies

	H	T
H	-1, 1	1,-1
T	1,-1	-1, 1

Rock-Paper-Scissors

	R	P	S
R	0,0	-1, 1	1,-1
P	1, -1	0,0	-1, 1
S	-1, 1	1, -1	0,0

$$\sum_{i \in I} r_i(a) = 0, \text{ for all } a \in A$$

$$\sum_{i \in I} r_i(a) = c, \text{ for all } a \in A, \text{ for some } c \in \mathbb{R}$$

Minimax Equilibrium

Example

	L	R
T	1	2
B	4	3

Definition

A mixed action profile $(q_1^*,q_2^*)\in Q$ is a minimax equilibrium in a two-player, zero-sum game iff

$$\circ r_1(q_1^*, q_2^*) \ge r_1(j, q_2^*), \ \forall j \in A_1$$

$$\circ l_2(q_1^*, q_2^*) \le l_2(q_1^*, k), \ \forall k \in A_2$$

Single Agent Learning Model

- \circ set of actions $N = \{1, \dots, n\}$
- \circ for all times t,
 - mixed action vector $q^t \in Q = \Delta(N)$
 - pure action vector $a^t = e_i$ for some i
 - reward vector $r^t = (r_1, \dots, r_n) \in [0, 1]^n$

A learning algorithm \mathcal{A} is a sequence of functions q^t : History $^{t-1} \to Q$, where a History is a sequence of action-reward pairs $(a^1, r^1), (a^2, r^2), \ldots$

Transformations

Mixed Transformations

$$\begin{split} \Phi_{\mathsf{LINEAR}} &= \{\phi: Q \to Q\} \\ &= \mathsf{the} \; \mathsf{set} \; \mathsf{of} \; \mathsf{all} \; \mathsf{linear} \; \mathsf{transformations} \\ &= \mathsf{the} \; \mathsf{set} \; \mathsf{of} \; \mathsf{all} \; \mathsf{row} \; \mathsf{stochastic} \; \mathsf{matrices} \end{split}$$

$$\Phi_{\mathsf{SWAP}} = \{\phi : Q \to Q \mid \phi \text{ deterministic}\} \subset \Phi_{\mathsf{LINEAR}}$$

Pure Transformations

$$\mathcal{F}_{\text{SWAP}} = \{F : N \to N\}$$

= the set of all pure transformations

Isomorphism

The operation of elements of \mathcal{F}_{SWAP} on $N \cong$ the operation of elements of Φ_{SWAP} on Q

$$\phi_{ij} = \delta_{F(i)=j} \tag{2}$$

$$\phi_{ij} = \delta_{F(i)=j}$$

$$\forall k \quad e_k \phi = e_{F(k)}$$
(2)
(3)

Example If n = 4 and $F = \{1 \mapsto 2, 2 \mapsto 3, 3 \mapsto 4, 4 \mapsto 1\}$, then

$$\phi = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

 $\langle q_1, q_2, q_3, q_4 \rangle \phi = \langle q_4, q_1, q_2, q_3 \rangle$, for all $\langle q_1, q_2, q_3, q_4 \rangle \in Q$.

External Regret Matrices

$$\mathcal{F}_{\mathsf{EXT}} = \{F^j \in \mathcal{F}_{\mathsf{SWAP}} | j \in N\}, \text{ where } F^j(k) = j$$
 $\Phi_{\mathsf{EXT}} = \{\phi^j \in \Phi_{\mathsf{SWAP}} | j \in N\}, \text{ where } e_k \phi^j = e_j$

Example If n = 4, then

$$\phi^2 = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

 $\langle q_1, q_2, q_3, q_4 \rangle \phi^2 = \langle 0, 1, 0, 0 \rangle$, for all $\langle q_1, q_2, q_3, q_4 \rangle \in Q$.

Internal Regret Matrices

$$\mathcal{F}_{\text{INT}} = \{F^{ij} \in \mathcal{F}_{\text{SWAP}} | ij \in N\}, \text{ where } F^{ij}(k) = \begin{cases} j & \text{if } k = i \\ k & \text{otherwise} \end{cases}$$

$$\Phi_{\text{INT}} = \{\phi^{ij} \in \Phi_{\text{SWAP}} | ij \in N\}, \text{ where } e_k \phi^{ij} = \begin{cases} e_j & \text{if } k = i \\ e_k & \text{otherwise} \end{cases}$$

Example If n = 4, then

$$\phi^{23} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

 $\langle q_1, q_2, q_3, q_4 \rangle \phi^{23} = \langle q_1, 0, q_2 + q_3, q_4 \rangle$, for all $\langle q_1, q_2, q_3, q_4 \rangle \in Q$.

Regret Vector

$$\rho \in \mathbb{R}^{\Phi}$$
 with $\rho_{\phi}(r,a) = r \cdot a\phi - r \cdot a$

Approachability

 $U \subseteq V$ is said to be approachable iff there exists learning algorithm $\mathcal{A} = q^1, q^2, \ldots s.t.$ for any sequence of rewards r^1, r^2, \ldots ,

$$\lim_{t\to\infty}d(U,\bar{\rho}^t)=\lim_{t\to\infty}\inf_{u\in U}d(u,\bar{\rho}^t)=0$$

a.s., where $\overline{\rho}^t$ denotes the average value of ρ through time t.

No-Regret Learning

A no- Φ -regret learning algorithm is one whose average regret approaches the negative orthant \mathbb{R}^{Φ}_{-} .

Blackwell's Theorem

The negative orthant \mathbb{R}^{Φ}_{-} is approachable iff there exists a learning algorithm $\mathcal{A}=q^1,q^2,\ldots$ s.t. for any sequence of rewards r^1,r^2,\ldots ,

$$\rho(r^{t+1}, q^{t+1}) \cdot (\bar{\rho}^t)^+ \le 0 \tag{4}$$

for all times t, where $x^+ = \max\{x, 0\}$.

Moreover, this procedure can be used to approach the negative orthant \mathbb{R}^{Φ}_{-} :

- \circ if $\bar{\rho}^t \in \mathbb{R}^{\Phi}_-$, play arbitrarily;
- \circ if $\bar{\rho}^t \in \mathbb{R}^{\Phi} \setminus \mathbb{R}^{\Phi}_-$, play according to \mathcal{A} .

Regret Matching Algorithm

Given Φ Given $Y \in \mathbb{R}^{\Phi}_+$

If $\sum_{\phi \in \Phi} Y_{\phi} = 0$, play arbitrarily If $\sum_{\phi \in \Phi} Y_{\phi} > 0$, define stochastic matrix

$$A \equiv A(\Phi, Y) = \frac{\sum_{\phi \in \Phi} \phi Y_{\phi}}{\sum_{\phi \in \Phi} Y_{\phi}}$$
 (5)

play mixed strategy q = qA

Regret Matching Theorem

Regret matching satisfies the generalized Blackwell condition:

$$\rho(r,q) \cdot Y = 0$$

Proof

$$\rho(r,q) \cdot Y = \sum_{\phi \in \Phi} \rho_{\phi}(r,q) Y_{\phi} \tag{6}$$

$$= \sum (r \cdot q\phi - r \cdot q)Y_{\phi} \tag{7}$$

$$= \sum_{\phi \in \Phi} r \cdot (q\phi Y_{\phi} - qY_{\phi}) \tag{8}$$

$$= r \cdot \left(q \sum_{\phi \in \Phi} \phi Y_{\phi} - q \sum_{\phi \in \Phi} Y_{\phi} \right) \tag{9}$$

$$= \left(\sum_{\phi \in \Phi} Y_{\phi}\right) r \cdot \left(q \frac{\sum_{\phi \in \Phi} \phi Y_{\phi}}{\sum_{\phi \in \Phi} Y_{\phi}} - q\right) \tag{10}$$

$$= \left(\sum_{\phi \in \Phi} Y_{\phi}\right) r \cdot (qA - q) \tag{11}$$

$$= \left(\sum_{\phi \in \Phi} Y_{\phi}\right) r \cdot (q - q) \tag{12}$$

$$= 0 (13)$$

Generic Regret Matching Algorithm (Φ, g)

for $t = 1, \ldots$,

- 1. play mixed strategy q^t
- 2. realize pure action a^t
- 3. observe rewards r^t
- 4. for all $\phi \in \Phi$
 - compute instantaneous regret $\rho_\phi^t = r^t \cdot a^t \phi r^t \cdot a^t$
 - update cumulative regret vector $X_{\phi}^{t} = X_{\phi}^{t-1} + \rho_{\phi}^{t}$
- 5. compute $Y = g(X^t)$
- 6. compute $A = \frac{\sum_{\phi \in \Phi} \phi Y_{\phi}}{\sum_{\phi \in \Phi} Y_{\phi}}$
- 7. solve for a fixed point $q^{t+1} = q^{t+1}A$

Special Cases of Regret Matching

Foster and Vohra 97 (Φ_{INT}) Hart and Mas-Colell 00 (Φ_{EXT}) Choose $G(X) = \frac{1}{2} \sum_k (X_k^+)^2$ so that $g_k(X) = X_k^+$

Freund and Schapire 95 (Φ_{EXT}) Cesa-Bianchi and Lugosi 03 (Φ_{INT}) Choose $G(X) = \frac{1}{\eta} \ln \left(\sum_k e^{\eta X_k} \right)$ so that $g_k(X) = e^{\eta X_k} / \sum_k e^{\eta X_k}$

Multiagent Model

```
\circ a set of players I (i \in I)
```

- \circ for all players i,
 - a set of pure actions A_i
 - a set of mixed actions $Q_i = \Delta(A_i)$
 - a reward function $r_i:A\to [0,1]$, where $A=\prod_i A_i$
 - an expected reward function $r_i:Q\to [0,1]$, where $Q=\Delta(A)$ s.t. for all $q\in Q$, $r_i(q)=\sum_{a\in A}q(a)r_i(a)$
 - a set Φ_i

Φ-Equilibrium

A mixed action profile $q^* \in Q$ is a Φ -equilibrium iff $r_i(\ddot{\phi}_i(q^*)) \leq r_i(q^*)$, for all players i and for all $\phi_i \in \Phi_i$.

Examples

Correlated Equilibrium: $\Phi_i = \Phi_{\text{INT}}$, for all players i Generalized Minimax Equilibrium: $\Phi_i = \Phi_{\text{EXT}}$, for all players i

Convergence Theorem

Each player i plays via some no- Φ_i -regret algorithm on the path of play iff the joint empirical distribution of play converges to the set of Φ -equilibria, almost surely.

Proof Sketch

For all players i, for all $\phi_i \in \Phi_i$,

$$\limsup_{t \to \infty} r_i(\tilde{\phi}_i(z^t)) - r_i(z^t) \tag{14}$$

$$= \limsup_{t \to \infty} \frac{1}{t} \sum_{\tau=1}^{t} r_i(\phi_i(a_i^{\tau}), a_{-i}^{\tau}) - \frac{1}{t} \sum_{\tau=1}^{t} r_i(a_i^{\tau}, a_{-i}^{\tau})$$
 (15)

$$= \limsup_{t \to \infty} \frac{1}{t} \sum_{\tau=1}^{t} \left(r_i(\phi_i(a_i^{\tau}), a_{-i}^{\tau}) - r_i(a_i^{\tau}, a_{-i}^{\tau}) \right) \tag{16}$$

$$\leq 0 \tag{17}$$

almost surely.

Zero-Sum Games

Matching Pennies

	H	T
H	-1, 1	1,-1
T	1, -1	-1, 1

Rock-Paper-Scissors

	R	P	S
R	0,0	-1, 1	1,-1
\overline{P}	1, -1	0,0	-1, 1
S	-1, 1	1, -1	0,0

Matching Pennies

Weights

Frequencies

Rock-Paper-Scissors

Weights

Frequencies

General-Sum Games

Shapley Game

	L	C	R
T	0,0	1,0	0, 1
M	0, 1	0,0	1,0
B	1,0	0,1	0,0

Correlated Equilibrium

	L	C	R
T	0	1/6	1/6
M	1/6	0	1/6
B	1/6	1/6	0

Shapley Game: No Internal Regret Learning

Frequencies

Shapley Game: No Internal Regret Learning

Joint Frequencies

Shapley Game: No External Regret Learning

Frequencies

Summary

- No-external- and no-internal-regret can be defined along one continuum, no-Φ-regret.
- ∘ No-Ф-regret learning algorithms exist, ∀Ф.
- No-Ф-regret learning converges to the set of Ф-equilibria, ∀Ф.
- \circ No-internal-regret learning is the strongest form of no-Φ-regret learning. Therefore, Nash equilibrium cannot be learned via no-Φ-regret learning.

"A little rationality goes a long way" [Hart 03]

Regret Minimization vs. Utility Maximization

- o RM is easy to implement.
- RM justifies randomness in actions.
- o Can RM be used to explain human behavior?