
Participatory Networking:
An API for Application Control of SDNs

Andrew Ferguson, Arjun Guha, Chen Liang,
Rodrigo Fonseca, and Shriram Krishnamurthi

1

Cornell

Participatory Networking
2

Participatory Networking integrates end-users and their applications directly into the management of
the network.

3

Motivation

2. Ekiga
3. ZooKeeper
4. Hadoop

1. SSHGuard

As a motivation, let’s consider four applications which might like to manage the network

4

2. Ekiga
3. ZooKeeper
4. Hadoop

1. SSHGuard blocks hosts in response to login attempts

uses knowledge from host OS

prefers to deny traffic close to source

SSHGuard

SSHGuard

SSHGuard

SSHGuard

SSHGuard

SSHGuard SSHGuard

today: block bad traffic at end host
“if it could…”

5

2. Ekiga
3. ZooKeeper
4. Hadoop

1. SSHGuard open source VOIP client

network needs dictated by end-user

prefers to reserve bandwidth

Ekiga

Ekiga

Explain Ekiga’s traffic pattern

“if it could…”

6

2. Ekiga
3. ZooKeeper
4. Hadoop

1. SSHGuard Paxos-like coordination service

network needs dictated by placement

prefers high-priority switch queues

ZooKeeper

ZooKeeper

ZooKeeper

Explain ZooKeeper’s traffic pattern … “control-traffic”

“if it could…”

7

2. Ekiga
3. ZooKeeper
4. Hadoop

1. SSHGuard open source data processing platform

network weights known by scheduler

prefers to reserve bandwidth

Hadoop

Hadoop

Hadoop

Hadoop

Hadoop

Hadoop

Hadoop

Hadoop

Hadoop

Hadoop

Hadoop

Hadoop

weights are used to express the relative priority of jobs. today these weights affect the amount of CPU
and memory for the job

“if it could…”

8

SDN Controllers

SSHGuardSSHGuardSSHGuard Ekiga ZooKeeper HadoopEkiga

how could we do this today? file a ticket with the network operators every few minutes as they
have frequently changing dynamic needs, precluding a single, static policy

or today, we could program the network by writing an SDN controller for each application.

Combining these controllers would be difficult:
1) have to run as root, and 2) would be affected by the decisions of other controllers

9

10

1. decompose control and visibility
2. resolve conflicts between requests

Challenges

stepping back, we see there are two challenges we need to overcome to prevent this chaos.
(read slide)
or, in other words,
1. how do we keep programs from all running as root?
2. how do we keep programs from being affected by one another?

Participatory
Networking

11

participatory networking is the approach we developed to solve these challenges.

to do so, we need to reason about changes being made to the network. to make such
reasoning tractable, we don’t allow general purpose programming.

instead, we provide applications with a restricted control-plane API.

PANE

Participatory
Networking

12

1. Requests
2. Hints
3. Queries

In our API, users, their hosts, and their applications send three types of messages to a
logically centralized network controller, which we call PANE.

The first are requests for resources, such as guaranteed minimum bandwidth, latency, path
properties, or access control. The second are hints about future traffic. And the third are
queries for current or future properties of the network.

The PANE controller serves as an arbiter for conflicting proposals, and ultimately performs
the requested reconfigurations.

13

Participatory
Networking

• End-user API for SDNs
• Exposes existing mechanisms
• No effect on unmodified applications

Participatory networking introduces an end-user API or system calls for software defined
networks. It does not propose any new mechanisms or network resources such as QoS,
routing, or access control -- it simply allows end-users and their applications to use them.

Unmodified applications, or those which choose not to participate, continue to receive the
same best-effort performance of existing networks.

In our vision, network operators set baseline policies that enforce fairness and security, while
end-users and their applications propose new configurations to meet their needs.

14

Decomposing Control

Let’s begin with the first challenge: how to decompose control and visibility of the network?

15



 












Shares

Hadoop

To divide authority, PANE uses a hierarchy of network “shares” which describe WHO can say
WHAT about WHICH flows in the network.

First, each share has a list of principals (click), who are the end users and applications
authorized to use the share.

Second, each share refers to a particular flowgroup (click) -- a set of traffic flows identified
by standard attributes such as source and destination IP and MAC addresses, protocols, and
port numbers.

Finally, they have a list of privileges (click) indicating what can be performed using the
share. For example, traffic can be allowed or denied, rate-limited, waypointed through a
particular switch, or provided with guaranteed minimum bandwidth.

Shares can also authorize end-users to issue hints or make queries about particular traffic
flows. These actions can also come with restrictions. For example, bandwidth reservations
may be restricted using a token bucket.

(Pause)

15



 












Shares

Hadoop

To divide authority, PANE uses a hierarchy of network “shares” which describe WHO can say
WHAT about WHICH flows in the network.

First, each share has a list of principals (click), who are the end users and applications
authorized to use the share.

Second, each share refers to a particular flowgroup (click) -- a set of traffic flows identified
by standard attributes such as source and destination IP and MAC addresses, protocols, and
port numbers.

Finally, they have a list of privileges (click) indicating what can be performed using the
share. For example, traffic can be allowed or denied, rate-limited, waypointed through a
particular switch, or provided with guaranteed minimum bandwidth.

Shares can also authorize end-users to issue hints or make queries about particular traffic
flows. These actions can also come with restrictions. For example, bandwidth reservations
may be restricted using a token bucket.

(Pause)

15



 












Shares

Hadoop

To divide authority, PANE uses a hierarchy of network “shares” which describe WHO can say
WHAT about WHICH flows in the network.

First, each share has a list of principals (click), who are the end users and applications
authorized to use the share.

Second, each share refers to a particular flowgroup (click) -- a set of traffic flows identified
by standard attributes such as source and destination IP and MAC addresses, protocols, and
port numbers.

Finally, they have a list of privileges (click) indicating what can be performed using the
share. For example, traffic can be allowed or denied, rate-limited, waypointed through a
particular switch, or provided with guaranteed minimum bandwidth.

Shares can also authorize end-users to issue hints or make queries about particular traffic
flows. These actions can also come with restrictions. For example, bandwidth reservations
may be restricted using a token bucket.

(Pause)

15



 












Shares

Hadoop

To divide authority, PANE uses a hierarchy of network “shares” which describe WHO can say
WHAT about WHICH flows in the network.

First, each share has a list of principals (click), who are the end users and applications
authorized to use the share.

Second, each share refers to a particular flowgroup (click) -- a set of traffic flows identified
by standard attributes such as source and destination IP and MAC addresses, protocols, and
port numbers.

Finally, they have a list of privileges (click) indicating what can be performed using the
share. For example, traffic can be allowed or denied, rate-limited, waypointed through a
particular switch, or provided with guaranteed minimum bandwidth.

Shares can also authorize end-users to issue hints or make queries about particular traffic
flows. These actions can also come with restrictions. For example, bandwidth reservations
may be restricted using a token bucket.

(Pause)

16

Share Tree
A share’s principals also have the capability to delegate privileges by creating subshares
(click). The creation of subshares is guided by the principle that you can’t give away more
authority than you have.

For example, a subshare’s flowgroup (click) must be contained within the parent share’s
flowgroup (click). Here, the blue bar represents each flowgroup’s range of permitted source
IP addresses.

Furthermore, a subshare may not have a more permissive action set (click) than the parent
(click), and initially, the subshare’s only principal is its creator (click). Other users can later be
added as additional principals (click).

This process of creating subshares develops a privilege hierarchy we call the “Share
Tree” (click). The root of the share tree is “the rootShare” (click) -- a share which contains all
traffic in the network, comes with all privileges, and has a single root user as the principal.

16

Share Tree
A share’s principals also have the capability to delegate privileges by creating subshares
(click). The creation of subshares is guided by the principle that you can’t give away more
authority than you have.

For example, a subshare’s flowgroup (click) must be contained within the parent share’s
flowgroup (click). Here, the blue bar represents each flowgroup’s range of permitted source
IP addresses.

Furthermore, a subshare may not have a more permissive action set (click) than the parent
(click), and initially, the subshare’s only principal is its creator (click). Other users can later be
added as additional principals (click).

This process of creating subshares develops a privilege hierarchy we call the “Share
Tree” (click). The root of the share tree is “the rootShare” (click) -- a share which contains all
traffic in the network, comes with all privileges, and has a single root user as the principal.

16

Share Tree
A share’s principals also have the capability to delegate privileges by creating subshares
(click). The creation of subshares is guided by the principle that you can’t give away more
authority than you have.

For example, a subshare’s flowgroup (click) must be contained within the parent share’s
flowgroup (click). Here, the blue bar represents each flowgroup’s range of permitted source
IP addresses.

Furthermore, a subshare may not have a more permissive action set (click) than the parent
(click), and initially, the subshare’s only principal is its creator (click). Other users can later be
added as additional principals (click).

This process of creating subshares develops a privilege hierarchy we call the “Share
Tree” (click). The root of the share tree is “the rootShare” (click) -- a share which contains all
traffic in the network, comes with all privileges, and has a single root user as the principal.

16

Share Tree
A share’s principals also have the capability to delegate privileges by creating subshares
(click). The creation of subshares is guided by the principle that you can’t give away more
authority than you have.

For example, a subshare’s flowgroup (click) must be contained within the parent share’s
flowgroup (click). Here, the blue bar represents each flowgroup’s range of permitted source
IP addresses.

Furthermore, a subshare may not have a more permissive action set (click) than the parent
(click), and initially, the subshare’s only principal is its creator (click). Other users can later be
added as additional principals (click).

This process of creating subshares develops a privilege hierarchy we call the “Share
Tree” (click). The root of the share tree is “the rootShare” (click) -- a share which contains all
traffic in the network, comes with all privileges, and has a single root user as the principal.

16

bandwidth
50Mbps

Share Tree
A share’s principals also have the capability to delegate privileges by creating subshares
(click). The creation of subshares is guided by the principle that you can’t give away more
authority than you have.

For example, a subshare’s flowgroup (click) must be contained within the parent share’s
flowgroup (click). Here, the blue bar represents each flowgroup’s range of permitted source
IP addresses.

Furthermore, a subshare may not have a more permissive action set (click) than the parent
(click), and initially, the subshare’s only principal is its creator (click). Other users can later be
added as additional principals (click).

This process of creating subshares develops a privilege hierarchy we call the “Share
Tree” (click). The root of the share tree is “the rootShare” (click) -- a share which contains all
traffic in the network, comes with all privileges, and has a single root user as the principal.

16

bandwidth
100Mbps

bandwidth
50Mbps

Share Tree
A share’s principals also have the capability to delegate privileges by creating subshares
(click). The creation of subshares is guided by the principle that you can’t give away more
authority than you have.

For example, a subshare’s flowgroup (click) must be contained within the parent share’s
flowgroup (click). Here, the blue bar represents each flowgroup’s range of permitted source
IP addresses.

Furthermore, a subshare may not have a more permissive action set (click) than the parent
(click), and initially, the subshare’s only principal is its creator (click). Other users can later be
added as additional principals (click).

This process of creating subshares develops a privilege hierarchy we call the “Share
Tree” (click). The root of the share tree is “the rootShare” (click) -- a share which contains all
traffic in the network, comes with all privileges, and has a single root user as the principal.

16

root

root

bandwidth
100Mbps

bandwidth
50Mbps

Share Tree
A share’s principals also have the capability to delegate privileges by creating subshares
(click). The creation of subshares is guided by the principle that you can’t give away more
authority than you have.

For example, a subshare’s flowgroup (click) must be contained within the parent share’s
flowgroup (click). Here, the blue bar represents each flowgroup’s range of permitted source
IP addresses.

Furthermore, a subshare may not have a more permissive action set (click) than the parent
(click), and initially, the subshare’s only principal is its creator (click). Other users can later be
added as additional principals (click).

This process of creating subshares develops a privilege hierarchy we call the “Share
Tree” (click). The root of the share tree is “the rootShare” (click) -- a share which contains all
traffic in the network, comes with all privileges, and has a single root user as the principal.

16

root

root adf

bandwidth
100Mbps

bandwidth
50Mbps

Share Tree
A share’s principals also have the capability to delegate privileges by creating subshares
(click). The creation of subshares is guided by the principle that you can’t give away more
authority than you have.

For example, a subshare’s flowgroup (click) must be contained within the parent share’s
flowgroup (click). Here, the blue bar represents each flowgroup’s range of permitted source
IP addresses.

Furthermore, a subshare may not have a more permissive action set (click) than the parent
(click), and initially, the subshare’s only principal is its creator (click). Other users can later be
added as additional principals (click).

This process of creating subshares develops a privilege hierarchy we call the “Share
Tree” (click). The root of the share tree is “the rootShare” (click) -- a share which contains all
traffic in the network, comes with all privileges, and has a single root user as the principal.

16

root

root adf

bandwidth
100Mbps

bandwidth
50Mbps

Share Tree
A share’s principals also have the capability to delegate privileges by creating subshares
(click). The creation of subshares is guided by the principle that you can’t give away more
authority than you have.

For example, a subshare’s flowgroup (click) must be contained within the parent share’s
flowgroup (click). Here, the blue bar represents each flowgroup’s range of permitted source
IP addresses.

Furthermore, a subshare may not have a more permissive action set (click) than the parent
(click), and initially, the subshare’s only principal is its creator (click). Other users can later be
added as additional principals (click).

This process of creating subshares develops a privilege hierarchy we call the “Share
Tree” (click). The root of the share tree is “the rootShare” (click) -- a share which contains all
traffic in the network, comes with all privileges, and has a single root user as the principal.

16

root

root adf

bandwidth
100Mbps

bandwidth
50Mbps

Share Tree
A share’s principals also have the capability to delegate privileges by creating subshares
(click). The creation of subshares is guided by the principle that you can’t give away more
authority than you have.

For example, a subshare’s flowgroup (click) must be contained within the parent share’s
flowgroup (click). Here, the blue bar represents each flowgroup’s range of permitted source
IP addresses.

Furthermore, a subshare may not have a more permissive action set (click) than the parent
(click), and initially, the subshare’s only principal is its creator (click). Other users can later be
added as additional principals (click).

This process of creating subshares develops a privilege hierarchy we call the “Share
Tree” (click). The root of the share tree is “the rootShare” (click) -- a share which contains all
traffic in the network, comes with all privileges, and has a single root user as the principal.

17



The share tree only sets the static context for configuring the network. The actual
configuration is performed by requests and hints to the PANE controller (click).

Requests describe an action the principal would like to perform on a flowgroup during a
given time interval (click). After evaluating the request, the PANE controller returns an
immediate response indicating an accept or reject (click).

Hints provide information about current or future traffic patterns (click). The PANE controller
is not required to respond to hints and may optionally choose an action to perform on the
traffic (click).

Shares may also provide principals with the right to issue queries about given flowgroups
(click), such as for traffic statistics (click).

To keep things simple, I’m going to focus on requests for the remainder of this talk. More
details about hints and queries can be found in our paper.

(Pause)

17



PANE
The share tree only sets the static context for configuring the network. The actual
configuration is performed by requests and hints to the PANE controller (click).

Requests describe an action the principal would like to perform on a flowgroup during a
given time interval (click). After evaluating the request, the PANE controller returns an
immediate response indicating an accept or reject (click).

Hints provide information about current or future traffic patterns (click). The PANE controller
is not required to respond to hints and may optionally choose an action to perform on the
traffic (click).

Shares may also provide principals with the right to issue queries about given flowgroups
(click), such as for traffic statistics (click).

To keep things simple, I’m going to focus on requests for the remainder of this talk. More
details about hints and queries can be found in our paper.

(Pause)

17



PANE
Reserve 2 Mbpsfrom now to +5min?

The share tree only sets the static context for configuring the network. The actual
configuration is performed by requests and hints to the PANE controller (click).

Requests describe an action the principal would like to perform on a flowgroup during a
given time interval (click). After evaluating the request, the PANE controller returns an
immediate response indicating an accept or reject (click).

Hints provide information about current or future traffic patterns (click). The PANE controller
is not required to respond to hints and may optionally choose an action to perform on the
traffic (click).

Shares may also provide principals with the right to issue queries about given flowgroups
(click), such as for traffic statistics (click).

To keep things simple, I’m going to focus on requests for the remainder of this talk. More
details about hints and queries can be found in our paper.

(Pause)

17



PANE
Yes

The share tree only sets the static context for configuring the network. The actual
configuration is performed by requests and hints to the PANE controller (click).

Requests describe an action the principal would like to perform on a flowgroup during a
given time interval (click). After evaluating the request, the PANE controller returns an
immediate response indicating an accept or reject (click).

Hints provide information about current or future traffic patterns (click). The PANE controller
is not required to respond to hints and may optionally choose an action to perform on the
traffic (click).

Shares may also provide principals with the right to issue queries about given flowgroups
(click), such as for traffic statistics (click).

To keep things simple, I’m going to focus on requests for the remainder of this talk. More
details about hints and queries can be found in our paper.

(Pause)

17



PANE


is traffic will be

short and bursty

The share tree only sets the static context for configuring the network. The actual
configuration is performed by requests and hints to the PANE controller (click).

Requests describe an action the principal would like to perform on a flowgroup during a
given time interval (click). After evaluating the request, the PANE controller returns an
immediate response indicating an accept or reject (click).

Hints provide information about current or future traffic patterns (click). The PANE controller
is not required to respond to hints and may optionally choose an action to perform on the
traffic (click).

Shares may also provide principals with the right to issue queries about given flowgroups
(click), such as for traffic statistics (click).

To keep things simple, I’m going to focus on requests for the remainder of this talk. More
details about hints and queries can be found in our paper.

(Pause)

17



PANE
OK

The share tree only sets the static context for configuring the network. The actual
configuration is performed by requests and hints to the PANE controller (click).

Requests describe an action the principal would like to perform on a flowgroup during a
given time interval (click). After evaluating the request, the PANE controller returns an
immediate response indicating an accept or reject (click).

Hints provide information about current or future traffic patterns (click). The PANE controller
is not required to respond to hints and may optionally choose an action to perform on the
traffic (click).

Shares may also provide principals with the right to issue queries about given flowgroups
(click), such as for traffic statistics (click).

To keep things simple, I’m going to focus on requests for the remainder of this talk. More
details about hints and queries can be found in our paper.

(Pause)

17



PANE
How much web trafficin the last hour?

The share tree only sets the static context for configuring the network. The actual
configuration is performed by requests and hints to the PANE controller (click).

Requests describe an action the principal would like to perform on a flowgroup during a
given time interval (click). After evaluating the request, the PANE controller returns an
immediate response indicating an accept or reject (click).

Hints provide information about current or future traffic patterns (click). The PANE controller
is not required to respond to hints and may optionally choose an action to perform on the
traffic (click).

Shares may also provide principals with the right to issue queries about given flowgroups
(click), such as for traffic statistics (click).

To keep things simple, I’m going to focus on requests for the remainder of this talk. More
details about hints and queries can be found in our paper.

(Pause)

17



PANE67,560 bytes

The share tree only sets the static context for configuring the network. The actual
configuration is performed by requests and hints to the PANE controller (click).

Requests describe an action the principal would like to perform on a flowgroup during a
given time interval (click). After evaluating the request, the PANE controller returns an
immediate response indicating an accept or reject (click).

Hints provide information about current or future traffic patterns (click). The PANE controller
is not required to respond to hints and may optionally choose an action to perform on the
traffic (click).

Shares may also provide principals with the right to issue queries about given flowgroups
(click), such as for traffic statistics (click).

To keep things simple, I’m going to focus on requests for the remainder of this talk. More
details about hints and queries can be found in our paper.

(Pause)

18

bandwidth
100Mbps

bandwidth
100Mbps

bandwidth
100Mbps

PANE

Current: 0 Mbps Current: 0 Mbps

Current: 0 Mbps

ShareA ShareB

By design, a share’s resources may be over-subscribed by its subshares.

For example, a share which is permitted up to (click) 100 Mbps of guaranteed minimum
bandwidth may permit each of its subshares (click) to make reservations up to the same limit.
In order to ensure that these restrictions are never violated, new requests are recursively
evaluated up the tree.

For example, if a user of ShareA requests (click) 80 Mbps of guaranteed bandwidth, the PANE
controller accepts the request (click) and accounts for the reservation in ShareA and the
rootShare.

If a user of ShareB then requests (click) 50 Mbps of guaranteed bandwidth, the PANE
controller rejects the request (click) to prevent a violation on the rootShare.

Finally, when accepted requests become active, the PANE controller uses OpenFlow (click) to
reconfigure the network and implement the request.

(Pause)

18

bandwidth
100Mbps

bandwidth
100Mbps

bandwidth
100Mbps

PANE

Current: 0 Mbps Current: 0 Mbps

Current: 0 Mbps

ShareA ShareB

By design, a share’s resources may be over-subscribed by its subshares.

For example, a share which is permitted up to (click) 100 Mbps of guaranteed minimum
bandwidth may permit each of its subshares (click) to make reservations up to the same limit.
In order to ensure that these restrictions are never violated, new requests are recursively
evaluated up the tree.

For example, if a user of ShareA requests (click) 80 Mbps of guaranteed bandwidth, the PANE
controller accepts the request (click) and accounts for the reservation in ShareA and the
rootShare.

If a user of ShareB then requests (click) 50 Mbps of guaranteed bandwidth, the PANE
controller rejects the request (click) to prevent a violation on the rootShare.

Finally, when accepted requests become active, the PANE controller uses OpenFlow (click) to
reconfigure the network and implement the request.

(Pause)

18

bandwidth
100Mbps

bandwidth
100Mbps

bandwidth
100Mbps

PANE

Current: 0 Mbps Current: 0 Mbps

Current: 0 Mbps

ShareA ShareB

By design, a share’s resources may be over-subscribed by its subshares.

For example, a share which is permitted up to (click) 100 Mbps of guaranteed minimum
bandwidth may permit each of its subshares (click) to make reservations up to the same limit.
In order to ensure that these restrictions are never violated, new requests are recursively
evaluated up the tree.

For example, if a user of ShareA requests (click) 80 Mbps of guaranteed bandwidth, the PANE
controller accepts the request (click) and accounts for the reservation in ShareA and the
rootShare.

If a user of ShareB then requests (click) 50 Mbps of guaranteed bandwidth, the PANE
controller rejects the request (click) to prevent a violation on the rootShare.

Finally, when accepted requests become active, the PANE controller uses OpenFlow (click) to
reconfigure the network and implement the request.

(Pause)

18

bandwidth
100Mbps

bandwidth
100Mbps

bandwidth
100Mbps

PANE

Current: 0 Mbps Current: 0 Mbps

Current: 0 Mbps

Reserve 80 Mbps?

ShareA ShareB

By design, a share’s resources may be over-subscribed by its subshares.

For example, a share which is permitted up to (click) 100 Mbps of guaranteed minimum
bandwidth may permit each of its subshares (click) to make reservations up to the same limit.
In order to ensure that these restrictions are never violated, new requests are recursively
evaluated up the tree.

For example, if a user of ShareA requests (click) 80 Mbps of guaranteed bandwidth, the PANE
controller accepts the request (click) and accounts for the reservation in ShareA and the
rootShare.

If a user of ShareB then requests (click) 50 Mbps of guaranteed bandwidth, the PANE
controller rejects the request (click) to prevent a violation on the rootShare.

Finally, when accepted requests become active, the PANE controller uses OpenFlow (click) to
reconfigure the network and implement the request.

(Pause)

18

bandwidth
100Mbps

bandwidth
100Mbps

bandwidth
100Mbps

PANE

Current: 0 Mbps Current: 0 Mbps

Current: 0 Mbps

Current: 80 Mbps

Yes

Current: 80 Mbps

ShareA ShareB

By design, a share’s resources may be over-subscribed by its subshares.

For example, a share which is permitted up to (click) 100 Mbps of guaranteed minimum
bandwidth may permit each of its subshares (click) to make reservations up to the same limit.
In order to ensure that these restrictions are never violated, new requests are recursively
evaluated up the tree.

For example, if a user of ShareA requests (click) 80 Mbps of guaranteed bandwidth, the PANE
controller accepts the request (click) and accounts for the reservation in ShareA and the
rootShare.

If a user of ShareB then requests (click) 50 Mbps of guaranteed bandwidth, the PANE
controller rejects the request (click) to prevent a violation on the rootShare.

Finally, when accepted requests become active, the PANE controller uses OpenFlow (click) to
reconfigure the network and implement the request.

(Pause)

18

bandwidth
100Mbps

bandwidth
100Mbps

bandwidth
100Mbps

PANE

Current: 0 Mbps Current: 0 Mbps

Current: 0 Mbps

Current: 80 Mbps

Current: 80 Mbps

Re
se

rv
e 5

0 M
bp

s? ShareA ShareB

By design, a share’s resources may be over-subscribed by its subshares.

For example, a share which is permitted up to (click) 100 Mbps of guaranteed minimum
bandwidth may permit each of its subshares (click) to make reservations up to the same limit.
In order to ensure that these restrictions are never violated, new requests are recursively
evaluated up the tree.

For example, if a user of ShareA requests (click) 80 Mbps of guaranteed bandwidth, the PANE
controller accepts the request (click) and accounts for the reservation in ShareA and the
rootShare.

If a user of ShareB then requests (click) 50 Mbps of guaranteed bandwidth, the PANE
controller rejects the request (click) to prevent a violation on the rootShare.

Finally, when accepted requests become active, the PANE controller uses OpenFlow (click) to
reconfigure the network and implement the request.

(Pause)

18

bandwidth
100Mbps

bandwidth
100Mbps

bandwidth
100Mbps

PANE

Current: 0 Mbps Current: 0 Mbps

Current: 0 Mbps

Current: 80 Mbps

Current: 80 Mbps

No

ShareA ShareB

By design, a share’s resources may be over-subscribed by its subshares.

For example, a share which is permitted up to (click) 100 Mbps of guaranteed minimum
bandwidth may permit each of its subshares (click) to make reservations up to the same limit.
In order to ensure that these restrictions are never violated, new requests are recursively
evaluated up the tree.

For example, if a user of ShareA requests (click) 80 Mbps of guaranteed bandwidth, the PANE
controller accepts the request (click) and accounts for the reservation in ShareA and the
rootShare.

If a user of ShareB then requests (click) 50 Mbps of guaranteed bandwidth, the PANE
controller rejects the request (click) to prevent a violation on the rootShare.

Finally, when accepted requests become active, the PANE controller uses OpenFlow (click) to
reconfigure the network and implement the request.

(Pause)

18

bandwidth
100Mbps

bandwidth
100Mbps

bandwidth
100Mbps

PANE

Current: 0 Mbps Current: 0 Mbps

Current: 0 Mbps

Current: 80 Mbps

Current: 80 Mbps

ShareA ShareB

By design, a share’s resources may be over-subscribed by its subshares.

For example, a share which is permitted up to (click) 100 Mbps of guaranteed minimum
bandwidth may permit each of its subshares (click) to make reservations up to the same limit.
In order to ensure that these restrictions are never violated, new requests are recursively
evaluated up the tree.

For example, if a user of ShareA requests (click) 80 Mbps of guaranteed bandwidth, the PANE
controller accepts the request (click) and accounts for the reservation in ShareA and the
rootShare.

If a user of ShareB then requests (click) 50 Mbps of guaranteed bandwidth, the PANE
controller rejects the request (click) to prevent a violation on the rootShare.

Finally, when accepted requests become active, the PANE controller uses OpenFlow (click) to
reconfigure the network and implement the request.

(Pause)

19

Resolving Conflicts

To solve participatory networking’s second challenge -- how to resolve conflicts between requests -- we
developed Hierarchical Flow Tables, or HFTs.

20

root

root adf

bandwidth
100Mbps

bandwidth
50Mbps

Share Tree

In PANE, we have two hierarchies.

(pause)

The first is a static hierarchy of the privileges granted to users and applications. This
hierarchy sets the stage ...

21

Policy Trees

… for a dynamic hierarchy of policy requests. As users and applications make requests,

(click) the policy trees evolve, always within the bounds set by the Share Tree.

(pause)

21

(dstPort = 22, Deny)

(dstIP=10.0.0.2, GMB=30)

(dstPort=80, GMB=10) (srcIP=10.0.0.1, Allow)

Policy Trees

(srcIP=10.0.0.2, GMB=20)

… for a dynamic hierarchy of policy requests. As users and applications make requests,

(click) the policy trees evolve, always within the bounds set by the Share Tree.

(pause)

22

(dstPort = 22, Deny)

(dstIP=10.0.0.2, GMB=30)

(dstPort=80, GMB=10) (srcIP=10.0.0.1, Allow)

Packet:
src 10.0.0.1

dst 10.0.0.2:80

Policy Trees

(srcIP=10.0.0.2, GMB=20)

Following the Ethane model, we imagine every packet is processed against a global policy by
the central controller.

Here, packet processing is the result of evaluating each packet using the current policy tree.

23

(dstPort = 22, Deny)

(dstIP=10.0.0.2, GMB=30)

(dstPort=80, GMB=10) (srcIP=10.0.0.1, Allow)

Packet:
src 10.0.0.1

dst 10.0.0.2:80

Packet Evaluation

(srcIP=10.0.0.1, GMB=20)

Hierarchical
Flow Tables

First, we identify the matching policy atoms, shown here in green. Next, policy atoms emit
their actions.

(click) When multiple subtrees have produced actions, we apply user-defined operators (click)
at each node in the tree to combine the actions. Here, the sibling operator was applied.

(click) Next, we combine the children’s action with the parent’s using a parent operator. Note
that in this case, the parent did produce any action, which we denote by “0”, a special “don’t
care” action.

(continue until GMB=30 is emitted)

23

(dstPort = 22, Deny)

(dstIP=10.0.0.2, GMB=30)

(dstPort=80, GMB=10) (srcIP=10.0.0.1, Allow)

Packet:
src 10.0.0.1

dst 10.0.0.2:80

Allow
?

Packet Evaluation

(srcIP=10.0.0.1, GMB=20) GMB=10

Hierarchical
Flow Tables

First, we identify the matching policy atoms, shown here in green. Next, policy atoms emit
their actions.

(click) When multiple subtrees have produced actions, we apply user-defined operators (click)
at each node in the tree to combine the actions. Here, the sibling operator was applied.

(click) Next, we combine the children’s action with the parent’s using a parent operator. Note
that in this case, the parent did produce any action, which we denote by “0”, a special “don’t
care” action.

(continue until GMB=30 is emitted)

23

(dstPort = 22, Deny)

(dstIP=10.0.0.2, GMB=30)

(dstPort=80, GMB=10) (srcIP=10.0.0.1, Allow)

Packet:
src 10.0.0.1

dst 10.0.0.2:80

Allow
?+S

Packet Evaluation

(srcIP=10.0.0.1, GMB=20) GMB=10

Hierarchical
Flow Tables

First, we identify the matching policy atoms, shown here in green. Next, policy atoms emit
their actions.

(click) When multiple subtrees have produced actions, we apply user-defined operators (click)
at each node in the tree to combine the actions. Here, the sibling operator was applied.

(click) Next, we combine the children’s action with the parent’s using a parent operator. Note
that in this case, the parent did produce any action, which we denote by “0”, a special “don’t
care” action.

(continue until GMB=30 is emitted)

23

(dstPort = 22, Deny)

(dstIP=10.0.0.2, GMB=30)

(dstPort=80, GMB=10) (srcIP=10.0.0.1, Allow)

Packet:
src 10.0.0.1

dst 10.0.0.2:80

Allow
?+S0 +P

Packet Evaluation

(srcIP=10.0.0.1, GMB=20) GMB=10

Hierarchical
Flow Tables

First, we identify the matching policy atoms, shown here in green. Next, policy atoms emit
their actions.

(click) When multiple subtrees have produced actions, we apply user-defined operators (click)
at each node in the tree to combine the actions. Here, the sibling operator was applied.

(click) Next, we combine the children’s action with the parent’s using a parent operator. Note
that in this case, the parent did produce any action, which we denote by “0”, a special “don’t
care” action.

(continue until GMB=30 is emitted)

23

(dstPort = 22, Deny)

(dstIP=10.0.0.2, GMB=30)

(dstPort=80, GMB=10) (srcIP=10.0.0.1, Allow)

Packet:
src 10.0.0.1

dst 10.0.0.2:80

Allow
?+S

GMB=10

0 +P

Packet Evaluation

(srcIP=10.0.0.1, GMB=20) GMB=10

Hierarchical
Flow Tables

First, we identify the matching policy atoms, shown here in green. Next, policy atoms emit
their actions.

(click) When multiple subtrees have produced actions, we apply user-defined operators (click)
at each node in the tree to combine the actions. Here, the sibling operator was applied.

(click) Next, we combine the children’s action with the parent’s using a parent operator. Note
that in this case, the parent did produce any action, which we denote by “0”, a special “don’t
care” action.

(continue until GMB=30 is emitted)

23

(dstPort = 22, Deny)

(dstIP=10.0.0.2, GMB=30)

(dstPort=80, GMB=10) (srcIP=10.0.0.1, Allow)

Packet:
src 10.0.0.1

dst 10.0.0.2:80

Allow
?+S

GMB=10GMB=30

0 +P

Packet Evaluation

(srcIP=10.0.0.1, GMB=20) GMB=10

+D

Hierarchical
Flow Tables

First, we identify the matching policy atoms, shown here in green. Next, policy atoms emit
their actions.

(click) When multiple subtrees have produced actions, we apply user-defined operators (click)
at each node in the tree to combine the actions. Here, the sibling operator was applied.

(click) Next, we combine the children’s action with the parent’s using a parent operator. Note
that in this case, the parent did produce any action, which we denote by “0”, a special “don’t
care” action.

(continue until GMB=30 is emitted)

23

(dstPort = 22, Deny)

(dstIP=10.0.0.2, GMB=30)

(dstPort=80, GMB=10) (srcIP=10.0.0.1, Allow)

Packet:
src 10.0.0.1

dst 10.0.0.2:80

Allow
?+S

GMB=10GMB=30

0 +P

GMB=30

Packet Evaluation

(srcIP=10.0.0.1, GMB=20) GMB=10

+D

Hierarchical
Flow Tables

First, we identify the matching policy atoms, shown here in green. Next, policy atoms emit
their actions.

(click) When multiple subtrees have produced actions, we apply user-defined operators (click)
at each node in the tree to combine the actions. Here, the sibling operator was applied.

(click) Next, we combine the children’s action with the parent’s using a parent operator. Note
that in this case, the parent did produce any action, which we denote by “0”, a special “don’t
care” action.

(continue until GMB=30 is emitted)

24

GMB=10
GMB=30

GMB=30

Conflict Resolution

GMB=10
(dstPort=80, GMB=10)

Allow
(srcIP=10.0.0.1, Allow)

(srcIP=10.0.0.1, GMB=20)

(dstIP=10.0.0.2, GMB=30)

+P

+D

+S

Hierarchical
Flow Tables

Participatory networking uses three combination operators within each node to resolve
conflicts.

The first is the +S operator, which combines sibling actions.
The second is the +D operator, which combines multiple actions inside a single node.
Finally, the +P operator combines the previously resolved actions of a parent and child.

(Pause)

The requirements on these operators are very basic:
(click) first, they must be associative -- this allows us to resolve conflicts in a pairwise
fashion. And second, they must support the 0 or “don’t care” action as their identity value.

With these minimal requirements, we can convert the HFT into an efficient implementation.

24

GMB=10
GMB=30

GMB=30

Conflict Resolution
Only Requirements:

Associative, 0-identity

GMB=10
(dstPort=80, GMB=10)

Allow
(srcIP=10.0.0.1, Allow)

(srcIP=10.0.0.1, GMB=20)

(dstIP=10.0.0.2, GMB=30)

+P

+D

+S

Hierarchical
Flow Tables

Participatory networking uses three combination operators within each node to resolve
conflicts.

The first is the +S operator, which combines sibling actions.
The second is the +D operator, which combines multiple actions inside a single node.
Finally, the +P operator combines the previously resolved actions of a parent and child.

(Pause)

The requirements on these operators are very basic:
(click) first, they must be associative -- this allows us to resolve conflicts in a pairwise
fashion. And second, they must support the 0 or “don’t care” action as their identity value.

With these minimal requirements, we can convert the HFT into an efficient implementation.

25

+D

+P

+S Sibling

Parent-Sibling

In node
D and S identical.

 Deny overrides Allow.
GMB combines as max

Rate-limit combines as min

Child overrides Parent
for Access Control

GMB combines as max
Rate-limit combines as min

PANE’s Conflict Resolution Operators

The conflict resolution operators’ flexibility creates a design space for our system.

This slide is a summary of the choices we made for PANE. When sensible, we strive to
combine both requests. For example a request to guarantee a minimum bandwidth, can
combine with one that limits below a maximum rate.

In other cases, we need a single outcome. PANE’s +D and +S operators implement a basic
policy in which Deny requests override Allow requests, take the maximum of two bandwidth
guarantees, and the minimum of two rate-limits. With the +P operator, PANE allows access
control requests in child shares to override those in parent shares.

The HFT itself is agnostic to the specific policies of the operators, as long as they satisfy the
identity and associativity requirements. For example, we could develop operators that resolve
conflicts according to priority.

(Pause)

26

Implementation

So, how do we implement this system?

(pause)

In an ideal world, we could simply pass each new HFT to the switches...

27

(d
(d

(d (s

(d
(d

(d (s

(d
(d

(d (s

(d
(d

(d (s(d
(d

(d (s

PANE

… and when packets arrive, the switches would evaluate the tree just as we did on the previous slides.

However, today’s switches aren’t capable performing this evaluation.

Therefore, rather than send every packet to the controller …

28

(dstPort = 22, Deny)

(dstIP=10.0.0.2, GMB=30)

(dstPort=80, GMB=10) (srcIP=10.0.0.1, Allow)

(srcIP=10.0.0.2, GMB=20)

… we developed a compiler which linearizes

(click) an HFT instance into traditional, flat OpenFlow tables that are collectively equivalent to the
logical policy tree. This compilation process is quadratic in the size of the tree, as we explain in our
paper.

28

(dstPort = 22, Deny)

(dstIP=10.0.0.2, GMB=30)

(dstPort=80, GMB=10) (srcIP=10.0.0.1, Allow)

(srcIP=10.0.0.2, GMB=20)

… we developed a compiler which linearizes

(click) an HFT instance into traditional, flat OpenFlow tables that are collectively equivalent to the
logical policy tree. This compilation process is quadratic in the size of the tree, as we explain in our
paper.

29

PANE

Our OpenFlow controller then installs these tables on the switches

(click), allowing the network to implement the HFT with hardware support.

29

PANE

Our OpenFlow controller then installs these tables on the switches

(click), allowing the network to implement the HFT with hardware support.

30

PANE

Our compiler works in two stages.

(click) First, the compiler linearizes the HFT into a single table we call the "network flow table." If the
network were connected by a single, big switch, we might install this network flow table directly onto
that switch

30

PANE

Our compiler works in two stages.

(click) First, the compiler linearizes the HFT into a single table we call the "network flow table." If the
network were connected by a single, big switch, we might install this network flow table directly onto
that switch

31

PANE

In the compiler's second stage, it translates the network flow table into individual flow tables for the
distributed OpenFlow switches. During this stage,

(click) the compiler relies on a Network Information Base or NIB. The design of our NIB is inspired by
Onix, and it describes the state of the network, including host locations, link statuses, queue availability,
switch configurations, and more.

31

PANE

In the compiler's second stage, it translates the network flow table into individual flow tables for the
distributed OpenFlow switches. During this stage,

(click) the compiler relies on a Network Information Base or NIB. The design of our NIB is inspired by
Onix, and it describes the state of the network, including host locations, link statuses, queue availability,
switch configurations, and more.

32

PANE

For example, the compiler uses the NIB to implement a bandwidth reservation by finding a circuit with
the requested bandwidth,
(click) sending commands to create the necessary queues,
(click) and finally, updating the OpenFlow tables
(click) with the required forwarding decisions.

32

PANE

For example, the compiler uses the NIB to implement a bandwidth reservation by finding a circuit with
the requested bandwidth,
(click) sending commands to create the necessary queues,
(click) and finally, updating the OpenFlow tables
(click) with the required forwarding decisions.

32

PANE

For example, the compiler uses the NIB to implement a bandwidth reservation by finding a circuit with
the requested bandwidth,
(click) sending commands to create the necessary queues,
(click) and finally, updating the OpenFlow tables
(click) with the required forwarding decisions.

32

PANE

For example, the compiler uses the NIB to implement a bandwidth reservation by finding a circuit with
the requested bandwidth,
(click) sending commands to create the necessary queues,
(click) and finally, updating the OpenFlow tables
(click) with the required forwarding decisions.

33PANE
The NIB also allows PANE’s compiler to choose where in the network to implement desired policies.

As a simple example, it places rules which drop traffic as close as possible to the traffic's ingress port.
In this experiment, we have two wireless clients communicating. One suffers from an attack,
(click) and the transfer rate drops. With a local firewall rule,
(click) the transfer only slightly recovers. Using PANE to install the rule,
(click) the transfer fully recovers.

And as the source of the traffic moves ...

33

24Mbps

PANE
The NIB also allows PANE’s compiler to choose where in the network to implement desired policies.

As a simple example, it places rules which drop traffic as close as possible to the traffic's ingress port.
In this experiment, we have two wireless clients communicating. One suffers from an attack,
(click) and the transfer rate drops. With a local firewall rule,
(click) the transfer only slightly recovers. Using PANE to install the rule,
(click) the transfer fully recovers.

And as the source of the traffic moves ...

33

5Mbps

PANE
The NIB also allows PANE’s compiler to choose where in the network to implement desired policies.

As a simple example, it places rules which drop traffic as close as possible to the traffic's ingress port.
In this experiment, we have two wireless clients communicating. One suffers from an attack,
(click) and the transfer rate drops. With a local firewall rule,
(click) the transfer only slightly recovers. Using PANE to install the rule,
(click) the transfer fully recovers.

And as the source of the traffic moves ...

33

8Mbps

PANE
The NIB also allows PANE’s compiler to choose where in the network to implement desired policies.

As a simple example, it places rules which drop traffic as close as possible to the traffic's ingress port.
In this experiment, we have two wireless clients communicating. One suffers from an attack,
(click) and the transfer rate drops. With a local firewall rule,
(click) the transfer only slightly recovers. Using PANE to install the rule,
(click) the transfer fully recovers.

And as the source of the traffic moves ...

33

24Mbps

PANE
The NIB also allows PANE’s compiler to choose where in the network to implement desired policies.

As a simple example, it places rules which drop traffic as close as possible to the traffic's ingress port.
In this experiment, we have two wireless clients communicating. One suffers from an attack,
(click) and the transfer rate drops. With a local firewall rule,
(click) the transfer only slightly recovers. Using PANE to install the rule,
(click) the transfer fully recovers.

And as the source of the traffic moves ...

34

24Mbps

PANE
… the rule can shift with it.

(Pause)

35

PANE

Updating the NIB is the responsibility of our OpenFlow controller,
(click) and any updates are propagated back into our compiler service.
(click) The compiler may then construct a new set of OpenFlow tables
(click) which continue to implement the decisions of the *network* flow table in the new environment.

Seen this way, you can think of the network flow table as a set of invariants we would like to maintain,
and our compiler's second stage as a service which maintains those invariants.

(Pause)

35

PANE

Updating the NIB is the responsibility of our OpenFlow controller,
(click) and any updates are propagated back into our compiler service.
(click) The compiler may then construct a new set of OpenFlow tables
(click) which continue to implement the decisions of the *network* flow table in the new environment.

Seen this way, you can think of the network flow table as a set of invariants we would like to maintain,
and our compiler's second stage as a service which maintains those invariants.

(Pause)

35

PANE

Updating the NIB is the responsibility of our OpenFlow controller,
(click) and any updates are propagated back into our compiler service.
(click) The compiler may then construct a new set of OpenFlow tables
(click) which continue to implement the decisions of the *network* flow table in the new environment.

Seen this way, you can think of the network flow table as a set of invariants we would like to maintain,
and our compiler's second stage as a service which maintains those invariants.

(Pause)

35

PANE

Updating the NIB is the responsibility of our OpenFlow controller,
(click) and any updates are propagated back into our compiler service.
(click) The compiler may then construct a new set of OpenFlow tables
(click) which continue to implement the decisions of the *network* flow table in the new environment.

Seen this way, you can think of the network flow table as a set of invariants we would like to maintain,
and our compiler's second stage as a service which maintains those invariants.

(Pause)

36

Evaluation

(pause)

We have been running several prototype PANE-controlled networks ...

37

… which carry traffic in our labs on several hardware and software switches. It provides our day-to-
day development and internet connectivity.

38

Evaluation

2. Ekiga
3. ZooKeeper
4. Hadoop

1. SSHGuard access control
bandwidth reservations

queues for low latency
centralized traffic weights

We also adapted each of the four applications I discussed earlier to use PANE.
SSHGuard and Ekiga directly use our simple ASCII protocol, while ZooKeeper and Hadoop use an
object-oriented Java library we developed.

39

Three equal-sized sort jobs:
• Two Low Priority with 25% weight
• One High Priority with 50% weight

I want to briefly take a look at the Hadoop case:
1) (job mix)
2) (network topology: 20 slaves plus 2 masters)
3) (PANE rules)
4) (outcome: high pri 23% faster, lowpri 10% because of work-conservation)

39

Three equal-sized sort jobs:
• Two Low Priority with 25% weight
• One High Priority with 50% weight

PANE

22
Hosts

I want to briefly take a look at the Hadoop case:
1) (job mix)
2) (network topology: 20 slaves plus 2 masters)
3) (PANE rules)
4) (outcome: high pri 23% faster, lowpri 10% because of work-conservation)

39

Three equal-sized sort jobs:
• Two Low Priority with 25% weight
• One High Priority with 50% weight

Dynamically apply QoS to High
Priority flows using PANE.

PANE

22
Hosts

I want to briefly take a look at the Hadoop case:
1) (job mix)
2) (network topology: 20 slaves plus 2 masters)
3) (PANE rules)
4) (outcome: high pri 23% faster, lowpri 10% because of work-conservation)

39

Three equal-sized sort jobs:
• Two Low Priority with 25% weight
• One High Priority with 50% weight

0

0.25

0.5

0.75

1

1.25

HighPri Speedup

Default With PANEDynamically apply QoS to High
Priority flows using PANE.

PANE

22
Hosts

I want to briefly take a look at the Hadoop case:
1) (job mix)
2) (network topology: 20 slaves plus 2 masters)
3) (PANE rules)
4) (outcome: high pri 23% faster, lowpri 10% because of work-conservation)

40

Hadoop’s OpenFlow rules
x-axis: time
y-axis: number of rules created by one job running across 22 hosts

40

Hadoop’s OpenFlow rules

 0 5 10 15 20 25 30
Time(min)

x-axis: time
y-axis: number of rules created by one job running across 22 hosts

40

Hadoop’s OpenFlow rules

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30N
um

be
r o

f R
es

id
en

t R
ul

es

Time(min)

x-axis: time
y-axis: number of rules created by one job running across 22 hosts

40

Hadoop’s OpenFlow rules

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30

N
u
m

b
e
r

o
f
R

e
si

d
e
n
t
R

u
le

s

Time(min)

PANE

22
Hosts

x-axis: time
y-axis: number of rules created by one job running across 22 hosts

41

Conclusion

1. For applications that know what they
want from the network

2. Allows these applications to co-exist

In conclusion, PANE is designed for applications and users that know what they want from the network.
PANE provides a way for applications to talk back to the control-plane and use any mechanisms
exposed by network. So far we’ve explored bandwidth, access control, routing, and rate-limiting, and
hope to support new mechanisms in the future.

And second, PANE allows all of these application requests to co-exist with a single network by
deterministically resolving conflicting requests into a single policy.

42

Andrew Ferguson
adf@cs.brown.edupane.cs.brown.edu

I’m happy to take your questions at this time…

mailto:adf@cs.brown.edu
mailto:adf@cs.brown.edu

43

Andrew Ferguson
adf@cs.brown.edu

• Arjun Guha

• Chen Liang

• Rodrigo Fonseca

• Shriram Krishnamurthi

Co
-a

ut
ho

rs

pane.cs.brown.edu

Brown ↦ Cornell ↦ UMass Amherst

Brown ↦ Duke

Brown

Brown

… or you can contact any of my collaborators as well.

Thank you very much!

mailto:adf@cs.brown.edu
mailto:adf@cs.brown.edu

Backup
Slides

44

45

Proof of Correctness

- As we saw on the last slide, this is a complex, concurrent system.
- And complex systems have bugs, even if you write them in Haskell, as we did.
- I’d like to briefly tell you how we proved a key portion of the system correct.

46

Packet:
src 10.0.0.1

dst 10.0.0.2:80(dstPort = 22, Deny)

(dstIP=10.0.0.2, GMB=30)

(dstPort=80, GMB=10) (srcIP=10.0.0.1, Allow)

AllowGMB=10

+S

GMB=10GMB=30

+P

GMB=30

Hierarchical Flow Tables
- As a starting point, we know what it means for a hierarchical flow table to process a packet:
the packet enters the switch, the policy tree nodes produce their actions, and a result action
is produced after applying the combination operators.

Compiler Correctness 47

(dstPort = 22, Deny)

(dstIP=10.0.0.2, GMB=30)

(dstPort=80, GMB=10) (srcIP=10.0.0.1, Allow)

AllowGMB=10

+S

GMB=10GMB=30

+P

GMB=30

- To make this efficient, we’ve built a compiler
 (click) from declarative, hierarchical policies to linear, flow tables.
- How do we know that this compiler is actually correct?
- Compilers are also notorious difficult to get right.
- If this compiler has a bug,
(click) it’s not that a program may crash, but the entire network may go down.
- Or, a more subtle error may occur, such as traffic that should be blocked, may instead be
permitted.

Compiler Correctness 47

(dstPort = 22, Deny)

(dstIP=10.0.0.2, GMB=30)

(dstPort=80, GMB=10) (srcIP=10.0.0.1, Allow)

AllowGMB=10

+S

GMB=10GMB=30

+P

GMB=30

- To make this efficient, we’ve built a compiler
 (click) from declarative, hierarchical policies to linear, flow tables.
- How do we know that this compiler is actually correct?
- Compilers are also notorious difficult to get right.
- If this compiler has a bug,
(click) it’s not that a program may crash, but the entire network may go down.
- Or, a more subtle error may occur, such as traffic that should be blocked, may instead be
permitted.

Compiler Correctness 47

(dstPort = 22, Deny)

(dstIP=10.0.0.2, GMB=30)

(dstPort=80, GMB=10) (srcIP=10.0.0.1, Allow)

AllowGMB=10

+S

GMB=10GMB=30

+P

GMB=30

- To make this efficient, we’ve built a compiler
 (click) from declarative, hierarchical policies to linear, flow tables.
- How do we know that this compiler is actually correct?
- Compilers are also notorious difficult to get right.
- If this compiler has a bug,
(click) it’s not that a program may crash, but the entire network may go down.
- Or, a more subtle error may occur, such as traffic that should be blocked, may instead be
permitted.

Coq Proof Assistant 48

(dstPort = 22, Deny)

(dstIP=10.0.0.2, GMB=30)

(dstPort=80, GMB=10) (srcIP=10.0.0.1, Allow)

AllowGMB=10

+S

GMB=10GMB=30

+P

GMB=30

- Using the Coq proof assistant, we modeled and wrote a proof of the translation from HFT to
OpenFlow tables
- Coq lets us write programs in a functional language, similar to ML or Haskell, and gives us
the ability to prove properties of these programs.

49

(dstPort = 22, Deny)

(dstIP=10.0.0.2, GMB=30)

(dstPort=80, GMB=10) (srcIP=10.0.0.1, Allow)

AllowGMB=10

+S

GMB=10GMB=30

+P

GMB=30

Packet:
src 10.0.0.1

dst 10.0.0.2:80

Theorem
- So, let’s look at what we actually proved. Logically, the HFT processes a packet
(click) and produces an action

(click) When we compile the HFT to a network flow table,
(click) the flow table produces exactly the same action (click) on the same packet.

Proving this theorem requires a formal semantics for Hierarchical Flow Tables, which you can
find in detail in our paper. The paper also contains the precise statement of this theorem, and
the mechanized Coq proofs are available on our website.

49

(dstPort = 22, Deny)

(dstIP=10.0.0.2, GMB=30)

(dstPort=80, GMB=10) (srcIP=10.0.0.1, Allow)

AllowGMB=10

+S

GMB=10GMB=30

+P

GMB=30

Packet:
src 10.0.0.1

dst 10.0.0.2:80

Theorem
- So, let’s look at what we actually proved. Logically, the HFT processes a packet
(click) and produces an action

(click) When we compile the HFT to a network flow table,
(click) the flow table produces exactly the same action (click) on the same packet.

Proving this theorem requires a formal semantics for Hierarchical Flow Tables, which you can
find in detail in our paper. The paper also contains the precise statement of this theorem, and
the mechanized Coq proofs are available on our website.

49

(dstPort = 22, Deny)

(dstIP=10.0.0.2, GMB=30)

(dstPort=80, GMB=10) (srcIP=10.0.0.1, Allow)

AllowGMB=10

+S

GMB=10GMB=30

+P

GMB=30

Packet:
src 10.0.0.1

dst 10.0.0.2:80
GMB 30

Theorem
- So, let’s look at what we actually proved. Logically, the HFT processes a packet
(click) and produces an action

(click) When we compile the HFT to a network flow table,
(click) the flow table produces exactly the same action (click) on the same packet.

Proving this theorem requires a formal semantics for Hierarchical Flow Tables, which you can
find in detail in our paper. The paper also contains the precise statement of this theorem, and
the mechanized Coq proofs are available on our website.

49

(dstPort = 22, Deny)

(dstIP=10.0.0.2, GMB=30)

(dstPort=80, GMB=10) (srcIP=10.0.0.1, Allow)

AllowGMB=10

+S

GMB=10GMB=30

+P

GMB=30

Packet:
src 10.0.0.1

dst 10.0.0.2:80
GMB 30compile

Theorem
- So, let’s look at what we actually proved. Logically, the HFT processes a packet
(click) and produces an action

(click) When we compile the HFT to a network flow table,
(click) the flow table produces exactly the same action (click) on the same packet.

Proving this theorem requires a formal semantics for Hierarchical Flow Tables, which you can
find in detail in our paper. The paper also contains the precise statement of this theorem, and
the mechanized Coq proofs are available on our website.

49

(dstPort = 22, Deny)

(dstIP=10.0.0.2, GMB=30)

(dstPort=80, GMB=10) (srcIP=10.0.0.1, Allow)

AllowGMB=10

+S

GMB=10GMB=30

+P

GMB=30

Packet:
src 10.0.0.1

dst 10.0.0.2:80
GMB 30compile

Theorem
- So, let’s look at what we actually proved. Logically, the HFT processes a packet
(click) and produces an action

(click) When we compile the HFT to a network flow table,
(click) the flow table produces exactly the same action (click) on the same packet.

Proving this theorem requires a formal semantics for Hierarchical Flow Tables, which you can
find in detail in our paper. The paper also contains the precise statement of this theorem, and
the mechanized Coq proofs are available on our website.

50

Protocol

Now that we’ve explored PANE’s semantics, we’ll take a brief look at its protocol for
interactively using and delegating network resources.

51

PANE
As I described earlier, the privileges in PANE derive from the root user’s (click) access to the
share tree.

To allow a regular user, Alice, (click) to reserve bandwidth, Root first creates a subshare with
an appropriate flowgroup and privilege (click).

In this example, the subshare is for all traffic sent or received by Alice, with the authority to
reserve up to 10 Mbps of guaranteed minimum bandwidth. After checking that Root has the
necessary authority to create this share, the PANE controller accepts the request (click).

But Alice is not yet a principal in this share. Root must explicitly grant Alice the privilege to
use the share (click). As the root user is a principal on this new share, the PANE controller
accepts the command to add Alice as well (click).

Alice now tries to make a reservation using this share (click). She requests 5 Mbps of
guaranteed minimum bandwidth for the next 10 minutes. Her message explicitly indicates
which share she is using to make the request (click).

The PANE controller first checks that the FlowGroup on the request (click) is a subset of the
FlowGroup on the specified share (click) and that Alice is an authorized principal. As both
checks are true, the PANE controller ...

51

PANE

Root

As I described earlier, the privileges in PANE derive from the root user’s (click) access to the
share tree.

To allow a regular user, Alice, (click) to reserve bandwidth, Root first creates a subshare with
an appropriate flowgroup and privilege (click).

In this example, the subshare is for all traffic sent or received by Alice, with the authority to
reserve up to 10 Mbps of guaranteed minimum bandwidth. After checking that Root has the
necessary authority to create this share, the PANE controller accepts the request (click).

But Alice is not yet a principal in this share. Root must explicitly grant Alice the privilege to
use the share (click). As the root user is a principal on this new share, the PANE controller
accepts the command to add Alice as well (click).

Alice now tries to make a reservation using this share (click). She requests 5 Mbps of
guaranteed minimum bandwidth for the next 10 minutes. Her message explicitly indicates
which share she is using to make the request (click).

The PANE controller first checks that the FlowGroup on the request (click) is a subset of the
FlowGroup on the specified share (click) and that Alice is an authorized principal. As both
checks are true, the PANE controller ...

51

PANE

Root

Alice

As I described earlier, the privileges in PANE derive from the root user’s (click) access to the
share tree.

To allow a regular user, Alice, (click) to reserve bandwidth, Root first creates a subshare with
an appropriate flowgroup and privilege (click).

In this example, the subshare is for all traffic sent or received by Alice, with the authority to
reserve up to 10 Mbps of guaranteed minimum bandwidth. After checking that Root has the
necessary authority to create this share, the PANE controller accepts the request (click).

But Alice is not yet a principal in this share. Root must explicitly grant Alice the privilege to
use the share (click). As the root user is a principal on this new share, the PANE controller
accepts the command to add Alice as well (click).

Alice now tries to make a reservation using this share (click). She requests 5 Mbps of
guaranteed minimum bandwidth for the next 10 minutes. Her message explicitly indicates
which share she is using to make the request (click).

The PANE controller first checks that the FlowGroup on the request (click) is a subset of the
FlowGroup on the specified share (click) and that Alice is an authorized principal. As both
checks are true, the PANE controller ...

51

NewShare aBW for
(user=Alice) [reserve <= 10Mb]

on rootShare.

PANE

Root

Alice

As I described earlier, the privileges in PANE derive from the root user’s (click) access to the
share tree.

To allow a regular user, Alice, (click) to reserve bandwidth, Root first creates a subshare with
an appropriate flowgroup and privilege (click).

In this example, the subshare is for all traffic sent or received by Alice, with the authority to
reserve up to 10 Mbps of guaranteed minimum bandwidth. After checking that Root has the
necessary authority to create this share, the PANE controller accepts the request (click).

But Alice is not yet a principal in this share. Root must explicitly grant Alice the privilege to
use the share (click). As the root user is a principal on this new share, the PANE controller
accepts the command to add Alice as well (click).

Alice now tries to make a reservation using this share (click). She requests 5 Mbps of
guaranteed minimum bandwidth for the next 10 minutes. Her message explicitly indicates
which share she is using to make the request (click).

The PANE controller first checks that the FlowGroup on the request (click) is a subset of the
FlowGroup on the specified share (click) and that Alice is an authorized principal. As both
checks are true, the PANE controller ...

51

NewShare aBW for
(user=Alice) [reserve <= 10Mb]

on rootShare.

PANE

OK

Root

Alice

As I described earlier, the privileges in PANE derive from the root user’s (click) access to the
share tree.

To allow a regular user, Alice, (click) to reserve bandwidth, Root first creates a subshare with
an appropriate flowgroup and privilege (click).

In this example, the subshare is for all traffic sent or received by Alice, with the authority to
reserve up to 10 Mbps of guaranteed minimum bandwidth. After checking that Root has the
necessary authority to create this share, the PANE controller accepts the request (click).

But Alice is not yet a principal in this share. Root must explicitly grant Alice the privilege to
use the share (click). As the root user is a principal on this new share, the PANE controller
accepts the command to add Alice as well (click).

Alice now tries to make a reservation using this share (click). She requests 5 Mbps of
guaranteed minimum bandwidth for the next 10 minutes. Her message explicitly indicates
which share she is using to make the request (click).

The PANE controller first checks that the FlowGroup on the request (click) is a subset of the
FlowGroup on the specified share (click) and that Alice is an authorized principal. As both
checks are true, the PANE controller ...

51

NewShare aBW for
(user=Alice) [reserve <= 10Mb]

on rootShare.

PANE

OK

Grant aBW to Alice.
Root

Alice

As I described earlier, the privileges in PANE derive from the root user’s (click) access to the
share tree.

To allow a regular user, Alice, (click) to reserve bandwidth, Root first creates a subshare with
an appropriate flowgroup and privilege (click).

In this example, the subshare is for all traffic sent or received by Alice, with the authority to
reserve up to 10 Mbps of guaranteed minimum bandwidth. After checking that Root has the
necessary authority to create this share, the PANE controller accepts the request (click).

But Alice is not yet a principal in this share. Root must explicitly grant Alice the privilege to
use the share (click). As the root user is a principal on this new share, the PANE controller
accepts the command to add Alice as well (click).

Alice now tries to make a reservation using this share (click). She requests 5 Mbps of
guaranteed minimum bandwidth for the next 10 minutes. Her message explicitly indicates
which share she is using to make the request (click).

The PANE controller first checks that the FlowGroup on the request (click) is a subset of the
FlowGroup on the specified share (click) and that Alice is an authorized principal. As both
checks are true, the PANE controller ...

51

NewShare aBW for
(user=Alice) [reserve <= 10Mb]

on rootShare.

PANE

OK

Grant aBW to Alice. OKRoot

Alice

As I described earlier, the privileges in PANE derive from the root user’s (click) access to the
share tree.

To allow a regular user, Alice, (click) to reserve bandwidth, Root first creates a subshare with
an appropriate flowgroup and privilege (click).

In this example, the subshare is for all traffic sent or received by Alice, with the authority to
reserve up to 10 Mbps of guaranteed minimum bandwidth. After checking that Root has the
necessary authority to create this share, the PANE controller accepts the request (click).

But Alice is not yet a principal in this share. Root must explicitly grant Alice the privilege to
use the share (click). As the root user is a principal on this new share, the PANE controller
accepts the command to add Alice as well (click).

Alice now tries to make a reservation using this share (click). She requests 5 Mbps of
guaranteed minimum bandwidth for the next 10 minutes. Her message explicitly indicates
which share she is using to make the request (click).

The PANE controller first checks that the FlowGroup on the request (click) is a subset of the
FlowGroup on the specified share (click) and that Alice is an authorized principal. As both
checks are true, the PANE controller ...

51

NewShare aBW for
(user=Alice) [reserve <= 10Mb]

on rootShare.

PANE

OK

Grant aBW to Alice. OK

reserve(user=Alice,
dstPort=80) = 5Mb on aBW

from now to +10min.

Root

Alice

As I described earlier, the privileges in PANE derive from the root user’s (click) access to the
share tree.

To allow a regular user, Alice, (click) to reserve bandwidth, Root first creates a subshare with
an appropriate flowgroup and privilege (click).

In this example, the subshare is for all traffic sent or received by Alice, with the authority to
reserve up to 10 Mbps of guaranteed minimum bandwidth. After checking that Root has the
necessary authority to create this share, the PANE controller accepts the request (click).

But Alice is not yet a principal in this share. Root must explicitly grant Alice the privilege to
use the share (click). As the root user is a principal on this new share, the PANE controller
accepts the command to add Alice as well (click).

Alice now tries to make a reservation using this share (click). She requests 5 Mbps of
guaranteed minimum bandwidth for the next 10 minutes. Her message explicitly indicates
which share she is using to make the request (click).

The PANE controller first checks that the FlowGroup on the request (click) is a subset of the
FlowGroup on the specified share (click) and that Alice is an authorized principal. As both
checks are true, the PANE controller ...

51

NewShare aBW for
(user=Alice) [reserve <= 10Mb]

on rootShare.

PANE

OK

Grant aBW to Alice. OK

reserve(user=Alice,
dstPort=80) = 5Mb on aBW

from now to +10min.

reserve(user=Alice,
dstPort=80) = 5Mb on aBW

from now to +10min.

Root

Alice

As I described earlier, the privileges in PANE derive from the root user’s (click) access to the
share tree.

To allow a regular user, Alice, (click) to reserve bandwidth, Root first creates a subshare with
an appropriate flowgroup and privilege (click).

In this example, the subshare is for all traffic sent or received by Alice, with the authority to
reserve up to 10 Mbps of guaranteed minimum bandwidth. After checking that Root has the
necessary authority to create this share, the PANE controller accepts the request (click).

But Alice is not yet a principal in this share. Root must explicitly grant Alice the privilege to
use the share (click). As the root user is a principal on this new share, the PANE controller
accepts the command to add Alice as well (click).

Alice now tries to make a reservation using this share (click). She requests 5 Mbps of
guaranteed minimum bandwidth for the next 10 minutes. Her message explicitly indicates
which share she is using to make the request (click).

The PANE controller first checks that the FlowGroup on the request (click) is a subset of the
FlowGroup on the specified share (click) and that Alice is an authorized principal. As both
checks are true, the PANE controller ...

51

NewShare aBW for
(user=Alice) [reserve <= 10Mb]

on rootShare.

PANE

OK

Grant aBW to Alice. OK

reserve(user=Alice,
dstPort=80) = 5Mb on aBW

from now to +10min.

reserve(user=Alice,
dstPort=80) = 5Mb on aBW

from now to +10min.

Root

Alice

As I described earlier, the privileges in PANE derive from the root user’s (click) access to the
share tree.

To allow a regular user, Alice, (click) to reserve bandwidth, Root first creates a subshare with
an appropriate flowgroup and privilege (click).

In this example, the subshare is for all traffic sent or received by Alice, with the authority to
reserve up to 10 Mbps of guaranteed minimum bandwidth. After checking that Root has the
necessary authority to create this share, the PANE controller accepts the request (click).

But Alice is not yet a principal in this share. Root must explicitly grant Alice the privilege to
use the share (click). As the root user is a principal on this new share, the PANE controller
accepts the command to add Alice as well (click).

Alice now tries to make a reservation using this share (click). She requests 5 Mbps of
guaranteed minimum bandwidth for the next 10 minutes. Her message explicitly indicates
which share she is using to make the request (click).

The PANE controller first checks that the FlowGroup on the request (click) is a subset of the
FlowGroup on the specified share (click) and that Alice is an authorized principal. As both
checks are true, the PANE controller ...

51

PANE

OK

Grant aBW to Alice. OK

reserve(user=Alice,
dstPort=80) = 5Mb on aBW

from now to +10min.

reserve(user=Alice,
dstPort=80) = 5Mb on aBW

from now to +10min.

NewShare aBW for
(user=Alice) [reserve <= 10Mb]

on rootShare.

Root

Alice

As I described earlier, the privileges in PANE derive from the root user’s (click) access to the
share tree.

To allow a regular user, Alice, (click) to reserve bandwidth, Root first creates a subshare with
an appropriate flowgroup and privilege (click).

In this example, the subshare is for all traffic sent or received by Alice, with the authority to
reserve up to 10 Mbps of guaranteed minimum bandwidth. After checking that Root has the
necessary authority to create this share, the PANE controller accepts the request (click).

But Alice is not yet a principal in this share. Root must explicitly grant Alice the privilege to
use the share (click). As the root user is a principal on this new share, the PANE controller
accepts the command to add Alice as well (click).

Alice now tries to make a reservation using this share (click). She requests 5 Mbps of
guaranteed minimum bandwidth for the next 10 minutes. Her message explicitly indicates
which share she is using to make the request (click).

The PANE controller first checks that the FlowGroup on the request (click) is a subset of the
FlowGroup on the specified share (click) and that Alice is an authorized principal. As both
checks are true, the PANE controller ...

52

PANE
reserve(user=Alice,

dstPort=80) = 5Mb on aBW
from now to +10min.

… next examines the schedule of accepted reservations in the aBW share (click). As there are
currently no reservations ...

Time

Ba
nd

wi
dt
h

Reservation Limit

t

52

PANE
reserve(user=Alice,

dstPort=80) = 5Mb on aBW
from now to +10min.

… next examines the schedule of accepted reservations in the aBW share (click). As there are
currently no reservations ...

Time

Ba
nd

wi
dt
h

Reservation Limit

t

53

PANE
reserve(user=Alice,

dstPort=80) = 5Mb on aBW
from now to +10min.

… the controller then recursively checks for other reservations up the share tree.

Time

Ba
nd

wi
dt
h

Reservation Limit

t

54

PANE
reserve(user=Alice,

dstPort=80) = 5Mb on aBW
from now to +10min.

When the controller tries to install the reservation…

Time

Ba
nd

wi
dt
h

Reservation Limit
U

t

55

PANE
reserve(user=Alice,

dstPort=80) = 5Mb on aBW
from now to +10min.

… it detects a conflict with the existing reservations.

(Pause)

56

PANE

reserve(user=Alice,
dstPort=80) = 5Mb on aBW

from now to +10min.
NO

Alice

Therefore, the controller denies Alice’s initial request. Next, Alice retrieves the schedule of
accepted requests from the controller, and creates a new request (click) for the same
bandwidth, now starting 20 minutes in the future.

56

PANE

reserve(user=Alice,
dstPort=80) = 5Mb on aBW

from now to +10min.
NO

reserve(user=Alice,
dstPort=80) = 5Mb on aBW
from +20min to +30min.

Alice

Therefore, the controller denies Alice’s initial request. Next, Alice retrieves the schedule of
accepted requests from the controller, and creates a new request (click) for the same
bandwidth, now starting 20 minutes in the future.

Time

Ba
nd

wi
dt
h

Reservation Limit
U

t

57

PANE
reserve(user=Alice,

dstPort=80) = 5Mb on aBW
from +20min to +30min.

The controller takes the new request ...

Time

Ba
nd

wi
dt
h

Reservation Limit
U

t

58

PANE
reserve(user=Alice,

dstPort=80) = 5Mb on aBW
from +20min to +30min.

… and checks if it can be installed at the new time.

Time

Ba
nd

wi
dt
h

Reservation LimitDU

t

59

PANE
reserve(user=Alice,

dstPort=80) = 5Mb on aBW
from +20min to +30min.

Because accepting this reservation would no longer exceed the limit ...

60

PANE

reserve(user=Alice,
dstPort=80) = 5Mb on aBW

from now to +10min.
NO

reserve(user=Alice,
dstPort=80) = 5Mb on aBW
from +20min to +30min.

OKAlice

the controller returns a successful confirmation to Alice. When the reservation begins in 20
minutes, the PANE controller will establish the appropriate queues on the switches and
provide Alice’s traffic with 5 Mbps of guaranteed minimum bandwidth.

(Pause)

61

PANE
Let’s now consider a second example. If Alice (click) wants to block some traffic to her
computer (click), she can ask the root user (click) to create a subshare (click) for her with the
deny privilege (click).

After creating this share, the root user grants use of the share (click) to Alice, as we saw
previously (click).

(Pause)

If Alice’s computer …

61

PANE
Alice

Let’s now consider a second example. If Alice (click) wants to block some traffic to her
computer (click), she can ask the root user (click) to create a subshare (click) for her with the
deny privilege (click).

After creating this share, the root user grants use of the share (click) to Alice, as we saw
previously (click).

(Pause)

If Alice’s computer …

61

PANE
10.0.0.2

Alice

Let’s now consider a second example. If Alice (click) wants to block some traffic to her
computer (click), she can ask the root user (click) to create a subshare (click) for her with the
deny privilege (click).

After creating this share, the root user grants use of the share (click) to Alice, as we saw
previously (click).

(Pause)

If Alice’s computer …

61

PANE
10.0.0.2

Alice

Root

Let’s now consider a second example. If Alice (click) wants to block some traffic to her
computer (click), she can ask the root user (click) to create a subshare (click) for her with the
deny privilege (click).

After creating this share, the root user grants use of the share (click) to Alice, as we saw
previously (click).

(Pause)

If Alice’s computer …

61

NewShare aAC for
(dstHost=10.0.0.2) [deny = True]

on rootShare.

PANE
10.0.0.2

Alice

Root

Let’s now consider a second example. If Alice (click) wants to block some traffic to her
computer (click), she can ask the root user (click) to create a subshare (click) for her with the
deny privilege (click).

After creating this share, the root user grants use of the share (click) to Alice, as we saw
previously (click).

(Pause)

If Alice’s computer …

61

NewShare aAC for
(dstHost=10.0.0.2) [deny = True]

on rootShare.

PANE

OK

10.0.0.2
Alice

Root

Let’s now consider a second example. If Alice (click) wants to block some traffic to her
computer (click), she can ask the root user (click) to create a subshare (click) for her with the
deny privilege (click).

After creating this share, the root user grants use of the share (click) to Alice, as we saw
previously (click).

(Pause)

If Alice’s computer …

61

NewShare aAC for
(dstHost=10.0.0.2) [deny = True]

on rootShare.

PANE

OK

Grant aAC to Alice.

10.0.0.2
Alice

Root

Let’s now consider a second example. If Alice (click) wants to block some traffic to her
computer (click), she can ask the root user (click) to create a subshare (click) for her with the
deny privilege (click).

After creating this share, the root user grants use of the share (click) to Alice, as we saw
previously (click).

(Pause)

If Alice’s computer …

61

NewShare aAC for
(dstHost=10.0.0.2) [deny = True]

on rootShare.

PANE

OK

Grant aAC to Alice. OK

10.0.0.2
Alice

Root

Let’s now consider a second example. If Alice (click) wants to block some traffic to her
computer (click), she can ask the root user (click) to create a subshare (click) for her with the
deny privilege (click).

After creating this share, the root user grants use of the share (click) to Alice, as we saw
previously (click).

(Pause)

If Alice’s computer …

62

PANE
10.0.0.2

Alice

… is being attacked by Eve (click), she can send a deny request (click) to the PANE controller
to have Eve’s traffic blocked for the next five minutes.

Because Alice was previously granted this authority, the PANE controller accepts her request
(click), and uses OpenFlow to reconfigure the switches and block traffic from Eve’s computer
destined to Alice’s (click).

If Alice tried to block Eve’s traffic to another computer by changing the dstHost parameter on
her request, the request would be denied as the flow would no longer be contained within the
FlowGroup of the aAC subshare. (possibly make this its own slide?)

(Pause)

This has been a short sample of the PANE protocol. Our prototype supports several additional
commands, for example, to establish rate-limits, manage users, and query the state of the
ShareTree.

(Pause)

10.0.0.3 Eve

62

PANE
10.0.0.2

Alice

… is being attacked by Eve (click), she can send a deny request (click) to the PANE controller
to have Eve’s traffic blocked for the next five minutes.

Because Alice was previously granted this authority, the PANE controller accepts her request
(click), and uses OpenFlow to reconfigure the switches and block traffic from Eve’s computer
destined to Alice’s (click).

If Alice tried to block Eve’s traffic to another computer by changing the dstHost parameter on
her request, the request would be denied as the flow would no longer be contained within the
FlowGroup of the aAC subshare. (possibly make this its own slide?)

(Pause)

This has been a short sample of the PANE protocol. Our prototype supports several additional
commands, for example, to establish rate-limits, manage users, and query the state of the
ShareTree.

(Pause)

10.0.0.3 Eve

62

PANE
10.0.0.2

deny(dstHost=10.0.0.2,
srcHost=10.0.0.3) on aAC

from now to +5min.

Alice

… is being attacked by Eve (click), she can send a deny request (click) to the PANE controller
to have Eve’s traffic blocked for the next five minutes.

Because Alice was previously granted this authority, the PANE controller accepts her request
(click), and uses OpenFlow to reconfigure the switches and block traffic from Eve’s computer
destined to Alice’s (click).

If Alice tried to block Eve’s traffic to another computer by changing the dstHost parameter on
her request, the request would be denied as the flow would no longer be contained within the
FlowGroup of the aAC subshare. (possibly make this its own slide?)

(Pause)

This has been a short sample of the PANE protocol. Our prototype supports several additional
commands, for example, to establish rate-limits, manage users, and query the state of the
ShareTree.

(Pause)

10.0.0.3 Eve

62

PANE
10.0.0.2

deny(dstHost=10.0.0.2,
srcHost=10.0.0.3) on aAC

from now to +5min.

OK

Alice

… is being attacked by Eve (click), she can send a deny request (click) to the PANE controller
to have Eve’s traffic blocked for the next five minutes.

Because Alice was previously granted this authority, the PANE controller accepts her request
(click), and uses OpenFlow to reconfigure the switches and block traffic from Eve’s computer
destined to Alice’s (click).

If Alice tried to block Eve’s traffic to another computer by changing the dstHost parameter on
her request, the request would be denied as the flow would no longer be contained within the
FlowGroup of the aAC subshare. (possibly make this its own slide?)

(Pause)

This has been a short sample of the PANE protocol. Our prototype supports several additional
commands, for example, to establish rate-limits, manage users, and query the state of the
ShareTree.

(Pause)

10.0.0.3 Eve

62

PANE
10.0.0.2

deny(dstHost=10.0.0.2,
srcHost=10.0.0.3) on aAC

from now to +5min.

OK

Alice

… is being attacked by Eve (click), she can send a deny request (click) to the PANE controller
to have Eve’s traffic blocked for the next five minutes.

Because Alice was previously granted this authority, the PANE controller accepts her request
(click), and uses OpenFlow to reconfigure the switches and block traffic from Eve’s computer
destined to Alice’s (click).

If Alice tried to block Eve’s traffic to another computer by changing the dstHost parameter on
her request, the request would be denied as the flow would no longer be contained within the
FlowGroup of the aAC subshare. (possibly make this its own slide?)

(Pause)

This has been a short sample of the PANE protocol. Our prototype supports several additional
commands, for example, to establish rate-limits, manage users, and query the state of the
ShareTree.

(Pause)

Netflix

63

64

For example, I like to watch movies at home with Netflix.

And while there are many reasons …

65

… why Netflix may begin to buffer, one reason is because ….

66

… a second laptop has begun a network backup.

And while there are …

TCP Nice: A Mechanism for Background Transfers
Arun Venkataramani Ravi Kokku Mike Dahlin

Laboratory of Advanced Systems Research
Department of Computer Sciences

University of Texas at Austin, Austin, TX 78712
arun, rkoku, dahlin @cs.utexas.edu

Abstract

Many distributed applications can make use of large
background transfers transfers of data that humans
are not waiting for to improve availability, reliability,
latency or consistency. However, given the rapid fluc-
tuations of available network bandwidth and changing
resource costs due to technology trends, hand tuning the
aggressiveness of background transfers risks (1) compli-
cating applications, (2) being too aggressive and inter-
fering with other applications, and (3) being too timid
and not gaining the benefits of background transfers.
Our goal is for the operating system to manage network
resources in order to provide a simple abstraction of near
zero-cost background transfers. Our system, TCP Nice,
can provably bound the interference inflicted by back-
ground flows on foregroundflows in a restricted network
model. And our microbenchmarks and case study appli-
cations suggest that in practice it interferes little with
foreground flows, reaps a large fraction of spare net-
work bandwidth, and simplifies application construction
and deployment. For example, in our prefetching case
study application, aggressive prefetching improves de-
mand performance by a factor of three when Nice man-
ages resources; but the same prefetching hurts demand
performance by a factor of six under standard network
congestion control.

1 Introduction

Many distributed applications can make use of large
background transfers transfers of data that humans are
not waiting for to improve service quality. For exam-
ple, a broad range of applications and services such as
data backup [29], prefetching [50], enterprise data dis-
tribution [20], Internet content distribution [2], and peer-
to-peer storage [16, 43] can trade increased network

This work was supported in part by an NSF CISE grant (CDA-
9624082), the Texas Advanced Technology Program, the Texas Ad-
vanced Research Program, and Tivoli. Dahlin was also supported by
an NSF CAREER award (CCR-9733842) and an Alfred P. Sloan Re-
search Fellowship.

bandwidth consumption and possibly disk space for im-
proved service latency [15, 18, 26, 32, 38, 50], improved
availability [11, 53], increased scalability [2], stronger
consistency [53], or support for mobility [28, 41, 47].
Many of these services have potentially unlimited band-
width demands where incrementally more bandwidth
consumption provides incrementally better service. For
example, a web prefetching system can improve its hit
rate by fetching objects from a virtually unlimited col-
lection of objects that have non-zero probability of ac-
cess [8, 10] or by updating cached copies more fre-
quently as data change [13, 50, 48]; Technology trends
suggest that “wasting” bandwidth and storage to im-
prove latency and availability will become increasingly
attractive in the future: per-byte network transport costs
and disk storage costs are low and have been improv-
ing at 80-100% per year [9, 17, 37]; conversely net-
work availability [11, 40, 54] and network latencies im-
prove slowly, and long latencies and failures waste hu-
man time.

Current operating systems and networks do not provide
good support for aggressive background transfers. In
particular, because background transfers compete with
foreground requests, they can hurt overall performance
and availability by increasing network congestion. Ap-
plications must therefore carefully balance the benefits
of background transfers against the risk of both self-
interference, where applications hurt their own perfor-
mance, and cross-interference, where applications hurt
other applications’ performance. Often, applications at-
tempt to achieve this balance by setting “magic num-
bers” (e.g., the prefetch threshold in prefetching algo-
rithms [18, 26]) that have little obvious relationship to
system goals (e.g., availability or latency) or constraints
(e.g., current spare network bandwidth).

Our goal is for the operating system to manage net-
work resources in order to provide a simple abstrac-
tion of zero-cost background transfers. A self-tuning
background transport layer will enable new classes of
applications by (1) simplifying applications, (2) reduc-
ing the risk of being too aggressive, and (3) making

67

… many proposals for how to solve this problem, it still exists.

With participatory networking ...

68

the Netflix application can inform my home network of its bandwidth and latency
requirements (click), and be guaranteed a level of service.

(pause)

Turning now to an enterprise network ...

68

the Netflix application can inform my home network of its bandwidth and latency
requirements (click), and be guaranteed a level of service.

(pause)

Turning now to an enterprise network ...

69

Datacenter

70Based on “Delusional Boot: Securing Cloud Hypervisors without Massive Re-Engineering” (EuroSys 2012)

Production
Platform

on the Azure cloud environment (click) a firewall is used to isolate untrusted (click) customer
virtual machines while booting.

After boot-up (click), the VM configuration can be made more secure ...

70Based on “Delusional Boot: Securing Cloud Hypervisors without Massive Re-Engineering” (EuroSys 2012)

Production
Platform

on the Azure cloud environment (click) a firewall is used to isolate untrusted (click) customer
virtual machines while booting.

After boot-up (click), the VM configuration can be made more secure ...

70Based on “Delusional Boot: Securing Cloud Hypervisors without Massive Re-Engineering” (EuroSys 2012)

Production
Platform

Boot
Service

on the Azure cloud environment (click) a firewall is used to isolate untrusted (click) customer
virtual machines while booting.

After boot-up (click), the VM configuration can be made more secure ...

70Based on “Delusional Boot: Securing Cloud Hypervisors without Massive Re-Engineering” (EuroSys 2012)

Production
Platform

Boot
Service

on the Azure cloud environment (click) a firewall is used to isolate untrusted (click) customer
virtual machines while booting.

After boot-up (click), the VM configuration can be made more secure ...

71Based on “Delusional Boot: Securing Cloud Hypervisors without Massive Re-Engineering” (EuroSys 2012)

Production
Platform

Boot
Service

... the firewall lowered ...

72Based on “Delusional Boot: Securing Cloud Hypervisors without Massive Re-Engineering” (EuroSys 2012)

Production
Platform

Boot
Service

… and the VM image transferred to the production-side of the cloud.

72Based on “Delusional Boot: Securing Cloud Hypervisors without Massive Re-Engineering” (EuroSys 2012)

Production
Platform

Boot
Service

… and the VM image transferred to the production-side of the cloud.

73Based on “Delusional Boot: Securing Cloud Hypervisors without Massive Re-Engineering” (EuroSys 2012)

Production
Platform

Boot
Service

Lacking a practical API for managing the firewall via the virtual machine boot service, the
implementation uses programmable MAC addresses on the servers, a static configuration on
the firewall, and the usual duck tape we find in networks to achieve the result.

So again we can ask, why is this knowledge about managing the network trapped inside the
end-hosts?

74

Enterprise

75

... we see shared links supporting many hosts.

And if one host suffers from a denial of service attack...

76

… we may need more than a local firewall rule to protect the network.

Today, we can call …

76

… we may need more than a local firewall rule to protect the network.

Today, we can call …

77

… the network administrator, or with participatory networking, the victim host ...

78

… can install a network firewall rule on its own.

(pause)

Furthermore, in Microsoft datacenters ...

78

… can install a network firewall rule on its own.

(pause)

Furthermore, in Microsoft datacenters ...

A problem in the datacenter
79

The final problem I want to look at exists in current proposals for hybrid optical-electrical
networks.

80

In these hybrid networks, connectivity is primarily provided by Ethernet running over the
usual copper cables (click). In addition, the top-of-rack switches are also connected by a fully
optical network (click).

The optical switch can create circuits between rack pairs (click), but cannot be reconfigured
quickly because of physical delays when aligning the internal mirrors.

In the current proposals...

80

In these hybrid networks, connectivity is primarily provided by Ethernet running over the
usual copper cables (click). In addition, the top-of-rack switches are also connected by a fully
optical network (click).

The optical switch can create circuits between rack pairs (click), but cannot be reconfigured
quickly because of physical delays when aligning the internal mirrors.

In the current proposals...

80

In these hybrid networks, connectivity is primarily provided by Ethernet running over the
usual copper cables (click). In addition, the top-of-rack switches are also connected by a fully
optical network (click).

The optical switch can create circuits between rack pairs (click), but cannot be reconfigured
quickly because of physical delays when aligning the internal mirrors.

In the current proposals...

80

In these hybrid networks, connectivity is primarily provided by Ethernet running over the
usual copper cables (click). In addition, the top-of-rack switches are also connected by a fully
optical network (click).

The optical switch can create circuits between rack pairs (click), but cannot be reconfigured
quickly because of physical delays when aligning the internal mirrors.

In the current proposals...

81

a management server monitors the traffic matrix (click) on the copper Ethernet and uses a
heuristic to detect large, long-lasting flows that would benefit from the higher bandwidth
and lower latency of an all-optical path.

When such flows are detected, the optical switch is reconfigured (click), and the heavy traffic
eventually moved to the new path.

But such a detect-and-react strategy is not always necessary! There are many applications
inside the datacenter that know in advance how much traffic they will generate. For example,
virtual machine migrations and shuffle stages in MapReduce-like frameworks.

By now, I think you know the question to ask: why is this knowledge about managing the
network trapped inside the end-hosts?

(5 minutes)

81

a management server monitors the traffic matrix (click) on the copper Ethernet and uses a
heuristic to detect large, long-lasting flows that would benefit from the higher bandwidth
and lower latency of an all-optical path.

When such flows are detected, the optical switch is reconfigured (click), and the heavy traffic
eventually moved to the new path.

But such a detect-and-react strategy is not always necessary! There are many applications
inside the datacenter that know in advance how much traffic they will generate. For example,
virtual machine migrations and shuffle stages in MapReduce-like frameworks.

By now, I think you know the question to ask: why is this knowledge about managing the
network trapped inside the end-hosts?

(5 minutes)

81

a management server monitors the traffic matrix (click) on the copper Ethernet and uses a
heuristic to detect large, long-lasting flows that would benefit from the higher bandwidth
and lower latency of an all-optical path.

When such flows are detected, the optical switch is reconfigured (click), and the heavy traffic
eventually moved to the new path.

But such a detect-and-react strategy is not always necessary! There are many applications
inside the datacenter that know in advance how much traffic they will generate. For example,
virtual machine migrations and shuffle stages in MapReduce-like frameworks.

By now, I think you know the question to ask: why is this knowledge about managing the
network trapped inside the end-hosts?

(5 minutes)

Participatory
Networking

82

If we follow the analogy that software defined networks are developing an operating system for the
network, Participatory Networking is building the end-user system calls -- an API for SDNs.

(pause)

Like previous work on operating systems ...

83Ken Thompson & Dennis Ritchie
... SDNs began by providing abstractions over the hardware; we believe it's time for SDNs to
similarly evolve into arbiters that support multiple principals sharing and controlling those
resources.

(pause)

One challenge, of course, is the development and implementation of a semantics which delegates
authority ...

Jon Postel
… from the network administrators ...

85

… to the people, without sacrificing high-level requirements such as ...

Safe? Secure? Fair?

Loop freedom?

Participatory
Networking

Black holes?
86

safety, security, and fairness, and low-level properties such as freedom from routing loops and traffic
black holes.

