Bounded learning is applicable to network games, in which players learn to utilize networks during times of minimal congestion. These games are atypical as compared with traditional games described in the game-theoretic literature, since their underlying structure is not commonly understood by the players, and moreover, common knowledge of rationality is not a valid assumption. As such, this class of repeated games does not naturally lend itself to belief-based learning algorithms. Rather, this thesis will investigate learning algorithms for network games that are analyzed solely on the basis of performance, without requiring that players maintain prior beliefs about expected network congestion. In sum, the initial focus of this thesis is to explore an application of computer science ideology to learning algorithms in game theory; secondly, bounded game-theoretic learning will be applied to routing and congestion problems in network environments.