Kernel Extension DSLs Should Be Verifier-Safe!

Franco Solleza Justus Adam Akshay Narayan Malte Schwarzkopf
Andrew Crotty ¥ Nesime Tatbul ¥

Brown University ' Northwestern University + MIT & Intel

Abstract

eBPF allows developers to write safe operating system ex-
tensions, but writing these extensions remains challenging
because it requires detailed knowledge of both the extension’s
domain and eBPF’s programming interface. Most importantly,
the extension must pass the eBPF verifier.

This paper argues that DSLs for extensions should guaran-
tee verifier-safety: valid DSL programs should result in eBPF
code that always passes the verifier. This avoids complex de-
bugging and the need for extension developers to be eBPF ex-
perts. We show that three existing DSLs for different domains
are compatible with verifier-safety. Beyond verifier-safety,
practical extension DSLs must also achieve good performance.
Inspired by database query optimization, we sketch an ap-
proach to creating DSL-specific optimizers capable of main-
taining verifier-safety. A preliminary evaluation shows that
optimizing verifier-safe extension performance is feasible.

ACM Reference Format:

Franco Solleza, Justus Adam, Akshay Narayan, Malte Schwarzkopf,
Andrew Crotty, Nesime Tatbul. 2025. Kernel Extension DSLs Should
Be Verifier-Safe!. In 3rd Workshop on eBPF and Kernel Extensions
(eBPF °25), September 8-11, 2025, Coimbra, Portugal. ACM, New York,
NY, USA, 8 pages. https://doi.org/10.1145/3748355.3748368

1 Introduction

Kernel extensions give developers access into the operating
system (OS) to perform customized kernel tasks like process
scheduling [3], network congestion control [13], and detailed
observability [18]. Kernel extension APIs like Linux kernel
modules or eBPF facilitate development of such extensions.
However, writing kernel extensions remains difficult today
because developers face three challenges:

This work is licensed under Creative Commons Attribution-ShareAlike
International 4.0.

eBPF °25, September 8—11, 2025, Coimbra, Portugal

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-2084-0/25/09
https://doi.org/lo.l145/3748355.3748368

(1) Bespoke programming environment. The OS kernel is
a unique programming environment with its own set of data
structures, invariants, and APIs. Writing usable kernel exten-
sions requires expertise programming in this environment.

(2) Unstable Kernel APL Since they extend the kernel’s
functionality, extensions rely on internal kernel interfaces
and must keep up with frequent changes to the kernel APIs.
Maintaining extensions becomes increasingly difficult, repre-
senting a frequent source of bugs and developer effort [5, 36].
(3) Safety. Kernel extensions execute in the kernel’s execution
context, so buggy extensions could compromise the entire ker-
nel, including leaking data, accessing invalid memory, corrupt-
ing state, and degrading performance for the entire machine.

Today, extension developers often use domain-specific lan-
guages (DSLs) to write kernel extensions. DSLs simplify ex-
tension development because they obviate the need for devel-
opers to understand the details of the kernel’s programming
environment. DSLs also centralize the burden of keeping
up with an unstable kernel API to DSL maintainers, so ex-
tension developers can write extensions that are portable
across supported kernel versions. For example, the DSLs in
BPFTrace [18], CCP [24], and Syrup [13] greatly simplify pro-
gramming extensions for observability, congestion-control,
and scheduling, respectively.

However, DSLs are not a panacea. While many DSLs for
kernel extensions solve the first two challenges, they remain
unsafe because they rely on carefully engineering the DSL’s
toolchain (e.g., a kernel module) so that their extensions will
not crash the OS. For example, bugs in the LTTng [6, 15]
toolchain or CCP kernel module [24] can cause kernel crashes.

eBPF provides a restrictive environment and in-kernel ver-
ifier that statically verifies that an extension is safe to run.
Thanks to this safety, extension developers increasingly use
eBPF to extend the Linux kernel [3, 4, 9, 21-23, 25, 28, 31, 34,
35, 37]. eBPF is a promising path forward for kernel extension
DSLs: unlike custom kernel modules, eBPF ensures that DSL
toolchains and the eBPF programs they generate cannot cause
OS bugs. However, this safety feature shifts most of the onus
to extension developers, who must now reason about why an
eBPF extension fails the verifier—a notoriously difficult task
(§2), especially for non-experts. While some existing eBPF-
based extensions expose DSLs [13, 18, 35], their compilers can
generate eBPF programs that the verifier rejects. This means
that despite using a DSL, the extension developer needs to

https://doi.org/10.1145/3748355.3748368
https://doi.org/10.1145/3748355.3748368
https://creativecommons.org/licenses/by-sa/4.0/

reason about eBPF’s verifier. Thus, extension developers must
spend time learning how to use eBPF effectively rather than
implementing extension functionality.

A Call for Research on Verifier-Safe DSLs. DSLs should
ideally provide verifier-safe programming environments; i.e.,
the DSL compiler should only generate eBPF programs that
the verifier will accept. With a verifier-safe DSL, non-experts
can write kernel extensions without the risk of crashing the
kernel or reasoning about complex eBPF verifier errors. §3
describes three strategies for addressing this challenge in the
traditional eBPF setting, ranging from simply attempting var-
ious generated candidate programs to formally modeling the
verifier. These strategies share drawbacks that stem from the
design choice to operate over eBPF bytecode directly. Instead,
we propose a new strategy, DSL-guided iteration (§3.2), that
leverages common DSL properties to produce verifier-safe
eBPF programs. We investigate whether practical DSLs have
the properties necessary for DSL-guided iteration by consider-
ing kernel extension DSLs across the domains of observability,
congestion control, and task scheduling (§4).

Verifier safety is distinct from performance, meaning that
verifier-safe programs might perform poorly. Of course, per-
formance is important, and we argue for verifier-safe op-
timization techniques for kernel extension DSLs (§5). Our
preliminary evaluation (§6) of an observability DSL toolchain
shows that verifier-safe DSLs can support performance com-
parable to that of extensions hand-optimized by eBPF experts.

2 Background

DSLs simplify kernel extension development because they
decouple domain-specific functionality from kernel-specific
APIs and provide a stable programming and data model that
abstract kernel objects and APIs. While the DSL’s creators
must address these challenges when implementing the DSL,
they only do so once. For example, CCP [24] supports porta-
bility for congestion control algorithms across multiple dat-
apaths, and Floem [27] exposes features of NIC drivers using
simple constructs. When executing the program in the ker-
nel, the DSL determines the appropriate mapping between
the data model and the target kernel’s objects. For example,
Osquery [26], DBOS [29], and OSDB [30] all propose using
database principles (with SQL as the DSL) to manage OS state,
each with a different data model that maps kernel objects to
a database schema. Similarly, LTTng’s toolchain [6] provides
abstractions for extracting and analyzing Linux kernel traces.

Kernel extensions increasingly rely on eBPF to ensure that
they avoid crashing the kernel [8], but this presents a new
challenge: extension developers must write extensions (us-
ing the DSL) whose eBPF code passes the in-kernel verifier.
Reasoning about why an eBPF extension fails the verifier is
challenging [12, 36] for two reasons. First, the verifier’s rules
disallow common programming patterns (e.g., large loops,

56

deep nested function calls) and limit the extension’s stack. Sec-
ond, the verifier performs its checks on eBPF bytecode rather
than a high-level programming language (i.e., the DSL), so it is
difficult to identify the failure’s cause in the original program.

Consequently, writing extensions in current DSLs requires
deep eBPF expertise. For example, BPFTrace [18] and Ply [20]
are DSLs for observability that use eBPF, but their users can
write code that fails the verifier. Meanwhile, eTran [2], Page-
Flex [35], and Syrup [13] expose eBPF’s complexity directly
to developers, so extensions in those systems can also fail the
verifier. When a program in these DSLs fails the verifier, the
developer must try to understand why it failed and how to
change the DSL program so that it passes.

3 Achieving Verifier-Safety

This paper argues that eBPF-based DSLs for kernel exten-
sions should be verifier-safe. In other words, they should guar-
antee that any valid program written in the DSL will pass
the verifier and run. Figure 1 illustrates four techniques
a DSL compiler could use to ensure that its generated eBPF
programs are verifier-safe.! The first three, verifier iteration
(Figure 1a), verifier modeling (Figure 1b), and verifier extrac-
tion (Figure 1c), operate over eBPF bytecode. We propose
the fourth, DSL-guided iteration (Figure 1d). A DSL compiler
could use any combination of these strategies in concert.

3.1 Bytecode-Oriented Strategies

Verifier Iteration. With verifier iteration, a DSL toolchain
would generate several candidate programs and submit each
candidate to the verifier until finding one that passes. The
space of possible programs is large, and repeatedly querying
the kernel verifier with arbitrary eBPF programs is prohib-
itively slow. However, while no practical system uses only
verifier iteration, the Linux kernel’s documentation states that
“the only way to know that the program is going to be accepted
by the verifier is to try to load it” [14], which means that any
automated approach must ultimately use trial-and-error.
The fundamental problem with this strategy is that DSL
compilers treat the verifier as an external black box and do not
reason about whether their output bytecode is verifier-safe.
The following strategies attempt to alleviate this limitation.
Verifier Modeling. Verifier modeling guides the toolchain
to generate candidates that are likely to pass the verifier. In
this approach, the toolchain maintains an approximate model
of the constraints imposed by the kernel’s verifier. With the
model, the toolchain can evaluate whether candidate imple-
mentations are likely to pass the verifier and try only those
that do while also optimizing for a specific target (e.g., higher
performance). For example, K2 [34] generates optimized ver-
sions of eBPF programs by modelling the verifier’s constraints

!Some past work modifies the verifier [7] or other parts of the in-kernel
eBPF toolchain [16], but this paper assumes an unmodified kernel.

eBPF | Verifier eBPF)« Extracted DSL Plan) User space
Program user ProgramJ — Model ProgramJ —>| Verifier Split\ operal
space Tterate 4 Iterate ;f Tterate
--- - L N I LIl ===y ===
Iterate !
kernel A4 Approximate A Extract
o) verter)

eBPF Runtime

a: Verifier Iteration

eBPF Runtime

b: Verifier Modeling

eBPF Runtime

d: DSL-guided Iteration

eBPF Runtime

c: Verifier Extraction

Figure 1: Four strategies to verifier-safety. Strategies 1a—1c must reason about arbitrary programs, and so must consider large
search spaces. DSLs impose structure on the search space. Strategy 1d thus combines aspects of both iteration and modeling.

via SMT, which is used to determine whether the optimized
program will pass. Unfortunately, given the lack of a verifier
constraint specification, these models are inherently approx-
imations. Even candidate programs the model says should
pass can fail the actual verifier, leaving the developer with the
challenge of fixing the program.

Verifier Extraction. As an improvement on verifier model-
ing, verifier extraction builds its model of the kernel verifier
by mechanically transforming the verifier’s source code. The
toolchain will always produce verifier-safe code as long as the
transformation method is complete. Prior works have used
this approach successfully to prove the correctness of individ-
ual verifier components (e.g., range analysis in Agni [33] using
SMT formulas). Unfortunately, the size and complexity of the
verifier makes the SMT formulas prohibitively expensive for
online reasoning about a program’s verifier-safety.

3.2 Our Proposal: DSL-Guided Iteration

The previous strategies all separate eBPF’s verification step
from compiling extension code. This fundamentally limits
such strategies because they lose information about the high-
level extension program. Instead, we propose a new strategy,
DSL-guided iteration, that builds on two key insights.
Kernel-user space split. Since eBPF supports safely send-
ing and receiving data between eBPF and user space, a DSL’s
toolchain can split extension functionality between these two
domains. The user space component lacks access to kernel
state and must rely on the eBPF component for input data,
but it is also free from the verifier’s restrictions. This makes
it more flexible (e.g., loops in user space are not restricted).
High level execution plan. The DSL is a higher-level rep-
resentation than an eBPF program, which gives the toolchain
freedom to determine how to translate a DSL program into
eBPF code. The toolchain first represents the program with
an execution plan—a sequence of high-level operations—and
then chooses a concrete execution that splits the plan between
user space and kernel space (e.g., eBPF) programs.

Not all execution plan splits generate verifier-safe eBPF
components. To ensure verifier-safety, execution plans must
support a minimal split where the in-kernel components are

57

represented by minimum verifier-safe functions (MVSFs). This
can be achieved by creating MVSFs for the primitive DSL
operations that must execute in the kernel. For example, for
a kernel-tracing DSL those primitives read kernel state. An
MVSF for such a primitive performs the read, then immedi-
ately communicates the data to the extension’s user space com-
ponent. Since the DSL has a finite set of primitive operations,
thereisafinite set of MVSFs, allowing DSL developers to check
all MVSFs against the verifier ahead of time. With MVSFs, the
DSL is implicitly verifier-safe—it can always generate an eBPF
component that contains only the MVSF? and rely on the ex-
tension’s user space component for any subsequent operation.

4 Verifier-Safety in DSLs

A kernel extension DSL that defines MVSFs is guaranteed
to be verifier-safe. We show that defining MVSFs is feasible
using DSLs in three domains as examples: congestion con-
trol, task scheduling, and observability. These DSLs already
abstract kernel functionality and offer portability, so adding
verifier-safety makes them meet the three criteria from §1.

4.1 Congestion Control

Congestion control plane (CCP) [24] provides a framework
to implement congestion control algorithms outside the net-
work datapath. Congestion control algorithm implementa-
tions in CCP use a DSL to express “datapath programs,” which
are parts of the algorithm’s logic that must run in the datap-
ath context because they access flow state (Figure 2a). CCP
implements a compiler, bytecode format, and an interpreter
in a kernel module to execute datapath programs. CCP pro-
grams cannot express loops or recursion, have a size limit,
and can only access a predefined, compiler-checked set of
measurement signals (e.g., a flow’s RTT). While using a be-
spoke bytecode format and interpreter eases portability across
datapaths, replacing the kernel module with eBPF would im-
prove performance and guarantee kernel safety. Indeed, Linux
cites CCP as an inspiration for including congestion control
algorithms in eBPF’s functionality [17].

2Some DSLs (e.g., the one in §4.3) require loading multiple MVSFs simulta-
neously. Since they are separate programs, their verifier-safety is unaffected.

(when (== pulseState 0)
(:= Rate UpRate) (:= pulseState 1))
(when (&& (== pulseState 1)
(> Timer.micros
Flow.rtt_sample_us))
(:= Rate DownRate)
(:= pulseState 2)) 3

a: An excerpt of CCP’s implementation of
BBR’s pulsing behavior.

uint32_t schedule (
void *pkt_start,
void *pkt_end) {
uint32_t hash = hash(
(struct *udphdr) pkt_start);
return hash % NUM_EXECUTORS;

b: An excerpt of Syrup’s round robin
scheduler using a subset of C.

SELECT A.pid,
A.syscall_number,
MAX(A.exit_ts - A.enter_ts)
AS latency
FROM system_calls AS A
GROUP BY A.pid, A.syscall_number
WINDOW Tsec

c: ASQL query for finding high-latency
syscalls.

Figure 2: Three example DSLs for kernel extensibility.

Verifier-Safety. An MVSF in an eBPF-based CCP program
might simply query and report congestion-related measure-
ments; in fact, many CCP-based algorithms (e.g., Nimbus [10])
already use such minimal programs.

DSL-based iteration also enables extensions to CCP’s func-
tionality while maintaining verifier-safety. For example, CCP
users currently need to hard-code a congestion control al-
gorithm’s execution plan. Instead, the CCP toolchain could
generate an execution plan, which would simplify algorithm
implementation. Not all components of CCP algorithm imple-
mentations can run in eBPF, since CCP supports algorithms
with asynchronous or unsupported operations (e.g., floating-
point). So, an eBPF-based implementation of CCP would need
to decide how to split work between user space and eBPF. For
complex algorithms like BBR [1], the toolchain could then
push more algorithm functionality into the datapath program.

4.2 Task Scheduling

Syrup [13] provides a framework for implementing appli-

cation-specific scheduling policies. It models task scheduling
as a matching problem between events to process and execu-
tors to process them. Syrup users write matching functions
in a subset of C (Figure 2b) and insert them at various levels
of the stack (e.g., in a SmartNIC to implement packet schedul-
ing). Syrup can run scheduling policies as eBPF programs in
the kernel or make complex scheduling decisions entirely in
user space by leveraging ghOSt [11]. Developers choose be-
tween these options based on performance and functionality
requirements: eBPF-based scheduling programs are more ef-
ficient, but user space ones are more flexible. When targeting
eBPF, developers currently must manually ensure that their
scheduling program passes the verifier.
Verifier-Safety. Syrup already offers a data model, based on
maps, that task scheduling programs use. However, Syrup’s
DSL requires modification to make it verifier-safe. In par-
ticular, Syrup’s DSL allows for arbitrary pointer operations,
which lets the DSL express fundamentally unsafe programs
that will not pass the verifier. Fortunately, removing pointer
operations from Syrup’s DSL is feasible without compromis-
ing functionality. For example, Figure 2b might be rewritten
in such a (future) DSL as follows:

58

schedule(Packet):
hash(Packet.udp_header) % NUM_EXECUTORS

Current Syrup supports two extremes: (i) use MVSFs to read
scheduler events and pass information to user space, where
scheduling code runs, or (ii) put all scheduler decision making
in the kernel. An improved version of Syrup based on DSL-
guided iteration could make the boundary more fluid and
automatically push parts of the scheduling program into eBPF.
4.3 Observability

SQL-like DSLs are commonly used for observability queries
(i.e., tracing how OS code affects an application’s behavior).
In these approaches to observability (e.g., OSQuery [26]), an
observability engineer writes a query against an abstract,
well-defined schema akin to a database schema. A toolchain
supporting SQL-like queries (Figure 2c) can translate its data
model—i.e, a system_calls table, with columns such as pid
(process ID) and syscall_number—into underlying eBPF tra-
cepoints for querying syscalls. While SQL-based observability
systems today do not offer this functionality, we discuss a pro-
totype implementation in §6.1. This data model allows the
query engine to offer convenient, stable abstractions over OS
functionality, our first two DSL requirements.
Verifier-Safety. Traditional SQL databases already transform
queries into execution plans, guiding performance optimiza-
tions. In this case, the toolchain can ensure the execution
plan is verifier-safe by moving operators between eBPF and
user space. In Figure 2c, the plans start with two independent
MVSFs attached to the syscall_entry and syscall_exit
eBPF hooks, respectively. Both MVSFs send every pid, syscall
id, and timestamp to user space via an eBPF map. The user
space component matches entry and exit events, calculates
the latency, and finds the maximum latency every second.

5 Optimizers for DSL-guided Iteration

DSLs with MVSFs guarantee verifier-safety, but the con-
servative MVSF-only execution plans seldom have good per-
formance. To make extensions practical, DSLs must use an
optimizer to produce execution plans that split functionality
between eBPF and user space efficiently. Although other do-
mains (e.g., databases, program synthesis) use optimizers, the
design and implementation of optimizers for eBPF that pre-
serve verifier-safety remains an open problem. We discuss the

inadequacy of naive approaches and present initial solution
but also call for further research in this area.

5.1 Naive Optimizers

A naive optimizer could start with an execution plan that
places the MVSF in eBPF and all other high-level operations
in user space. Then, it could compose the first two operations
in the program (i.e., the MVSF and the subsequent operation)
and generate the eBPF component of that plan. It could then
repeat the process for the first three operations in the execu-
tion plan, and so forth. After this iteration, it could check each
eBPF component against the verifier to find the execution
plans that verify and use a simple heuristic (e.g., largest eBPF
component that passes the verifier) to choose the best one.
Unfortunately, this strategy is impractical because it requires
enumerating all candidate kernel-user space splits, which can
result in a large search space of possible plans.

Another tempting strategy might preemptively terminate
the search over execution plans based on some heuristic (e.g.,
upon finding one that does not verify). Unfortunately, this
strategy would be too conservative, since composing opera-
tions in eBPF might pass the verifier even if they fail separately.
Importantly, neither approach accounts for secondary opti-
mization objectives, which are critical for performance.

5.2 Research Opportunities

Instead, we envision optimizers that both account for sec-

ondary optimization objectives and preserve verifier-safety
when guiding the toolchain’s search. We call for the commu-
nity to investigate the design of such optimizers, addressing
the following open questions.
Cost models. A cost model estimates how well a candidate
kernel-user space split maximizes a performance objective.
This objective can vary depending on the domain. For exam-
ple, observability queries might target low overhead and high
throughput by estimating the overhead of running a query
on an application. Meanwhile, congestion control and sched-
uling might target low latency, estimating the latency cost of
executing parts of an algorithm in the kernel or user space.
Finally, the cost model may need to capture different factors
depending on which operators run in the kernel or user space.
Integrating with iteration. An optimizer integrated with
DSL-guided iteration could use the cost and verifier model
to inform the search process. Instead of naively enumerating
every candidate execution plan, the optimizer could estimate
the cost of a candidate before generating its eBPF code, prior-
itizing candidates with low costs. Depending on the domain,
sophisticated optimizers could further transform a program’s
execution plan during iteration, reordering or replacing op-
erations to generate a different but semantically equivalent
program. Doing so might find better execution plans than
were possible in the original plan.

59

Incorporating Verifier Modeling. In addition to modeling
an execution plan’s performance cost, the optimizer could
also model the verifier’s checks, as discussed previously in
§3. For example, when considering possible kernel-user space
splits, the optimizer could use program synthesis techniques
to fuse operators the cost model indicates are expensive but
the verifier model indicates will not verify. The cost model
could even be embedded in the type system, as is the case in to-
tal languages [19, 32], and allow the compiler to prove that the
program terminates within a certain number of instructions,
a crucial constraint the verifier imposes.

6 Observability: A Case Study

Next, we extend the observability example from §3.2 to
show how to achieve verifier-safety and performance with a
toolchain that supports SQL queries for kernel observability,
including a discussion of preliminary results.

6.1 Sketching a Kernel Observability Engine

To ensure that a toolchain compiles SQL queries to verifier-
safe BPF programs while maintaining good performance, it
needs a stable kernel schema, MVSFs, and an optimizer.
Stable schema. End-users write SQL queries using a stable
schema that organizes the kernel’s state and events into logical
tables so that users can express data transformations (e.g., fil-
ter, join, window) without kernel or eBPF expertise. Because
the schema is a high-level abstraction over kernel objects,
queries are portable across changes in the kernel, presenting
a stable interface to the end-user. The stable schema would
be maintained by the observability toolchain developers.
MYVSFs. The tables and columns in the stable schema repre-
sent data accessible from specific eBPF hooks and helper func-
tions. This limits the number of hooks that a generated eBPF
program can reach and thus also the set of MVSFs. Since ob-
servability tasks only read data from the kernel, these MVSFs
are small: they read the relevant data in the kernel using eBPF
helper functions and immediately send the data to user space
using an eBPF map. To guarantee that all the MVSFs are actu-
ally verifier-safe, the toolchain should include a test suite that
exhaustively checks this for the kernel it is running in. When
using MVSFs, the toolchain executes all other operations (e.g.,
filters, joins) in user space. While MVSFs guarantee that a
valid query will run, relying only on MVSFs can be slow, so
executing MVSFs in the hotpath of key operations like system
calls may introduce high probe effects to the system.
Optimizer. The eBPF programs that the toolchain generates
from SQL queries should be fast and have low probe effect.
While we leave the design of an optimizer for eBPF-based
DSLs for future work, such an optimizer could borrow ideas
from past work on databases (see §5).

For example, an optimizer could first transform SQL queries
for observability into a logical plan with operators like filters

Required Expertise

Probe Effect (lower is better)

Implementation 0s eBPF Stable Interface Verifier-Safe Query 1 Query 2
Hand-Optimized High High No No 0.8% 5.0%
BPFTrace No No 1.0% T6.1%
MVSF-only Low Low Yes Yes 72.7% 72.5%
Optimizer Low Low Yes Yes 1.2% 5.3%

Table 1: Options for implementing observability queries. Query 1 and Query 2 columns show the probe effect on the application.
+ BPFTrace achieves poor query performance for Query 2, dropping 95% of events (though with low probe effect).

and joins. Then, it could generate a physical execution plan in-
cluding physical operations such as writing to eBPF maps and
calling helper functions. During this process, it could perform
logical optimizations (e.g., predicate pushdown, join reorder-
ing) and physical ones (e.g., batching, pipelining) to find a
plan with a low estimated probe effect. The optimizer could
use DSL-guided iteration to find verifier-safe eBPF programs
and integrate the physical plan generation into the iteration
process. The optimizer might use a simple heuristic which
starts with an MVSF-only plan with all other operations in
user space. The optimizer could then iteratively “move” oper-
ations from user space into the kernel and check whether the
resulting eBPF program passes the verifier. Finally, the opti-
mizer might estimate the probe effects of each such change
and prioritize plans that have low probe effect. Of course,
more advanced heuristics are possible. For example, we be-
lieve that some operations fit better in the kernel than others;
while placing filters in the kernel is natural, SQL joins use
unbounded loops and thus are incompatible with eBPF.

6.2 Preliminary Results

We performed experiments to evaluate the performance
of MVSF-only extensions and whether a simple optimizer,
coupled with DSL-guided iteration, can produce extensions
with good performance. We consider two queries. Query 1is
the one shown in Figure 2c. It aggregates syscall information
to find the maximum latency invocation of each system call,
while Query 2 simply collects the latency of all system calls
(e.g., to correlate with other sources of granular observability
data) and writes them to a file.

We evaluate four implementations for each query. The
first implementation (“Hand-Optimized”) represents a hand-
optimized program an eBPF expert would write. For Query
1, it matches system call entry and exit using a shared eBPF
map and then calculates the maximum latency using per-CPU
maps. The user space program gathers latencies across all per-
CPU maps and calculates the maximum latency per system
call. For Query 2, it batches data in the kernel and sends that
data to user space, which calculates the latency.

The second implementation is in BPFTrace [18]. BPFTrace
offers a DSL with some abstractions for eBPF programming,

60

but without verifier-safety or a data model. For Query 2, we
configure BPFTrace to write system call latencies to a file.
The third implementation (“MVSF-only”) uses an eBPF
program containing only the MVSFs attached to eBPF’s sys_-
entry and sys_exit hooks. Then, a user space program
matches these events over time and calculates the latency of
each captured system call. The fourth implementation (“Op-
timizer”) is what DSL-guided iteration would produce: we
implemented operators (e.g., filter, project, join) and com-
posed them to express the program. We executed each query
to monitor a RocksDB application and report the difference in
application throughput with each query and without (i.e., the
probe effect). We ran these experiments on a server running
Ubuntu 22.04 (Linux v5.15) with two Xeon Gold 6150 CPUs
(36x 2.7 GHz), 377 GiB RAM, and a Samsung 2TB NVM Drive.
Table 1 shows our results. As expected, “MVSF-only” per-
forms poorly, with 73% probe effect on the RocksDB appli-
cation. “Hand-Optimized” shows that it is possible to execute
both queries efficiently, with 1% probe effect for Query 1 and
5% probe effect for Query 2. For both queries, BPFTrace intro-
duces similarly low probe effects. However, BPFTrace requires
eBPF expertise to write their programs since BPFTrace ex-
poses eBPF maps and hooks, and its programs are not verifier-
safe. In addition, BPFTrace drops 95% of the syscall events for
Query 2 because its user space component cannot keep up
with the data from the kernel. Finally, “Optimizer” achieves
a probe effect that is comparable to “Hand-Optimized” and
BPFTrace, but with a process that guarantees verifier-safety.

7 Conclusion

DSLs are a promising approach for kernel extensions, with
the potential to provide an ergonomic interface, verifier-safety,
and good performance. We call for further research on design-
ing verifier-aware optimizations of DSL execution plans.

Acknowledgments

This work was supported by a gift from Intel, a Microsoft
Grant for Customer Experience Innovation, an Amazon Re-
search Award, and a Google Research Scholar Award.

References

(1]

(2]

— =
O 0o
= A

[10

[t

(11]

(12]

(13

=

(14

[l

(15

[’

(16

[l

(17

—

(18]

Neal Cardwell, Yuchung Cheng, C. Stephen Gunn, Soheil Hassas
Yeganeh, and Van Jacobson. 2016. BBR: Congestion-Based Congestion
Control. In ACM Queue.

Zhongjie Chen, Qingkai Meng, ChonLam Lao, Yifan Liu,
Fengyuan Ren, Minlan Yu, and Yang Zhou. 2025. eTran:
Extensible Kernel Transport with eBPF. In NSDIL https:

//www.usenix.org/conference/nsdi25/presentation/chen-zhongjie

Linux community. [n. d.]. sched_ext. ([n. d.]). https:
//github.com/sched-ext/scx Last accessed July 16, 2025.
P4C community. [n. d.]. eBPF backend. ([n. d.]). https:

//p4lang.github.io/p4c/ebpf_backend.html Last accessed July 16, 2025.
Jonathan Corbet. 2023. Reconsidering BPF ABI stability. (2023).
https://Iwn.net/Articles/921088/

Mathieu Desnoyers and Michel Dagenais. 2008. LTTng: Tracing
across execution layers, from the Hypervisor to user-space. In Linux
Symposium.

Kumar Kartikeya Dwivedi, Rishabh Iyer, and Sanidhya Kashyap.
2024. Fast, Flexible, and Practical Kernel Extensions. In Proceedings
of the ACM SIGOPS 30™ Symposium on Operating Systems Principles.
https://doi.org/10.1145/3694715.3695950

The Linux Foundation. 2024. The State of eBPF. (2024).

Yoann Ghigoff, Julien Sopena, Kahina Lazri, Antoine Blin, and Gilles
Muller. 2021. BMC: Accelerating memcached using safe in-kernel
caching and pre-stack processing. In Proceedings of the 18" USENIX
Symposium on Networked Systems Design and Implementation. 487-501.
Prateesh Goyal, Akshay Narayan, Frank Cangialosi, Srinivas Narayana,
Mohammad Alizadeh, and Hari Balakrishnan. 2022. Elasticity
Detection: A Building Block for Internet Congestion Control. In
Proceedings of the 2022 Conference of the ACM Special Interest Group
on Data Communication. https://doi.org/10.1145/3544216.3544221
Jack Tigar Humphries, Neel Natu, Ashwin Chaugule, Ofir Weisse, Barret
Rhoden, Josh Don, Luigi Rizzo, Oleg Rombakh, Paul Turner, and Chris-
tos Kozyrakis. 2021. ghOSt: Fast & Flexible User-Space Delegation of
Linux Scheduling. In Proceedings of the ACM SIGOPS 28" Symposium on
Operating Systems Principles. https://doi.org/10.1145/3477132.3483542
Jinghao Jia, Ruowen Qin, Milo Craun, Egor Lukiyanov, Ayush Bansal,
Minh Phan, Michael V Le, Hubertus Franke, Hani Jamjoom, Tianyin
Xu, et al. 2025. Rex: Closing the language-verifier gap with safe and
usable kernel extensions. In Proceedings of the 2025 USENLX Annual
Technical Conference. 325-342.

Kostis Kaffes, Jack Tigar Humphries, David Maziéres, and Christos
Kozyrakis. 2021. Syrup: User-Defined Scheduling Across the Stack. In
Proceedings of the ACM SIGOPS 28" Symposium on Operating Systems
Principles. https://doi.org/10.1145/3477132.3483548

The kernel development community. [n. d.]. BPF Design Q & A. ([n.
d.]). https://www.kernel.org/doc/html/latest/bpf/bpf_design_QA.html
Last accessed January 4, 2025.

Mohamed Khalfella. [n. d.]. Kernel crash when loading lttng-tracing
module with IBT enabled. https://bugs.Ittng.org/issues/1408. ([n. d.]).
Last accessed May 23, 2025.

Hsuan-Chi Kuo, Kai-Hsun Chen, Yicheng Lu, Dan Williams, Sibin
Mohan, and Tianyin Xu. 2022. Verified Programs Can Party:
Optimizing Kernel Extensions Via Post-Verification Merging. In
Proceedings of the 17" European Conference on Computer Systems.
https://doi.org/10.1145/3492321.3519562

Martin KaFai Lau. 2020. bpf: tcp: Support tcp_congestion_-
ops in bpf. (2020). https://github.com/torvalds/linux/commit/
0Obaf26b0fcd74bbfcef53c5d5e8bad2b99¢8d0d2

BPFTrace Maintainers. 2024. bpftrace. (2024).
//github.com/bpftrace/bpftrace Last accessed January 4, 2025.

https:

61

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

Dhall Maintainers. [n. d.]. The Dhall configuration language. ([n. d.]).
https://dhall-lang.org Last accessed 22. May 2025.

Ply Maintainers. 2024. Ply, a dynamic tracer for Linux. (2024).
https://github.com/bpftrace/bpftrace Last accessed January 4, 2025.
Sebastiano Miano, Matteo Bertrone, Fulvio Risso, Mauricio Vasquez
Bernal, Yunsong Lu, and Jianwen Pi. 2019. Securing Linux with a
faster and scalable iptables. ACM SIGCOMM Computer Communication
Review 49, 3 (2019), 2-17.

Sebastiano Miano, Fulvio Risso, Mauricio Vasquez Bernal, Matteo
Bertrone, and Yunsong Lu. 2021. A framework for eBPF-based network
functions in an era of microservices. IEEE Transactions on Network and
Service Management 18,1 (2021), 133-151.

Sebastiano Miano, Alireza Sanaee, Fulvio Risso, Gabor Rétvari, and
Gianni Antichi. 2022. Domain specific run time optimization for
software data planes. In Proceedings of the 27" ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems. 1148—1164.

Akshay Narayan, Frank Cangialosi, Deepti Raghavan, Prateesh Goyal,
Srinivas Narayana, Radhika Mittal, Mohammad Alizadeh, and Hari
Balakrishnan. 2018. Restructuring Endpoint Congestion Control. In
Proceedings of the 2018 Conference of the ACM Special Interest Group
on Data Communication.

Tomasz Osinski, Jan Palimaka, Mateusz Kossakowski, Frédéric Dang
Tran, El-Fadel Bonfoh, and Halina Tarasiuk. 2022. A novel pro-
grammable software datapath for software-defined networking. In
Proceedings of the 18" International Conference on emerging Networking
EXperiments and Technologies. 245-260.

osquery Maintainers. 2024. Welcome to osquery. (2024).
https://osquery.readthedocs.io/en/stable/ Last accessed January 4, 2025.
Phitchaya Mangpo Phothilimthana, Ming Liu, Antoine Kauf-
mann, Simon Peter, Rastislav Bodik, and Thomas Anderson.
2018. Floem: A Programming System for NIC-Accelerated
Network Applications. In Proceedings of the 13" USENIX Sym-
posium on Operating Systems Design and Implementation. https:
/[www.usenix.org/conference/osdi18/presentation/phothilimthana
Shixiong Qi, Leslie Monis, Ziteng Zeng, Ian-chin Wang, and KK
Ramakrishnan. 2022. Spright: Extracting the server from serverless
computing! high-performance ebpf-based event-driven, shared-
memory processing. In Proceedings of the 2022 Conference of the ACM
Special Interest Group on Data Communication. 780-794.

Athinagoras Skiadopoulos, Qian Li, Peter Kraft, Kostis Kaffes, Daniel
Hong, Shana Mathew, David Bestor, Michael Cafarella, Vijay Gadepally,
Goetz Graefe, et al. 2021. DBOS: a DBMS-oriented Operating System.
In Proceedings of the VLDB Endowment, Vol. 15. VLDB Endowment,
21-30. https://doi.org/10.14778/3485450.3485454

Robert Soulé, George Neville-Neil, Stelios Kasouridis, Alex Yuan, Avi
Silberschatz, and Peter Alvaro. 2025. OSDB: Exposing the Operating
System’s Inner Database. In The Biennial Conference on Innovative Data
Systems Research.

William Tu, Yi-Hung Wei, Gianni Antichi, and Ben Pfaff. 2021.
Revisiting the open vswitch dataplane ten years later. In Proceedings
of the 2021 Conference of the ACM Special Interest Group on Data
Communication. 245-257.

David A. Turner. 2004. Total Functional Programming. Journal of
Universal Computer Science 10, 7 (2004), 751-768.

Harishankar Vishwanathan, Matan Shachnai, Srinivas Narayana, and
Santosh Nagarakatte. 2023. Verifying the Verifier: eBPF Range Analysis
Verification. In Computer Aided Verification, Constantin Enea and
Akash Lal (Eds.). Springer Nature Switzerland, Cham, 226-251.
Qiongwen Xu, Michael D Wong, Tanvi Wagle, Srinivas Narayana,
and Anirudh Sivaraman. 2021. Synthesizing safe and efficient kernel
extensions for packet processing. In Proceedings of the 2021 Conference

https://www.usenix.org/conference/nsdi25/presentation/chen-zhongjie
https://www.usenix.org/conference/nsdi25/presentation/chen-zhongjie
https://github.com/sched-ext/scx
https://github.com/sched-ext/scx
https://p4lang.github.io/p4c/ebpf_backend.html
https://p4lang.github.io/p4c/ebpf_backend.html
https://lwn.net/Articles/921088/
https://doi.org/10.1145/3694715.3695950
https://doi.org/10.1145/3544216.3544221
https://doi.org/10.1145/3477132.3483542
https://doi.org/10.1145/3477132.3483548
https://www.kernel.org/doc/html/latest/bpf/bpf_design_QA.html
https://doi.org/10.1145/3492321.3519562
https://github.com/torvalds/linux/commit/0baf26b0fcd74bbfcef53c5d5e8bad2b99c8d0d2
https://github.com/torvalds/linux/commit/0baf26b0fcd74bbfcef53c5d5e8bad2b99c8d0d2
https://github.com/bpftrace/bpftrace
https://github.com/bpftrace/bpftrace
https://dhall-lang.org
https://github.com/bpftrace/bpftrace
https://osquery.readthedocs.io/en/stable/
https://www.usenix.org/conference/osdi18/presentation/phothilimthana
https://www.usenix.org/conference/osdi18/presentation/phothilimthana
https://doi.org/10.14778/3485450.3485454

(35

(36

(37

=

]

—

of the ACM Special Interest Group on Data Communication. 50-64.
Anil Yelam, Kan Wu, Zhiyuan Guo, Suli Yang, Rajath Shashidhara,
Wei Xu, Stanko Novakovi¢, Alex C Snoeren, and Kimberly Keeton.
2025. PageFlex: Flexible and Efficient User-space Delegation of Linux
Paging Policies with eBPF. In 2025 USENIX Annual Technical Conference.
291-306.

Shawn Wanxiang Zhong, Jing Liu, Andrea Arpaci-Dusseau, and
Remzi Arpaci-Dusseau. 2025. Revealing the Unstable Foundations
of eBPF-Based Kernel Extensions. In Proceedings of the 20" European
Conference on Computer Systems. 21-41.

Yuhong Zhong, Haoyu Li, Yu Jian Wu, Ioannis Zarkadas, Jeffrey Tao,
Evan Mesterhazy, Michael Makris, Junfeng Yang, Amy Tai, Ryan
Stutsman, et al. 2022. XRP: In-Kernel Storage Functions with eBPF. In
Proceedings of the 16" USENIX Symposium on Operating Systems Design
and Implementation. 375-393.

62

	Abstract
	1 Introduction
	2 Background
	3 Achieving Verifier-Safety
	3.1 Bytecode-Oriented Strategies
	3.2 Our Proposal: DSL-Guided Iteration

	4 Verifier-Safety in DSLs
	4.1 Congestion Control
	4.2 Task Scheduling
	4.3 Observability

	5 Optimizers for DSL-guided Iteration
	5.1 Naïve Optimizers
	5.2 Research Opportunities

	6 Observability: A Case Study
	6.1 Sketching a Kernel Observability Engine
	6.2 Preliminary Results

	7 Conclusion
	References

