
TCP Nice: A Mechanism for Background Transfers
Arun Venkataramani Ravi Kokku Mike Dahlin

Laboratory of Advanced Systems Research
Department of Computer Sciences

University of Texas at Austin, Austin, TX 78712
arun, rkoku, dahlin @cs.utexas.edu

Abstract

Many distributed applications can make use of large
background transfers transfers of data that humans
are not waiting for to improve availability, reliability,
latency or consistency. However, given the rapid fluc-
tuations of available network bandwidth and changing
resource costs due to technology trends, hand tuning the
aggressiveness of background transfers risks (1) compli-
cating applications, (2) being too aggressive and inter-
fering with other applications, and (3) being too timid
and not gaining the benefits of background transfers.
Our goal is for the operating system to manage network
resources in order to provide a simple abstraction of near
zero-cost background transfers. Our system, TCP Nice,
can provably bound the interference inflicted by back-
ground flows on foregroundflows in a restricted network
model. And our microbenchmarks and case study appli-
cations suggest that in practice it interferes little with
foreground flows, reaps a large fraction of spare net-
work bandwidth, and simplifies application construction
and deployment. For example, in our prefetching case
study application, aggressive prefetching improves de-
mand performance by a factor of three when Nice man-
ages resources; but the same prefetching hurts demand
performance by a factor of six under standard network
congestion control.

1 Introduction

Many distributed applications can make use of large
background transfers transfers of data that humans are
not waiting for to improve service quality. For exam-
ple, a broad range of applications and services such as
data backup [29], prefetching [50], enterprise data dis-
tribution [20], Internet content distribution [2], and peer-
to-peer storage [16, 43] can trade increased network

This work was supported in part by an NSF CISE grant (CDA-
9624082), the Texas Advanced Technology Program, the Texas Ad-
vanced Research Program, and Tivoli. Dahlin was also supported by
an NSF CAREER award (CCR-9733842) and an Alfred P. Sloan Re-
search Fellowship.

bandwidth consumption and possibly disk space for im-
proved service latency [15, 18, 26, 32, 38, 50], improved
availability [11, 53], increased scalability [2], stronger
consistency [53], or support for mobility [28, 41, 47].
Many of these services have potentially unlimited band-
width demands where incrementally more bandwidth
consumption provides incrementally better service. For
example, a web prefetching system can improve its hit
rate by fetching objects from a virtually unlimited col-
lection of objects that have non-zero probability of ac-
cess [8, 10] or by updating cached copies more fre-
quently as data change [13, 50, 48]; Technology trends
suggest that “wasting” bandwidth and storage to im-
prove latency and availability will become increasingly
attractive in the future: per-byte network transport costs
and disk storage costs are low and have been improv-
ing at 80-100% per year [9, 17, 37]; conversely net-
work availability [11, 40, 54] and network latencies im-
prove slowly, and long latencies and failures waste hu-
man time.

Current operating systems and networks do not provide
good support for aggressive background transfers. In
particular, because background transfers compete with
foreground requests, they can hurt overall performance
and availability by increasing network congestion. Ap-
plications must therefore carefully balance the benefits
of background transfers against the risk of both self-
interference, where applications hurt their own perfor-
mance, and cross-interference, where applications hurt
other applications’ performance. Often, applications at-
tempt to achieve this balance by setting “magic num-
bers” (e.g., the prefetch threshold in prefetching algo-
rithms [18, 26]) that have little obvious relationship to
system goals (e.g., availability or latency) or constraints
(e.g., current spare network bandwidth).

Our goal is for the operating system to manage net-
work resources in order to provide a simple abstrac-
tion of zero-cost background transfers. A self-tuning
background transport layer will enable new classes of
applications by (1) simplifying applications, (2) reduc-
ing the risk of being too aggressive, and (3) making


