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Abstract. Shopbots are software agents that automatically gather and
collate information from multiple on-line vendors about the price and
quality of consumer goods and services. Rapidly increasing in number
and sophistication, shopbots are helping more and more buyers minimize
expenditure and maximize satisfaction. In response to this trend, it is
anticipated that sellers will come to rely on pricebots, automated agents
that employ price-setting algorithms in an attempt to maximize pro�ts.
In this paper, a simple economic model is proposed and analyzed, which
is intended to characterize some of the likely impacts of a proliferation
of shopbots and pricebots.

In addition to describing theoretical investigations, this paper also aims
toward a practical understanding of the tradeo�s between pro�tability
and computational and informational complexity of pricebot algorithms.
A comparative study of a series of price-setting strategies is presented,
including: game-theoretic (GT), myoptimal (MY), derivative following
(DF), and no regret learning (NR). The dynamic behavior that arises
among collections of pricebots and shopbot-assisted buyers is simulated,
and it is found that game-theoretic equilibria can dynamically arise in
our model of shopbots and pricebots.

1 Introduction

Shopbots | automated Web agents that query multiple on-line vendors to gather
information about prices and other attributes of consumer goods and services
| herald a future in which automated agents are an essential component of
electronic commerce [6, 10, 24, 31]. Shopbots outperform and out-inform humans,
providing extensive product coverage in a few seconds, far more than a patient
and determined human shopper could ever achieve, even after hours of manual
search. Rapidly increasing in number and sophistication, shopbots are helping
more and more buyers to minimize expenditure and maximize satisfaction.

Since the launch of BargainFinder [26] | a CD shopbot | on June 30, 1995,
the range of products represented by shopbots has expanded dramatically. A
shopbot available at shopper.com claims to compare 1,000,000 prices on 100,000
computer-oriented products. DealPilot.com (formerly acses.com) is a shopbot
that gathers, collates and sorts prices and expected delivery times of books,



CDs, and movies o�ered for sale on-line. One of the most popular shopbots,
mysimon.com, compares oÆce supplies, groceries, toys, apparel, and consumer
electronics, just to name a few of the items on its product line. As the range of
products covered by shopbots expands to include more complex products such
as consumer electronics, the level of shopbot sophistication is rising accordingly.
On August 16th, 1999, mysimon.com incorporated technology that, for products
with multiple features such as digital cameras, uses a series of questions to elicit
multi-attribute utilities from buyers, and then sorts products according to the
buyer's speci�ed utility. Also on that day, lycos.com licensed similar technology
from frictionless.com.

Shopbots are undoubtedly a boon to buyers who use them. Moreover, when
shopbots become adopted by a suÆcient portion of the buyer population, it
seems likely that sellers will be compelled to decrease prices and improve quality,
bene�ting even those buyers who do not shop with bots. How the widespread
utilization of shopbots might a�ect sellers, on the other hand, is not quite so
apparent. Less established sellers may welcome shopbots as an opportunity to
attract buyers who might not otherwise have access to information about them,
but more established sellers may feel threatened. Some larger players have even
been known to deliberately block automated agents from their web sites [8].
This practice seems to be waning, however; today, sellers like Amazon.com and
BarnesandNoble.com tolerate queries from agents such as DealPilot.com on the
grounds that buyers take brand name and image as well as price into account.

As more and more buyers rely on shopbots to supplement their awareness
about products and prices, it is becoming advantageous for sellers to increase
exibility in their pricing strategies, perhaps via pricebots | software agents
that utilize automatic price-setting algorithms in an attempt to maximize pro�ts.
Indeed, an early pricebot is already available at books.com, an on-line bookseller.
When a prospective buyer expresses interest in a book at books.com, a pricebot
automatically queries Amazon.com, Borders.com, and BarnesandNoble.com to
determine the price that is being o�ered at those sites. books.com then slightly
undercuts the lowest of the three quoted prices, typically by 1% of the retail price.
Real-time dynamic pricing on millions of titles is impossible to achieve manually,
yet can easily be implemented with a modest amount of programming.

As more and more sellers automate their price-setting, pricebots are destined
to interact with one another, yielding unexpected price and pro�t dynamics.
This paper reaches toward an understanding of pricebot dynamics via analysis
and simulation of a series of candidate price-setting strategies, which di�er in
their informational and computational demands: game-theoretic pricing (GT),
myoptimal pricing (MY), derivative following (DF), and no regret learning (NR).
Previously, we studied the dynamics that ensue when shopbot-assisted buyers
interact with pricebots utilizing only a subset of these strategies [19, 25, 29]. In
this work, we simulate additional, more sophisticated, pricebot strategies, and
�nd that the game-theoretic equilibrium can arise dynamically as the outcome
of adaptive learning in our model of shopbots and pricebots.



This paper is organized as follows. The next section presents our model of an
economy that consists of shopbots and pricebots. This model is analyzed from
a game-theoretic point of view in Sec. 3. In Sec. 4, we discuss the price-setting
strategies of interest: game-theoretic, myoptimal pricing, derivative following,
and no regret learning. Sec. 5 describes simulations of pricebots that implement
these strategies, while Sec. 6 discusses one possible evolution of shopbots and
pricebots, and Sec. 7 presents our conclusions.

2 Model

We consider an economy in which there is a single homogeneous good that is
o�ered for sale by S sellers and of interest to B buyers, with B � S. Each buyer
b generates purchase orders at random times, with rate �b, while each seller s
reconsiders (and potentially resets) its price ps at random times, with rate �s.
The value of the good to buyer b is vb; the cost of production for seller s is cs.

A buyer b's utility for the good is a function of price:

ub(p) =

�
vb � p if p � vb
0 otherwise

(1)

which states that a buyer obtains positive utility if and only if the seller's price is
less than the buyer's valuation of the good; otherwise, the buyer's utility is zero.
We do not assume that buyers are utility maximizers; instead we assume that
they consider the prices o�ered by sellers using one of the following strategies:1

1. Any Seller: buyer selects seller at random, and purchases the good if the
price charged by that seller is less than the buyer's valuation.

2. Bargain Hunter: buyer checks the o�er price of all sellers, determines the
seller with the lowest price, and purchases the good if that lowest price is
less than the buyer's valuation. (This type of buyer corresponds to those
who take advantage of shopbots.)

The buyer population consists of a mixture of buyers employing one of these
strategies, with a fraction wA using the Any Seller strategy and a fraction wB

using the Bargain Hunter strategy, where wA+wB = 1. Buyers employing these
respective strategies are referred to as type A and type B buyers.

1 In this framework, it is also possible to consider all buyers as utility maximizers,
with the additional cost of searching for the lowest price made explicit in the buyer
utility functions. In doing so, the search cost for bargain hunters is taken to be
zero, while for those buyers that use the any seller strategy, its value is greater
than vb. The relationship between models of exogenously determined buyer behavior
and the endogenous approach which incorporates the cost of information acquisition
and explicitly allows for buyer decision-making is further explored in computational
settings in Kephart and Greenwald [25]; in the economics literature, see, for example,
Burdett and Judd [5] and Wilde and Schwartz [33].



A seller s's expected pro�t per unit time �s is a function of the price vector
p, as follows: �s(p) = (ps � cs)Ds(p), where Ds(p) is the rate of demand for
the good produced by seller s. This rate of demand is determined by the overall
buyer rate of demand, the likelihood of the buyers selecting seller s as their
potential seller, and the likelihood that seller s's price ps does not exceed the
buyer's valuation vb.

2 If � =
P

b �b, and if hs(p) denotes the probability that
seller s is selected, while g(ps) denotes the fraction of buyers whose valuations
satisfy vb � ps, then Ds(p) = �Bhs(p)g(ps). Without loss of generality, de�ne
the time scale s.t. �B = 1. Now �s(p) is interpreted as the expected pro�t
for seller s per unit sold systemwide. Moreover, seller s's pro�t is such that
�s(p) = (ps � cs)hs(p)g(ps). We discuss the functions hs(p) and g(p) presently.

The probability hs(p) that buyers select seller s as their potential seller
depends on the buyer distribution (wA; wB) as follows:

hs(p) = wAfs;A(p) + wBfs;B(p) (2)

where fs;A(p) and fs;B(p) are the probabilities that seller s is selected by buyers
of type A and B, respectively. The probability that a buyer of type A selects a
seller s is independent of the ordering of sellers' prices: fs;A(p) = 1=S. Buyers
of type B, however, select a seller s if and only if s is one of the lowest price
sellers. Given that the buyers' strategies depend on the relative ordering of the
sellers' prices, it is convenient to de�ne the following functions:

{ �s(p) is the number of sellers charging a lower price than s,
{ �s(p) is the number of sellers charging the same price as s, excluding s itself,
and

{ �s(p) is the number of sellers charging a higher price than s.

Now a buyer of type b selects a seller s i� s is s.t. �s(p) = 0, in which case a
buyer selects a particular such seller s with probability 1=(�s(p)+1). Therefore,

fs;B(p) =
1

�s(p) + 1
Æ�s(p);0 (3)

where Æi;j is the Kronecker delta function, equal to 1 whenever i = j, and 0
otherwise.

The function g(p) can be expressed as g(p) =
R1
p

(x)dx, where (x) is the
probability density function describing the likelihood that a given buyer has
valuation x. For example, suppose that the buyers' valuations are uniformly
distributed between 0 and v, with v > 0; then the integral yields g(p) = 1� p=v.
This case was studied in Greenwald, et al. [20]. In this paper, we assume vb = v
for all buyers b, in which case (x) is the Dirac delta function Æ(v � x), and the
integral yields a step function g(p) = �(v � p) as follows:

�(v � p) =

�
1 if p � v
0 otherwise

(4)

2 We assume that buyers' valuations are uncorrelated with their buying strategies.



The preceding results can be assembled to express the pro�t function �s for
seller s in terms of the distribution of strategies and valuations within the buyer
population. Recalling that vb = v for all buyers b, and assuming cs = c for all
sellers s, yields the following:

�s(p) =

�
(ps � c)hs(p) if ps � v
0 otherwise

(5)

where

hs(p) = wA

1

S
+ wB

1

�s(p) + 1
Æ�s(p);0 (6)

3 Analysis

In this section, we present a game-theoretic analysis of the prescribed model
viewed as a one-shot game.3 Assuming sellers are pro�t maximizers, we �rst
show that there is no pure strategy Nash equilibrium, and we then compute
the symmetric mixed strategy Nash equilibrium. A Nash equilibrium is a vector
of prices p � 2 R

S at which sellers maximize their individual pro�ts and from
which they have no incentive to deviate [28]. Recall that B � S; in particular,
the number of buyers is assumed to be very large, while the number of sellers is a
good deal smaller. In accordance with this assumption, it is reasonable to study
the strategic decision-making of the sellers alone, since their relatively small
number suggests that the behavior of individual sellers indeed inuences market
dynamics, while the large number of buyers renders the e�ects of individual
buyers' actions negligible.

Traditional economic models consider the case in which all buyers are bargain
hunters: i.e., wB = 1. In this case, prices are driven down to marginal cost; in
particular, p�s = c, for all sellers s (see, for example, Tirole [30]). In contrast,
consider the case in which all buyers are of type A, meaning that they randomly
select a potential seller: i.e., wA = 1. In this situation, tacit collusion arises,
in which all sellers charge the monopolistic price, in the absence of explicit
coordination; in particular, p�s = v, for all sellers s. Of particular interest in this
study, however, is the dynamics of interaction among buyers of various types:
i.e., 0 < wA; wB < 1. Knowing that buyers of type A alone results in all sellers
charging the valuation price v, we investigate the impact of buyers of type B, or
shopbots, on the marketplace.
3 The analysis presented in this section applies to the one-shot version of our model,
although the simulation results reported in Sec. 5 focus on repeated settings. We
consider the Nash equilibrium of the one-shot game, rather than its iterated coun-
terpart, for at least two reasons, including (i) the Nash equilibrium of the stage game
played repeatedly is in fact a Nash equilibrium of the repeated game, and (ii) the
Folk Theorem of repeated game theory (see, for example, Fudenberg and Tirole [15])
states that virtually all payo�s in a repeated game correspond to a Nash equilib-
rium, for suÆciently large values of the discount parameter. Thus, we isolate the
stage game Nash equilibrium as an equilibrium of particular interest.



Throughout this exposition, we adopt the standard notation p = (ps; p�s),
which distinguishes the price o�ered by seller s from the prices o�ered by the
other sellers. Our analysis begins with the following observation: at equilibrium,

at most one seller s charges p�s < v. Suppose that two distinct sellers s0 6= s
set their equilibrium prices to be p�s0 = p�s < v, while all other sellers set their
equilibrium prices at the buyers' valuation v. In this case, �s(p

�
s � �; p��s) =

[(1=S)wA + wB ](p
�
s � � � c) > [(1=S)wA + (1=2)wB](p

�
s � c) = �s(p

�
s ; p

�
�s), for

small, positive values of �,4 which implies that p�s is not an equilibrium price for
seller s. Now suppose that two distinct sellers s0 6= s set their equilibrium prices
to be p�s0 < p�s < v, while all other sellers set their equilibrium prices at v. In
this case, seller s prefers price v to p�s , since �s(v; p

�
�s) = [(1=S)wA](v � c) >

[(1=S)wA](p
�
s�c) = �s(p

�
s ; p

�
�s), which again implies that p

�
s is not an equilibrium

price for seller s. In sum, no 2 (or more) sellers charge equal equilibrium prices
strictly below v, and no 2 (or more) sellers charge unequal equilibrium prices
strictly below v. Therefore, at most one seller charges p�s < v.

On the other hand, at equilibrium, at least one seller s charges p�s < v. Given
that all sellers other than s set their equilibrium prices at v, seller s maximizes
its pro�ts by charging v� �, since �s(v � �; p��s) = [(1=S)wA +wB ](v � �� c) >
[(1=S)(wA + wB)](v � c) = �s(v; p

�
�s), for small, positive values of �.

5 Thus, v
is not an equilibrium price for seller s. It follows from these two observations
that at equilibrium, exactly one seller s sets its price below the buyers' valuation
v, while all other sellers s0 6= s set their equilibrium prices p�s0 � v. Note that
�s0(v; p

�
�s0) = [(1=S)wA](v � c) > 0 = �s0(v

0; p��s0), for all v
0 > v, since wA > 0,

implying that all other sellers s0 maximize their pro�ts by charging price v.
The unique form of pure strategy equilibrium which arises in this setting thus
requires that a single seller s set its price p�s < v while all other sellers s0 6= s set
their prices p�s0 = v. The price vector (p�s ; p

�
�s), with p��s = (v; : : : ; v), however,

is not a Nash equilibrium. While v is in fact an optimal response to p�s , since
the pro�ts of seller s0 6= s are maximized at v given that there exists low-priced
seller s, p�s is not an optimal response to v. On the contrary, �s(p

�
s ; v; : : : ; v) <

�s(v� �; v; : : : ; v), whenever � < v� p�s . In particular, the low-priced seller s has
incentive to deviate. It follows that there is no pure strategy Nash equilibrium
in the proposed shopbot model.6

There does, however, exist a symmetric mixed strategy Nash equilibrium. Let
f(p) denote the probability density function according to which sellers set their
equilibrium prices, and let F (p) be the corresponding cumulative distribution
function. Following Varian [32], we note that in the range for which it is de�ned,
F (p) has no mass points, since otherwise a seller could decrease its price by
an arbitrarily small amount and experience a discontinuous increase in pro�ts.
Moreover, there are no gaps in the said distribution, since otherwise prices would

4 Precisely, 0 < 2� < wBS

wA+wBS
(p�s � c).

5 Precisely, 0 < � <
wB(S�1)

wA+wBS
(v � c).

6 This argument rests on the fact that price selection is made within a continuous
strategy space; the existence of pure strategy Nash equilibria as an outcome of price
discretization is discussed in Appendix A.



not be optimal | a seller charging a price at the low end of the gap could increase
its price to �ll the gap while retaining its market share, thereby increasing its
pro�ts. In this probabilistic setting, the event that seller s is the low-priced seller
occurs with probability [1 � F (p)]S�1. Rewriting Eq. 2, we obtain the demand
expected by seller s:7

hs(p) = wA

1

S
+ wB [1� F (p)]S�1 (7)

A Nash equilibrium in mixed strategies requires that (i) sellers maximize
individual pro�ts, given the other sellers' strategic pro�les, so as there is no
incentive to deviate, and (ii) all prices assigned positive probability yield equal
pro�ts, otherwise it would not be optimal to randomize. Following condition
(ii), we de�ne equilibrium pro�ts � � �s(p) = (p � c)hs(p), for all prices p.
The precise value of � can be derived by considering the maximum price that
sellers are willing to charge, say pm. At this boundary, F (pm) = 1, which by
Eq. 7 implies that hs(pm) = (1=S)wA. Moreover, the function �s(p) attains its
maximal value at price pm = v, yielding equilibrium pro�ts � = (1=S)wA(v� c).
Now, by setting (p� c)hs(p) equal to this value and solving for F (p), we obtain:

F (p) = 1�

��
wA

wBS

��
v � p

p� c

�� 1

S�1

(8)

which implicitly de�nes p and F (p) in terms of one another. Since F (p) is a
cumulative probability distribution, it is only valid in the domain for which its
valuation is between 0 and 1. As noted previously, the upper boundary is p = v;
the lower boundary is computed by setting F (p) = 0 in Eq. 8, which yields:

p� � p = c+
wA(v � c)

wA + wBS
(9)

Thus, Eq. 8 is valid in the range p� � p � v. A similar derivation of this
mixed strategy equilibrium appears in Varian [32]. Greenwald, et al. [20] presents
various generalizations of this model.

Figs 1 (a) and (b), respectively, exhibit plots of the functions F (p) and f(p)
under varying distributions of buyer strategies | in particular, the fraction of
shopbot users wB 2 f:1; :25; :5; :75; :9g| with S = 5, v = 1, and c = 0:5. When

wB exceeds a critical threshold wcritB = S�2
S2+S�2 (equal to 0.1071 for S = 5),

f(p) is bimodal. In this regime, as either wB or S increases, the probability
density concentrates either just below v, where sellers expect high margins but
low volume, or just above p�, where they expect low margins but high volume,
with the latter solution becoming increasingly probable. Since p� itself decreases
under these conditions (see Eq. 9), it follows that both the average price paid by
buyers and the average pro�t earned by sellers decrease. These relationships have
a simple interpretation: buyers' use of shopbots catalyzes competition among
sellers, and moreover, small fractions of shopbot users induce competition among
large numbers of sellers.
7 In Eq. 7, hs(p) is expressed as a function of seller s's scalar price p, given that
probability distribution F (p) describes the other sellers' expected prices.
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Fig. 1. Nash Equilibria for S = 5; v = 1; c = :5, and wB 2 f:1; :25; :5; :75; :9g

Recall that the pro�t earned by each seller is (1=S)wA, which is strictly
positive so long as wA > 0. It is as though only buyers of type A are contributing
to sellers' pro�ts, although the actual distribution of contributions from buyers
of type A vs. buyers of type B is not as one-sided as it appears. In reality, buyers
of type A are charged less than v on average, and buyers of type B are charged
more than c on average, although total pro�ts are equivalent to what they would
be if the sellers practiced perfect price discrimination. Buyers of type A exert
negative externalities on buyers of type B, by creating surplus pro�ts for sellers.

4 Strategies

When suÆciently widespread adoption of shopbots by buyers forces sellers to
become more competitive, it is likely that sellers will respond with the creation
of pricebots that automatically set prices in attempt to maximize pro�tability. It
seems unrealistic, however, to expect that pricebots will simply compute a Nash
equilibrium and �x prices accordingly. The real business world is fraught with
uncertainties, undermining the validity of traditional game-theoretic analyses:
sellers lack perfect knowledge of buyer demands, and they have an incomplete
understanding of their competitors' strategies. In order to be deemed pro�table,
pricebots will need to learn from and adapt to changing market conditions.

In this section, we introduce a series of pricebot strategies, and which we
later simulate in order to compare the resulting price and pro�t dynamics with
the game-theoretic equilibrium. In 1838, Cournot showed that the outcome of
learning via a simple best-reply dynamic is a pure strategy Nash equilibrium
in a quantity-setting model of duopoly [7]. Recently, empirical studies of more
sophisticated learning algorithms have revealed that learning tends to converge
to pure strategy Nash equilibria in games for which such equilibria exist [17]. As
there does not exist a pure strategy Nash equilibrium in the shopbot model, it
is of particular interest to study the outcome of adaptive pricing schemes.



We consider several pricing strategies, each of which makes di�erent demands
on the required level of informational and computational power of agents:

GT The game-theoretic strategy is designed to reproduce the mixed strategy
Nash equilibrium. It therefore generates a price chosen at random according
to the probability density function derived in the previous section, assuming
its competitors utilize game-theoretic pricing as well, and making full use
of information about the buyer population. GT is a constant function that
ignores historical observations.

MY The myopically optimal, or myoptimal , 8 pricing strategy (see, for example,
[24]) uses information about all the buyer characteristics that factor into
the buyer demand function, as well as competitors' prices, but makes no
attempt to account for competitors' pricing strategies. Instead, it is based
on the assumption of static expectations: even if one seller is contemplating
a price change under myoptimal pricing, this seller does not consider that
this will elicit a response from its competitors.

The myoptimal seller s uses all available information and the assumption
of static expectations to perform an exhaustive search for the price p�s that
maximizes its expected pro�t �s. The computational demands of MY can
be reduced greatly if the price quantum � | the smallest amount by which
one seller may undercut another | is suÆciently small (see Appendix A).
Under such circumstances, the optimal price p�s is guaranteed to be either
the monopolistic price pm or � below some competitor's price, limiting the
search for p�s to S possible values. In our simulations, we choose � = 0:002.

DF The derivative-following strategy is less informationally intensive than either
the myoptimal or the game-theoretic pricing strategies. In particular, this
strategy can be used in the absence of any knowledge or assumptions about
one's competitors or the buyer demand function. A derivative follower simply
experiments with incremental increases (or decreases) in price, continuing to
move its price in the same direction until the observed pro�tability level falls,
at which point the direction of movement is reversed. The price increment Æ is
chosen randomly from a speci�ed probability distribution; in the simulations
described here the distribution was uniform between 0.01 and 0.02.

NR The no regret pricing strategies are probabilistic learning algorithms which
specify that players explore the space of actions by playing all actions with
some non-zero probability, and exploit successful actions by increasing the
probability of employing those actions that generate high pro�ts. In this
study, we con�ne our attention to the no external regret algorithm due to
Freund and Schapire [14] and the no internal regret algorithm of Foster and
Vohra [12].9 As the no regret algorithms are inherently non-deterministic,
they are candidates for learning mixed strategy equilibria.

8 In the game-theoretic literature, this strategy is often referred to as Cournot best-
reply dynamics [7]; however, price is being set, rather than quantity.

9 For completeness, the details of these algorithms are presented in App. B.



5 Simulations

We simulated an economy with 1000 buyers and (unless otherwise speci�ed) 5
pricebots. employing the aforementioned pricing strategies. In the simulations
depicted below, each buyer's valuation of the good v = 1, and each seller's
production cost c = 0:5. The mixture of buyer types is set at wB = 0:75: i.e.,
75% are bargain hunters, or shopbot users. The simulations were asynchronous:
at each time step, a buyer or seller was randomly selected to carry out an action
(e.g., buying an item or resetting a price). The chance that a given agent was
selected for action was determined by its rate; the rate �b at which a given buyer
b attempts to purchase the good was set to 0.001, while the rate �s at which a
given seller reconsiders its price was 0.00002 (except where otherwise speci�ed).
Each simulation was iterated for 100 million time steps.

5.1 GT Pricebots

Simulations verify that, if agents are GT strategists, the cumulative distribution
of prices closely resembles the derived F (p) (to within statistical error), and
moreover, the time-averaged pro�t for each seller is �� = 0:0255� 0:0003, which
is nearly the theoretical value of 0.0250. (Not shown.)

5.2 MY Pricebots

Fig. 2(a) illustrates cyclical price wars that typically occur when 5 pricebots use
the myoptimal pricing strategy. Regardless of the initial value of the price vector,
a pattern quickly emerges in which prices are positioned near the monopolistic
price v = 1, followed by a long episode during which pricebots successively
undercut one another by �. During this latter phase, no two prices di�er by
more than (S � 1)�, and the prices fall linearly with time. Eventually, when the
lowest-priced seller is within � above the value p� = 0:53125, the next seller �nds
it unpro�table to undercut, and instead resets its price to v = 1. The other
pricebots follow suit, until all but the lowest-priced seller are charging v = 1. At
this point, the lowest-priced seller �nds that it can maintain its market share
but increase its pro�t dramatically | from p� � :5 = 0:03125 to 0:5 � � | by
raising its price to 1� �. No sooner than the lowest-priced seller raises its price
does the next seller to reset its price undercut, thereby igniting the next cycle
of the price war.

Fig. 2(b) shows the sellers' pro�ts averaged during the intervals between
successive resetting of prices. The upper curve represents a linear decrease in the
average pro�t attained by the lowest-priced seller as price decreases, whichever
seller that happens to be. The lower curve represents the average pro�t attained
by sellers that are not currently the lowest-priced; near the end of the cycle
they su�er from both low market share and low margin. The expected average
pro�t can be computed by averaging the pro�t given by Eqs. 5 and 6 over one
price-war cycle:

�mys =
1

S

�
1

2
(v + p�)� c

�
(10)



which yields �mys = 0:053125 in this instance. The simulation results match this
closely: the average pro�t per time step is 0.0515, which is just over twice the
average pro�t obtained via the game-theoretic pricing strategy.

Since prices uctuate over time, it is of interest to compute the probability
distribution of prices. Fig. 2(a) depicts the cumulative distribution function for
myoptimal pricing. This measured cumulative density function has exactly the
same endpoints p� = 0:53125 and v = 1 as those of the theoretical mixed strategy
equilibrium, but the linear shape between those endpoints (which reects the
linear price war) is quite di�erent from what is displayed in Fig. 1(a).
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Fig. 2. (a) and (b) Price and pro�t dynamics, respectively, for 5 MY pricebots. (c)
Cumulative distribution of prices observed between times 10 and 100 million.

5.3 DF Pricebots

Fig. 3(a) shows the price dynamics that result when 5 derivative followers are
pitted against one another. Recall that derivative following pricebots do not
base their pricing decisions on any information that pertains to other agents in
the system | neither pricebots' price-setting tendencies nor buyers' preferences.
Nonetheless, their behavior tends towards what is in e�ect a collusive state in
which all pricebots charge nearly the monopolistic price.10 This is tacit collusion
as de�ned, for example, in Tirole [30], and so-called because the agents do not
communicate at all so there is consequently nothing illegal about their collusive
behavior. By exhibiting such behavior, derivative followers accumulate greater
wealth than myoptimal or game-theoretic pricebots. According to Fig. 3(b),
pricebots that are currently lowest-priced can expect an average pro�t of 0.30
to 0.35, while the others can expect roughly the game-theoretic pro�t of 0.025.
Averaging over the last 90 million time steps (to eliminate transient e�ects), we
�nd that the average pro�t per seller is 0.0841. This value is not far o� from the
absolute collusive limit of (1=S)(v � c) = 0:10.

10 It has similarly been observed by Huck, et al. [23] that derivative followers tend
towards collusive behavior in models of Cournot duopoly.
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Fig. 3. (a) and (b) Price and pro�t dynamics, respectively, for 5 DF pricebots. (c)
Cumulative distribution of prices observed between times 10 and 100 million.

How do derivative followers manage to collude? Like myoptimal pricebots,
DFs are capable of engaging in price wars; such dynamics are visible in Fig. 3(a).
These price wars, however, are easily quelled, making upward trends more likely
than downward trends. Suppose X and Y are the two lowest-priced pricebots
engaged in a mini-price war. Assume X 's price is initially above Y 's, but that
X soon undercuts Y . This yields pro�ts for seller X obtained from the entire
population of type B buyers while it is lower-priced, and from its share of type
A buyers all throughout. Now suppose Y undercuts X , but soon after X again
undercuts Y . This yields pro�ts for seller X once again obtained from the entire
population of type B buyers during the period in which it is lower-priced, and
from its share of type A buyers all throughout. In other words, given equivalent
rates of price adjustment for both pricebots, market share remains �xed during
mini-price wars of this kind. Thus, the only variable in computing pro�ts is
price, leaving pricebots with the incentive to increases prices more often than
not. The tendency of a society of DF pricebots to reach and maintain high prices
is reected in the cumulative distribution function, shown in Fig. 3(c).

5.4 NR Pricebots

Finally, we present simulation results for two no regret pricing strategies, namely
no external regret (NER) and no internal regret (NIR). As described in [16],
there are a number of learning algorithms that satisfy the no external regret
optimality criterion (e.g., Foster and Vohra [11] and Freund and Schapire [14]);
similarly, the no internal regret optimality criterion is satis�ed by algorithms
due to both Foster and Vohra [12] and Hart and Mas-Colell [22]. In this section,
we discuss simulations of NER pricebots �a la Freund and Schapire and NIR
pricebots �a la Foster and Vohra. Rather than consider 5 pricebots as above,
we limit our attention to merely 2 NR pricebots, since the dynamics of 2 such
pricebots converges more readily than does that of 5. As no regret algorithms are
inherently non-deterministic as well as myopic, they are candidates for learning
mixed strategy equilibria of stage games.
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Fig. 4. (a) and (b) Price dynamics for 2 NER pricebots with learning rate � = 0:1,
and  = 0 and  = 0:0001, respectively. (c) CDFs generated from simulation tape of 2
NIR pricebots with theoretical Nash equilibrium overlayed.

Although the no external regret algorithm of Freund and Schapire has been
observed to converge to Nash equilibrium in games of 2 actions (e.g., the Santa
Fe bar problem, see Greenwald, et al. [18]), NER pricebots cycle exponentially
from price pm to price p� in the prescribed model, which entertains n > 2
possible actions11 (see Fig. 4(a)). In fact, the outcome of play of NER pricebots
in the shopbot game is reminiscent of the outcome of both NER learning and
�ctitious play in the Shapley game, a game of 3 strategies for which there is no
pure strategy Nash equilibrium (see Greenwald, et al. [17]). Fig. 4(b) depicts
simulations of NER pricebots in which we introduce a responsiveness parameter
0 <  � 1 that exponentially weights the observed history, e�ectively limiting its
length to the �nite value 1=, thereby allowing NER pricebots to more readily
respond to environmental changes. Interestingly, the empirical frequency of play
during these �nite cycles mimics the symmetric mixed strategy Nash equilibrium
of the stage game; this result will be further explored in a future publication.

We now investigate the properties of no internal regret (NIR) learning in our
model of shopbots and pricebots. Learning algorithms that satisfy the no internal
regret optimality criteria are known to converge to correlated equilibria [2, 12], a
superset of the set of Nash equilibria which allows for dependence among players'
strategies. Despite several negative theoretical results on the rational learning
of Nash equilibria (e.g., Foster and Young [13], Nachbar [27], and Greenwald et

al. [18]), in practice, no internal regret learning | a form of boundedly rational
learning | seems to learn Nash equilibria. In our present simulations we observe
convergence to the symmetric mixed strategy Nash equilibrium. Fig. 4(c) depicts
the cumulative distribution functions generated from simulation tapes of the no
internal regret learning algorithm designed by Foster and Vohra [12]. In these
simulations, we consider 2 NIR pricebots, and we let buyer distributions range
from (wA; wB) = (0:1; 0:9) to (wA; wB) = (0:9; 0:1). These plots closely match
the theoretical Nash equilibria given 2 sellers, which are overlayed in this �gure.

11 Technically, there is a continuum of prices in our model. For the purpose of simulating
no regret learning, this continuum was discretized into 100 equally sized intervals.



6 Evolution of Shopbots and Pricebots

We now revisit the situation in which all �ve sellers utilize the myoptimal pricing
strategy, but we allow one of the sellers to reset its price �ve times as quickly as
all the others. These price dynamics are illustrated in Fig. 5(a). As in Fig. 2(a),
we experience price wars; in this case, however, they are accelerated, which
is apparent from the increase in the number of cycles that occur during the
simulation run. From the individual pro�t curves, which in Fig. 5(b) depict
cumulative pro�ts rather than instantaneous pro�ts, we notice that the fast
myoptimal agent obtains substantially more pro�t than the others because it
undercuts far more often than it itself is undercut. Analysis yields that the
expected pro�t for a given myoptimal seller s who resets its prices at rate �s,
assuming all other sellers are myoptimal, is as follows:

�mys (ps) =

�
1

S
wA +

�sP
s0 �s0

wB

��
1

2
(v + p�)� c

�
(11)

Eq. 11 predicts average pro�ts of 119=960 = 0:1240 for the fast seller and
34=960 = 0:0354 for the slower ones, values which compare reasonably well
with those obtained by averaging over the last 10 complete cycles of the price
war, namely 0.1111 and 0.0351, respectively.
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Fig. 5. (a) and (b) Price and pro�t dynamics, respectively, with 1 Fast MY pricebot.

Evidently, myoptimal pricebots stand to gain by resetting their prices at
faster, rather than slower, rates, particularly when a large proportion of the
buyer population is shopbot-assisted (see Eq. 11). If MY pricebots were to reprice
their goods with ever-increasing frequency, a sort of arms race would develop,
leading to arbitrarily fast price-war cycles. This observation is not speci�c to
myoptimal agents. In additional simulations, we have observed suÆciently fast
DF pricebots who obtain the upper hand over slower derivative following and
myoptimal agents. In the absence of any throttling mechanism, it is advantageous
for pricebots to re-price their goods as quickly as possible.



Let us carry the arms race scenario a bit further. In a world in which sellers
are inclined to reset prices at ever-increasing rates, human price setters would
undoubtedly be too ineÆcient. Sellers, therefore, would necessarily come to rely
on pricebots, perhaps sophisticated variants of one of the strategies proposed
in Sec. 4. Quite possibly, pricebot strategies would utilize information about
the buyer population, which could be purchased from other agents. Even more
likely, pricebot strategies would require knowledge of their competitors' prices.
How would up-to-date information be obtained? From shopbots, of course!

With each seller seeking to re-price its products faster than its competitors,
shopbots would quickly become overloaded with requests. Imagine a scenario
in which a large player like amazon.com were to use the following simple price-
setting strategy: every 10 minutes, submit 2 million or so queries to one or more
shopbots (one for each title carried by Amazon.com), then charge 1 cent less
than the minimum price returned on each title! Since the job of shopbots is
to query individual sellers for prices, it would in turn pass this load back to
Amazon.com's competitors. The rate of pricing requests made by sellers could
easily dwarf the rate at which similar requests would be made by human buyers,
thereby eliminating the potential of shopbots to ameliorate market frictions.

A typical solution to an excess demand for shopbot services would be for
shopbots to charge pricebots for price information. Today, shopbots tend to
make a living by selling advertising space on their Web pages. This appears
to be an adequate business model so long as requests are made by humans.
Agents, however, are unwelcome customers because they are are not inuenced
by advertisements; as a result, agents are either barely tolerated or excluded
intentionally. By charging for the information services they provide, shopbots
would be economically-motivated agents, creating the proper incentives to deter
excess demand, and welcoming business from other agents.

Once shopbots begin to charge for pricing information, it would seem natural
for sellers | the actual owners of the desired information | to themselves charge
shopbots for price information. In fact, sellers could use another form of pricebot
to dynamically price this information. This scenario illustrates how the need for
agents to dynamically price their services could quickly percolate through an
entire economy of software agents. The alternative is \meltdown" due to overload
which could occur as agents become more prevalent on the Internet. Rules of
etiquette followed voluntarily today by web crawlers and related programs [9]
could be trampled in the rush for competitive advantage.

7 Conclusion

Game-theoretic analysis of a model of a simple commodity market established
a quantitative relationship between the degree of shopbot usage among buyers
and the degree of price competition among sellers. This motivated a comparative
study of various pricebot algorithms that sellers might employ in an e�ort to gain
an edge in a market in which the presence of shopbots has increased the degree
of competition.



MY pricebots were shown to be capable of inducing price wars, yet even so
they earn pro�ts that are well above those of GT strategists. DF pricebots were
observed to exhibit tacit collusion, leading to cartel-level pro�ts. Finally, game-
theoretic equilibria arose dynamically as the outcome of repeated play among
certain NR pricebots. In related work (see [20]), we explore the dynamics of prices
and pro�ts among pricebots that use non-myopic learning algorithms, such as
Q-learning, and we directly compare the pro�tability of various pricing strategies
by simulating heterogeneous collections of pricebots. In future work, we intend to
study the dynamics of markets in which more sophisticated shopbots base their
search on product attributes as well as price, and in which pricebot strategies
are extended accordingly.
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A Pure Strategy Nash Equilibria

This appendix revisits the existence of pure strategy Nash equilibria (PNE) in
the prescribed model of shopbots and pricebots whenever 0 < wA; wB < 1.
It has previously been established (see Sec. 3) that no PNE exist when prices
are selected from a continuous strategy space. Here, we assume that prices are
chosen from a strategy space that is discrete rather than continuous, and we
derive the set of pure strategy Nash equilibria. This set is symmetric in the case
of 2 sellers, but is often asymmetric in the case of S > 2 sellers.

Recall from Sec. 2 that the pro�ts for seller s are determined as follows,
assuming vb = v for all buyers b, and cs = c for all sellers s:

�s(p) =

�
(ps � c)hs(p) if ps � v
0 otherwise

(12)

where

hs(p) = wA

1

S
+ wB

1

�s(p) + 1
Æ�s(p);0 (13)

{ Æ is the Kronecker Æ function,
{ �s(p) is the number of sellers charging a lower price than s, and
{ �s(p) is the number of sellers charging the same price as s, excluding s itself.

The equilibrium derivation that follows concerns the case of discrete strategy
spaces, characterized by some parameter � > 0, which dictates the sellers' space
of strategies as follows: jP j = f0; �; 2�; : : :g. If we assume c mod � = 0, then this
strategy space contains prices of the form pi = c� i�, where i 2 fx 2 Zjx� c=�g.
For convenience, we further assume v mod � = 0.12

The derivation of the set of pure strategy Nash equilibria is based on the
following observations, which dictate the structure of its elements: at equilibrium,

1. No seller charges price pi > v.
2. No seller charges price pi � c.
3. At least two sellers charge prices c < pi < v.
4. Those sellers who charge prices c < pi < v charge equal prices.

12 Otherwise, v is everywhere replaced by v0 = c+�b v�c
�
c in the discussion that follows.



The �rst two observations follow from the fact that the pro�ts obtained by
charging the monopoly price v are strictly positive, whereas the pro�ts obtained
by charging either pi > v or pi � c are zero. At least two sellers charge c < pi < v
since (i) if all sellers were to charge v, seller s would stand to gain by instead
charging v � � (assuming � < v � c) and (ii) if only one seller were to charge
c < pi < v, then pi must equal v� �, in which case the other sellers would stand
to gain by charging v�2� (assuming 2� < v�c). Finally, if seller s0 were to charge
c < p0i < v, while seller s were charging c < pi < p0i < v, then seller s0 would
prefer price v to price p0i, implying that p

0
i is not an equilibrium price. Therefore,

PNE are structured such that n � 2 sellers charge pi for 0 < i < (v� c)=�, while
the remaining S � n sellers charge the monopoly price v (unless � � v � c, in
which case PNE exist of the form (v; v), or � � (v � c)=2, in which case PNE
exist of the form (v � �; v � �)).

Given the prescribed structure, the existence of pure strategy Nash equilibria
is ensured whenever the following conditions are satis�ed: for all sellers s,

1. No low-priced seller charging c < pi < v prefers the monopoly price v:
i.e., �s(pi) � �s(v), where �s(pi) is computed assuming pi is charged by n
low-priced sellers. Expanding this condition leads to the following:

i� �
wA(v � c)

wA + 1
n
wBS

(14)

This condition implies that pi = c+ i� > p�, since n � 2.13

2. No seller charging v prefers to undercut the low-priced sellers charging pi and
charge pi�1: i.e., �s(v) � �s(pi�1), where �s(pi�1) are the pro�ts obtained
if seller s is the unique, lowest-priced seller. Expanding this condition yields:

wA(v � c)

wA + wBS
� (i� 1)� (15)

For i = 1 this condition reduces to �s(v) � �s(c) = 0, which is tautological;
hence this constraint is only of interest when i > 1.

3. No low-priced seller charging pi prefers to undercut its cohorts by charging
pi�1: i.e., �s(pi) � �s(pi�1), which incidentally is implied by Conds. 14
and 15, so long as some seller charges v. This yields a constraint on the
value of i (or stated otherwise, n) for which PNE exist, namely:

i

i� 1
�

wA + wBS

wA + 1
n
wBS

(16)

Like the previous condition, this constraint is only applicable when i > 1.

13 The value of p� derived in Eq. 9 for the continuous case is applicable in the discrete
case, unless v mod � 6= 0, in which case v is replaced by v0 in Eq. 9 (see Foot. 12).



Together Conds. 14, 15, and 16 are mathematical statements of the conditions
for the existence of pure strategy Nash equilibria of the prescribed structure.

We now construct a series of examples, assuming production cost is c = 0:5,
buyers have constant valuations v = 1, and wA = 0:25 and wB = 0:75. Initially,
we consider only 2 sellers. By the prescribed structure of PNE, both sellers charge
equal prices c < pi < v, for some 0 < i < (v�c)=�, assuming � < (v�c)=2 = 0:25.
Since no seller charges v, Cond. 15 is not a relevant constraint. Cond. 16 requires
that i

i�1 � wA + 2wB = 1:75, which is impossible for integer values of i > 2.
Thus, our interest is con�ned to values of i � 2 and � < 0:25 satisfying Cond. 14.
In particular, if i = 1, then PNE exist whenever 0:25 > � � wA(v � c) = 0:125;
if i = 2, then PNE exist whenever 0:25 > � � wA(v� c) = 0:0625. The complete
set of PNE for S = 2 is listed in Table A. Notice that PNE cease to exist when
jP j > 9; for S = 3, PNE cease to exist when jP j > 12; in general, PNE cease
to exist whenever jP j > b1 + i�[1 + (wB=wA)(S=n)]c where i

� is the maximum
integer value i satisfying Cond. 16, which can be rearranged to give an upper
bound on i.

jP j � = v�c
jP j�1

i PNE

1 1 0 (1.0, 1.0)
2 0.5 1 (1.0, 1.0)
3 0.25 1 (0.75, 0.75)
4 0:16 1,2 (0:6; 0:6), (0:83; 0:83)
5 0.125 1,2 (0.625, 0.625), (0.75, 0.75)
6 0.1 2 (0.7, 0.7)
7 0:083 2 (0:6; 0:6)
8 0.0714 2 (0.643, 0.643)
9 0.0625 2 (0.625, 0.625)
10 0:05 - DNE

Table 1. The set of PNE for S = 2. DNE stands for does not exist, implying the non-
existence of pure strategy Nash equilibria, although the existence of mixed strategy
equilibria is established in Nash [28].

Now consider a larger number of sellers; for concreteness, say S = 100. We
�rst let i = 1, which limits our concern to Cond. 14. It follows from this condition
that when the number of sellers is large, PNE exist even for small values of � so
long as n is also small. In particular, if n = 2 then PNE exist for � � 0:003311;
speci�cally, if � = 0:003, then an asymmetric solution arises in which sellers who
charge price p1 earn pro�ts of roughly 0:00126, while sellers who charge price v
earn 0:00125. At the other extreme, if n = 100, then symmetric PNE exist i�
� � 0:125. A full range of asymmetric PNE exist when i = 1 for the values of �
speci�ed by Cond. 14 that arise for values of n ranging from 2 to 100.



Still assuming a large number of sellers, let i > 1. Restating Cond. 16 as a
bound on n and taking the limit as S !1, we �nd that n � i=(i� 1) � 2. But
since n � 2 at equilibrium, it follows that at any PNE exactly 2 sellers charge
price pi. Again rewriting Cond. 16, this time as a bound on i and then taking
the limit as S ! 1, we also �nd it necessary that i � n=(n � 1) � 2. Thus,
for suÆciently large numbers of sellers, PNE exist in which exactly 2 low-priced
sellers charge price p2, but no PNE exist in which any sellers charge pi for i > 2.

It is nonetheless possible for equilibria to arise in which i > 2, however not
for the assignments of wA and wB assumed throughout our examples. Consider
instead wA = 0:75 and wB = 0:25. Now for S = 2, an equilibrium arises in which
n = 2, i = 5, and � = 0:083, namely (0:916; 0:916). Using Cond. 16, we note that
as wA ! 1, i is bounded above only by (v�c)=�; in other words, high equilibrium
prices prevail. On the other hand, as wB ! 1, n is bounded above only by S,
implying that more and more sellers prefer to charge low prices. Finally, through
simulations we have observed pure strategy Nash equilibria to be the outcome
of myoptimal pricing and no internal regret learning in the discretized model of
shopbots and pricebots.

B No Regret Learning

This appendix describes the no regret learning algorithms which are simulated
in Sec. 5.4. There are two no regret criteria of interest, namely no external regret
and no internal regret. Computational learning theorists consider the di�erence
between the expected payo�s that are achieved by the strategies prescribed by a
given algorithm, as compared to the payo�s that could be achieved by any other
�xed sequence of decisions, in the worst-case. If the di�erence between these
two sums is negligible, then the algorithm exhibits no external regret . Early no
external regret algorithms appeared in Blackwell [4], Hannan [21], and Banos [3].
Game theorists Foster and Vohra [12] study an alternative measure of worst-case
performance. If the di�erence between the cumulative payo�s that are achieved
by a sequence of strategies generated by a given algorithm in comparison with the
cumulative payo�s that could be achieved by a remapped sequence of strategies
is insigni�cant, then the algorithm is said to exhibit no internal regret .14 No
internal regret implies no external regret.

The no regret algorithms are presented from the point of view of an individual
player, as if that player were playing a game against nature, where nature is
taken to be a conglomeration of all its opponents. From this perspective, let rti
denote the payo�s obtained by the player of interest at time t via strategy i.
Mixed strategy weights at time t are given by the probability vector (wt

i), for
1 � i � S, where S is the number of strategies.

14 A sequence is remapped if there is a mapping f of the strategy space into itself s.t.
for each occurrence of strategy si in the original sequence, the mapped strategy f(si)
appears in the remapped sequence.



B.1 No External Regret Learning

Freund and Schapire [14] derive an algorithm that achieves no external regret via
multiplicative updating. Their algorithm is dependent on the cumulative payo�s
achieved by all strategies, including the surmised payo�s of strategies which are
not played. In particular, let �ti denote the cumulative payo�s obtained through
time t via strategy i, which is computed as follows: �ti =

Pt
x=0 r

x
i . Now the

weight assigned to strategy i at time t+ 1, for � > 0, is given by:

wt+1
i =

(1 + �)�
t
iPS

j=1(1 + �)�
t
j

(17)

The multiplicative updating rule given in Equation 17 can be modi�ed to become
applicable in naive settings, where complete payo� information is not available,
but rather the only payo� information known at time t is that which pertains
to the strategy which was in fact employed at time t. Such a variant of this
multiplicative updating algorithm appears in Auer, Cesa-Bianchi, Freund, and
Schapire [1]. It remains to perform simulations of this naive algorithm in our
model of shopbots and pricebots.

B.2 No Internal Regret Learning

We now describe an algorithm due to Foster and Vohra [12] which achieves no
internal regret, and a simple implementation due to Hart and Mas-Colell [22].
Learning via the following no internal regret algorithms converges to correlated
equilibrium [2, 12].

The regret felt by a player at time t is formulated as the di�erence between
the payo�s obtained by utilizing strategy the player's strategy of choice, say i,
and the payo�s that could have been achieved had strategy j 6= i been played
instead:

r
t
i!j = 1ti(r

t
j � rti) (18)

where 1ti is the indicator function, which has value 1 if strategy i is employed at
time t, and has value 0 otherwise. Now the average regret rTi!j is the summation
of regrets from i to j through time T divided by T :

r
T
i!j =

1

T

TX
t=0

r
t
i!j (19)

Internal regret is de�ned as follows:

ir
T
i!j = (rTi!j)

+ (20)

where X+ = maxfX; 0g. Finally, the total internal regret for playing all other
strategies but for not having played strategy j throughout the course of a game
is given by:

ir
T
S!j =

SX
i=1

ir
T
i!j (21)



Given the above de�nitions, consider the case of a 2-strategy informed game,
with strategies X and Y . The no internal regret learning algorithm updates
the components of the weight vector, namely wt+1

X and wt+1
Y , according to the

following formulae, which reect cumulative feelings of regret:

wt+1
X =

ir
t
Y!X

ir
t
X!Y + ir

t
Y!X

and wt+1
Y =

ir
t
X!Y

ir
t
X!Y + ir

t
Y!X

(22)

If the regret for having played strategy j rather than strategy i is signi�cant,
then the algorithm updates weights such that the probability of playing strategy
i is increased. In general, if strategy i is played at time t,

wt+1
j =

1

�
ir

t
i!j and wt+1

i = 1�
X
j 6=i

wt+1
j (23)

where � is a normalizing term that is chosen s.t.:

� > (jSj � 1)max
j2S

ir
t
i!j (24)

This version of the generalized algorithm is due to Hart and Mas-Colell [22].
Like the no external regret algorithm of Freund and Schapire [14], the above

no internal regret algorithm depends on complete payo� information at all times
t, including information that pertains to strategies that were not employed at
time t. The no internal regret learning algorithm has also been studied in naive
settings, where complete payo� information is not available (see Foster and
Vohra [11] and Greenwald [16]). It remains to simulate the naive variant of the
no internal regret learning algorithm in our model of shopbots and pricebots.


