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Key Problem

What is the outcome of multiagent learning in games?
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Candidate Solutions
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Convergence is a Slippery Slope

I. Multiagent value iteration (Q-learning) in Markov games

◦ convergence to cyclic equilibrium policies [ZGL 2005]

II. No-regret learning in repeated games [Foster & Vohra 1997]

◦ convergence to a set of game-theoretic equilibria [GJ 2003]

III. Adaptive learning in repeated games [Young 1993]

◦ stochastic stability and equilibrium selection [WG 2005]
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Game Theory: A Crash Course

General-Sum Games (e.g., Prisoners’ Dilemma)

◦ Correlated Equilibrium

◦ Nash Equilibrium

Zero-Sum Games (e.g., Rock-Paper-Scissors)

◦ Minimax Equilibrium
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An Example

Chicken
l r

T 6,6 2,7
B 7,2 0,0

CE
l r

T 1/2 1/4
B 1/4 0

πT l + πTr + πBl + πBr = 1 (1)

πT l, πTr, πBl, πBr ≥ 0 (2)

6πl|T + 2πr|T ≥ 7πl|T + 0πr|T (3)

7πl|B + 0πr|B ≥ 6πl|B + 2πr|B (4)

6πT |l + 2πB|l ≥ 7πT |l + 0πB|l (5)

7πT |r + 0πB|r ≥ 6πT |r + 2πB|r (6)
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Linear Program

Chicken
l r

T 6,6 2,7
B 7,2 0,0

CE
l r

T 1/2 1/4
B 1/4 0

max 12πT l + 9πTr + 9πBl + 0πBr (7)

subject to

πT l + πTr + πBl + πBr = 1 (8)

πT l, πTr, πBl, πBr ≥ 0 (9)

6πT l + 2πTr ≥ 7πT l + 0πTr (10)

7πBl + 0πBr ≥ 6πBl + 2πBr (11)

6πT l + 2πBl ≥ 7πT l + 0πBl (12)

7πTr + 0πBr ≥ 6πTr + 2πBr (13)
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One-Shot Games

General-Sum Games

◦ N is a set of players

◦ Ai is player i’s action set

◦ Ri : A → R is player i’s reward function,

where A =
∏

i∈N Ai

Zero-Sum Games

◦
∑

i Ri(~a) = 0, for all ~a ∈ A
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Equilibria

Notation

Write ~a = (ai,~a−i) ∈ A for ai ∈ Ai and ~a−i ∈ A−i =
∏

j 6=i Aj and Π = ∆(A)

Definition

An action profile π∗ ∈ Π is a correlated equilibrium if for all i ∈ N , ai, a′
i ∈ Ai,

if π(ai) > 0,
∑

~a−i∈A−i

π(~a−i | ai)Ri(ai,~a−i) ≥
∑

~a−i∈A−i

π(~a−i | ai)Ri(a
′
i,~a−i) (14)

A Nash equilibrium is an independent correlated equilibrium.

A minimax equilibrium is a Nash equilibrium in a zero-sum game.
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I. Multiagent Value Iteration in Markov Games

Theory

Multiagent value iteration does not necessarily converge to stationary

equilibrium policies in general-sum Markov games.

Experiments

Multiagent value iteration converges to cyclic equilibrium policies

◦ randomly generated Markov games

◦ Grid Game 1 [Hu and Wellman 1998]

◦ Shopbots and Pricebots [G and Kephart 1999]
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Markov Decision Processes (MDPs)

Decision Process

◦ S is a set of states

◦ A is a set of actions

◦ R : S × A → R is a reward function

◦ P [st+1 | st, at, . . . , s0, a0] is a probabilistic transition
function that describes transitions between states,
conditioned on past states and actions

MDP = Decision Process + Markov Property:

P [st+1 | st, at, . . . , s0, a0] = P [st+1 | st, at]

∀t, ∀s0, . . . , st ∈ S, ∀a0, . . . , at ∈ A
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Bellman’s Equations

Q∗(s, a) = R(s, a) + γ
∑

s′

P [s′ | s, a]V ∗(s′) (15)

V ∗(s) = max
a∈A

Q∗(s, a) (16)

Value Iteration

VI(MDP, γ)
Inputs discount factor γ
Output optimal state-value function V ∗

optimal action-value function Q∗

Initialize V arbitrarily

REPEAT
for all s ∈ S

for all a ∈ A
Q(s, a) = R(s, a) + γ

∑

s′
P [s′ | s, a]V (s′)

V (s) = maxa Q(s, a)
FOREVER

12



Markov Games

Stochastic Game

◦ N is a set of players

◦ S is a set of states

◦ Ai is the ith player’s set of actions

◦ Ri(s,~a) is the ith player’s reward at state s
given action vector ~a

◦ P [st+1 | st,~at, . . . , s0,~a0] is a probabilistic transition
function that describes transitions between states,
conditioned on past states and actions

Markov Game = Stochastic Game + Markov Property:

P [st+1 | st,~at, . . . , s0,~a0] = P [st+1 | st,~at]

∀t, ∀s0, . . . , st ∈ S, ∀~a0, . . . ,~at ∈ A
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Bellman’s Analogue

Q∗
i (s,~a) = Ri(s,~a) + γ

∑

s′

P [s′ | s,~a]V ∗
i (s′) (17)

V ∗
i (s) =

∑

~a∈A

π∗(s,~a)Q∗
i (s,~a) (18)

Foe–VI π∗(s) = (σ∗
1, σ

∗
2), a minimax equilibrium policy

[Shapley 1953, Littman 1994]

Friend–VI π∗(s) = e~a∗ where ~a∗ ∈ argmax~a∈A Q∗
i (s,~a)

[Littman 2001]

Nash–VI π∗(s) ∈ Nash(Q∗
1(s), . . . , Q

∗
n(s))

[Hu and Wellman 1998]

CE–VI π∗(s) ∈ CE(Q∗
1(s), . . . , Q

∗
n(s))

[GH 2003]
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Multiagent Value Iteration

MULTI–VI(MGame, γ, f)
Inputs discount factor γ

selection mechanism f
Output equilibrium state-value function V ∗

equilibrium action-value function Q∗

equilibrium policy π∗

Initialize V arbitrarily

REPEAT
for all s ∈ S

for all ~a ∈ A
for all i ∈ N

Qi(s,~a) = Ri(s,~a) + γ
∑

s′
P [s′ | s,~a]Vi(s′)

π(s) ∈ f(Q1(s), . . . , Qn(s))
for all i ∈ N

Vi(s) =
∑

~a∈A
π(s,~a)Qi(s,~a)

FOREVER

Friend–or–Foe–VI always converges [Littman 2001]

Nash–VI and CE–VI converge to equilibrium policies in zero-sum &

common-interest Markov games [GHZ 2005]
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NoSDE Game: Rewards

A B

RA(A, send) = 0

RA(B, send) = 0

RA(A, keep) = 1 RA(B, keep) = 3

A B

RB(A, send) = 3

RB(B, send) = 0

RB(A, keep) = 0 RB(B, keep) = 1

Observation [ZGL 2005]

This game has no stationary deterministic equilibrium policy when γ = 3
4
.
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NoSDE Game: Q-Values and Values

4
16
3

QA(A, send) = 4

QA(B, send) = 3

QA(A, keep) = 4 QA(B, keep) = 7

16
3 4

QB(A, send) = 6

QB(B, send) = 4

QB(A, keep) = 4 QB(B, keep) = 4

Theorem [ZGL 2005]

Every NoSDE game has a unique (probabilistic) stationary equilibrium policy.
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Cyclic Correlated Equilibria

A stationary policy is a function π : S → ∆(A).

A cyclic policy ρ is a finite sequence of stationary policies.

Qρ,t
i (s,~a) = Ri(s,~a) + γ

∑

s′∈S

P [s′ | s,~a]V ρ,t̃+1
i (s′) (19)

V ρ,t
i (s) =

∑

~a∈A

ρt(s,~a)Q
ρ,t
i (s,~a) (20)

A cyclic policy of length k is a correlated equilibrium

if for all i ∈ N , s ∈ S, a′
i ∈ Ai, and t ∈ {1, . . . , k},

∑

~a−i∈A−i

ρt(s,~a−i | ai)Q
ρ,t
i (s,~a−i, ai) ≥

∑

~a−i∈A−i

ρt(s,~a−i | ai)Q
ρ,t
i (s,~a−i, a

′
i) (21)
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Positive Result

Theorem [ZGL 2005]

For every NoSDE game, given any natural equilibrium selection mechanism,

there exists some k > 1 s.t. multiagent value iteration converges to a cyclic

equilibrium policy of length k.

Negative Result

Corollary

Multiagent value iteration does not necessarily converge to stationary

equilibrium policies in general-sum Markov games, regardless of the

equilibrium selection mechanism.
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Random Markov Games

|N | = 2

|A| ∈ {2,3}

|S| ∈ {1, . . . ,10}

Random Rewards ∈ [0,99]

Random Deterministic Transitions

γ = 3
4
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I. Multiagent Value Iteration in Markov Games

Summary of Observations

◦ Multiagent value iteration converges empirically to not necessarily deter-
ministic, not necessarily stationary, cyclic equilibrium policies in
randomly generated Markov games and Grid Game 1.

– eCE converges to a nonstationary nondeterministic cyclic
equilibrium policy in Grid Game 1.

Open Questions

◦ Just as multiagent value iteration necessarily converges to stationary
equilibrium policies in zero-sum Markov games, does multiagent value
iteration necessarily converge to nonstationary cyclic equilibrium policies
in general-sum Markov games?
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II. No-Regret Learning in Repeated Games

Theorem

No-Φ-regret learning algorithms exist for a natural class of Φs.

Theorem

The empirical distribution of play of no-Φ-regret learning converges
to the set of Φ-equilibria in repeated general-sum games.

◦ No-external-regret learning converges to the set of minimax equilibria
in repeated zero-sum games. [e.g., Freund and Schapire 1996]

◦ No-internal-regret learning converges to the set of correlated equilibria
in repeated general-sum games. [Foster and Vohra 1997]
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Single Agent Learning Model

◦ set of actions N = {1, . . . , n}

◦ for all times t,

– mixed action vector qt ∈ Q = {q ∈ Rn|
∑

i qi = 1 & qi ≥ 0,∀i}

– pure action vector at = ei for some pure action i

– reward vector rt = (r1, . . . , rn) ∈ [0,1]n

A learning algorithm A is a sequence of functions qt : Historyt−1 → Q,

where a History is a sequence of action-reward pairs (a1, r1), (a2, r2), . . ..
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Transformations

ΦLINEAR = {φ : Q → Q}
= the set of all linear transformations
= the set of all row stochastic matrices

ΦEXT = {φj ∈ ΦLINEAR | j ∈ N}, where ekφ
j = ej

ΦINT = {φij ∈ ΦLINEAR | ij ∈ N}, where ekφ
ij =

{

ej if k = i
ek otherwise

Example

φ2 =







0 1 0 0
0 1 0 0
0 1 0 0
0 1 0 0






φ23 =







1 0 0 0
0 0 1 0
0 0 1 0
0 0 0 1







〈q1, q2, q3, q4〉φ2 = 〈0,1,0,0〉, for all 〈q1, q2, q3, q4〉 ∈ Q.

〈q1, q2, q3, q4〉φ23 = 〈q1,0, q2 + q3, q4〉, for all 〈q1, q2, q3, q4〉 ∈ Q.
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Regret Matching (Φ, g : RΦ → RΦ
+)

for t = 1, . . . ,

1. play mixed strategy qt

2. realize pure action at

3. observe rewards rt

4. for all φ ∈ Φ

– compute instantaneous regret

∗ observed ρt
φ ≡ ρφ(r

t, at) = rt · atφ − rt · at

∗ expected ρt
φ ≡ ρφ(r

t, qt) = rt · qtφ − rt · qt

– update cumulative regret vector Xt
φ = Xt−1

φ + ρt
φ

5. compute Y = g(Xt)

6. compute M =

∑

φ∈Φ
φYφ

∑

φ∈Φ
Yφ

7. solve for a fixed point qt+1 = qt+1M

25



Regret Matching Theorem

Blackwell’s Approachability Theorem: A Generalization

For finite Φ ∈ ΦLINEAR and for appropriate choices of g : R → RΦ
+,

if ρ(r, q) · g(X) ≤ 0, then the negative orthant RΦ
− is approachable.

Regret Matching Theorem

For all Φ ∈ ΦLINEAR and for appropriate choices of g, Regret Matching (Φ, g)

satisfies the generalized Blackwell condition: ρ(r, q) · g(X) ≤ 0.

Corollary

For all Φ ∈ ΦLINEAR and for appropriate choices of g, Regret Matching (Φ, g)

is a no-Φ-regret algorithm.
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Special Cases of Regret Matching

Foster and Vohra 1997 (ΦINT)

Hart and Mas-Colell 2000 (ΦEXT)

Choose G(X) = 1
2

∑

k(X
+
k )2 so that gk(X) = X+

k

Freund and Schapire 1995 (ΦEXT)

Cesa-Bianchi and Lugosi 2003 (ΦINT)

Choose G(X) = 1
η
ln

(
∑

k eηXk

)

so that gk(X) = eηXk
∑

k
eηXk
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Multiagent Model

◦ a set of players N

◦ for all players i,

– a set of pure actions Ai

– a set of mixed actions Qi

– a reward function ri : A → [0,1], where A =
∏

i Ai

– an expected reward function ri : Q → [0,1], where Q = ∆(A)
ri(q) =

∑

a∈A q(a)ri(a) for q ∈ Q

– a set Φi
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Φ-Equilibrium

Definition

An mixed action profile q∗ ∈ Q is a Φ-equilibrium iff

ri(φ̈i(q∗)) ≤ ri(q∗), for all players i and for all φi ∈ Φi.

Examples

Correlated Equilibrium: Φi = ΦINT, for all players i

Generalized Minimax Equilibrium: Φi = ΦEXT, for all players i

Theorem

The empirical distribution of play of no-Φ-regret learning converges

to the set of Φ-equilibria in repeated general-sum games.
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Zero-Sum Games

Matching Pennies

h t
H −1,1 1,−1
T 1,−1 −1,1

Rock-Paper-Scissors

r p s
R 0,0 −1,1 1,−1
P 1,−1 0,0 −1,1
S −1,1 1,−1 0,0
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Matching Pennies

Weights Frequencies
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Rock-Paper-Scissors

Weights Frequencies
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General-Sum Games

Shapley Game

l c r
T 0,0 1,0 0,1
M 0,1 0,0 1,0
B 1,0 0,1 0,0

Correlated Equilibrium

l c r
T 0 1/6 1/6
M 1/6 0 1/6
B 1/6 1/6 0

l c r
T 2ε 1/6 − ε 1/6 − ε
M 1/6 − ε 2ε 1/6 − ε
B 1/6 − ε 1/6 − ε 2ε
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Shapley Game: No Internal Regret Learning
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Shapley Game: No Internal Regret Learning

Joint Frequencies
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Shapley Game: No External Regret Learning
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II. No-Regret Learning in Repeated Games

Summary of Observations

◦ No-Φ-regret learning algorithms exist for a natural class of Φs.

◦ The empirical distribution of play of no-Φ-regret learning converges
to the set of Φ-equilibria in repeated general-sum games.

Open Questions

◦ Equilibrium selection problem: QWERTY Game
d q

D 5,5 0,0
Q 0,0 4,4
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III. Stochastic Stability

Definition

Given a Markov matrix M (i.e., M ≥ 0 and JM = J), a perturbed Markov

process Mε is a family of Markov matrices with entries Mij = εrijcij(ε).

Theorem

Given ε > 0, the Markov matrix Mε has a unique stable distribution, call it vε.

Definition

The limit of the sequence {vε}, as ε → 0, exists, is unique, and is called

the stochastically stable distribution of the perturbed Markov process.

Algorithm [WG 2005]

An exact algorithm to compute the stochastically stable distribution

of a perturbed Markov process.
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Adaptive Learning in Repeated Games

Model [Young 1993]

◦ A variant of Fictitious Play [Brown 1951]

◦ Finite memory m, Sample size s

◦ Play a best-response

QWERTY: m = s = 1

M0 Dd Qd Dq Qq
Dd 1 0 0 0

Qd 0 0 1 0

Dq 0 1 0 0

Qq 0 0 0 1
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Adaptive Learning in Repeated Games

Model [Young 1993]

◦ A variant of Fictitious Play [Brown 1951]

◦ Finite memory m, Sample size s

◦ Mistake probability ε

– Play arbitrarily with probability ε

– Play a best-response with probability 1 − ε

QWERTY: m = s = 1

Mε Dd Qd Dq Qq
Dd (1 − ε)(1 − ε) (1 − ε)ε ε(1 − ε) ε2

Qd ε(1 − ε) ε2 (1 − ε)(1 − ε) (1 − ε)ε

Dq (1 − ε)ε (1 − ε)(1 − ε) ε2 ε(1 − ε)

Qq ε2 ε(1 − ε) (1 − ε)ε (1 − ε)(1 − ε)
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Equilibrium Selection

QWERTY′

d q
D 5,5 0,3
Q 3,0 4,4

m s Equilibrium
2 2 Qq
3 2 Qq
3 3 Qq
4 2 Qq
4 3 Qq
4 4 Qq

In QWERTY′, Qq is the risk-dominant equilibrium.
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Equilibrium Selection

QWERTY′

d q
D 5,5 0,3
Q 3,0 4,4

m s Equilibrium
2 2 Qq
3 2 Qq
3 3 Qq
4 2 Qq
4 3 Qq
4 4 Qq

Coordination Game

l c r
T 3,3 0,0 0,0
M 0,0 2,2 0,0
B 0,0 0,0 1,1

In QWERTY′, Qq is the risk-dominant equilibrium.
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III. Adaptive Learning in Repeated Games

Summary of Observations

◦ The theory of stochastic stability can be applied to predict the dynamics
of adaptive learning in repeated games.

Open Questions

◦ Can this theory be applied to predict the dynamics of no-regret learning
in repeated games or multiagent Q-learning in Markov games?
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Summary

What is the outcome of multiagent learning in games?

◦ Multiagent value iteration in Markov games → cyclic equilibria.

◦ No-Φ-regret learning in repeated games → the set of Φ-equilibria.

◦ Adaptive learning in repeated games selects risk-dominant equilibria.
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