Loom: Efficient Capture and Querying
of High-Frequency Telemetry
Franco Solleza Shihang Li ™ William Sun Richard Tang Malte Schwarzkopf

Andrew Crotty * David Cohen *

Brown University T University of Washington

Abstract

To debug performance issues, engineers often rely on high-
frequency telemetry (HFT) from sources like perf, DTrace,
or eBPF, which can generate millions of records per second.
Current database systems are too slow to capture such high-
rate data in its entirety, and the de facto standard approach of
writing HFT to raw files makes queries slow and cumbersome.
Engineers must therefore either work with incomplete data,
which risks missing critical events, or accept slow queries.

Loom is a new system specialized for capturing and analyz-
ing HFT with timely, interactive queries. Key to Loom’s design
is that it combines the high ingest capability of log-based stor-
age with lightweight, sparse, and domain-specific indexes
that accelerate queries. This design strikes a balance: it pri-
oritizes capturing complete data at high rate while indexing
just enough to support interactive queries on HFT.

Experiments show that Loom supports both higher ingest
throughput and lower query latency than best-in-class sys-
tems for ingest-optimized storage (FishStore) and time series
databases (InfluxDB), all while consuming substantially fewer
host resources and ensuring data completeness.

CCS Concepts

« Information systems — Information storage systems;
Database management system engines.

Keywords
Observability, telemetry, log-based storage, indexing

ACM Reference Format:

Franco Solleza, ShihangLi, William Sun, Richard Tang, Malte
Schwarzkopf, Andrew Crotty, David Cohen, Nesime Tatbul,
Stan Zdonik. 2025. Loom: Efficient Capture and Querying of High-
Frequency Telemetry. In ACM SIGOPS 31st Symposium on Operating
Systems Principles (SOSP ’25), October 13-16, 2025, Seoul, Republic of
Korea. ACM, New York, NY, USA, 17 pages. https://doi.org/10.114
5/3731569.3764853

This work is licensed under a Creative Commons Attribution 4.0 International

License.

SOSP °25, Seoul, Republic of Korea

© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1870-0/2025/10
https://doi.org/10.1145/3731569.3764853

512

1*0

Nesime Tatbu Stan Zdonik
* Northwestern University * Intel ° MIT

Database | Log storage | Raw file | Loom
Example system | [30,51] [23, 41] [9] -
High ingest rate X
Fast queries X X
Low probe effect Xx

Figure 1: HFT use cases require high-rate ingest, interactive
queries, and low probe effect. Existing classes of systems
achieve at most two of these. * indicates low probe effect is
possible at the expense of dropping data.

1 Introduction

Performance engineers often instrument applications to col-
lect high-frequency telemetry (HFT) across the stack, ranging
from application logs to eBPF events and hardware perfor-
mance counters [11, 14-16, 18, 36, 38, 39, 48, 57, 58], which
they then query and analyze to debug issues in live deploy-
ments. Unsurprisingly, many HFT sources generate data at
high rates. For example, a key-value store application on a
single machine can generate millions of telemetry events per
second [58], and debugging outliers with high tail latency
requires detailed HFT at a fine granularity [53].

When looking for rare events, important outliers, or un-
known correlations, engineers often need to capture and in-
teractively query complete HFT data. Doing so in live deploy-
ments must have low probe effect—the slowdown introduced
as aresult of measuring the system. Random sampling, which
reduces data rate and probe effect at the expense of fidelity,
works for some use cases but is insufficient for others, such as
finding “unknown unknowns” [8]. For example, an engineer
mightlook for the root cause of high-latency requests without
knowing what correlated event causes them, requiring the
engineer to capture all events.

Systems for capturing and querying HFT face a three-way
trade-off between high ingest rates sufficient for complete
HFT, fast queries at interactive latencies, and low probe ef-
fect on the monitored workload (Figure 1). Navigating this
trade-off means making decisions about how to store and
index HFT. Classic database systems, including time series
databases (TSDBs) like InfluxDB [30] and ClickHouse [51],
optimize for fast read queries by updating indexes in the
write path. Because this overhead slows down writes, these

* Work done while at Brown University.

https://doi.org/10.1145/3731569.3764853
https://doi.org/10.1145/3731569.3764853
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3731569.3764853
https://www.acm.org/publications/policies/artifact-review-and-badging-current

SOSP ’25, October 13-16, 2025, Seoul, Republic of Korea

systems struggle to capture data at the rate of HFT, which
either results in dropped data or high probe effect. On the
other hand, ingest-oriented log-based storage systems (e.g.,
FuzzyLog [23], FasterLog [41]) keep up with high-rate data
by removing or severely restricting indexes. This means that
queries must scan large amounts of data, slowing them down.
Hence, the de facto standard approach today is to capture HFT
to raw files. But this requires engineers to write scripts that
post-process, scan, and analyze the captured data, which is
slow and less ergonomic than declarative queries.

Loom is a new system that efficiently captures and queries
HFT. To our knowledge, Loom is the first system that main-
tains the high ingest rates necessary for HFT, supports interac-
tive latencies across a broad class of parameterized observabil-
ity queries, and imposes low probe effect on the host system.
Achieving this balance required careful co-design of storage
layout, index structures, and persistence logic in Loom.

The key idea in Loom is to ingest HFT data into a hybrid log
that spans main memory and persistent storage with sparse in-
dexes geared toward typical observability queries. Loom sup-
ports high-rate ingest through cheap appends. Its indexes are
flexible and accelerate queries enough to achieve interactive
latency without incurring the maintenance cost of traditional
indexes. Finally, the hybrid log design reduces probe effect by
using constant, limited host CPU and memory resources. To
achieve this, Loom had to address three challenges.

First, any index maintenance on the critical path of writes
risks failing to keep up with the high ingest rate necessary
for HFT. Existing indexes that support HFT’s data rate need a
priori knowledge of the exact query the index will support [63]
and are dense indexes that track individual records. Instead,
Loom builds sparse indexes that cover fixed-size chunks of
records. These lightweight indexes accelerate key classes of
parameterized HFT queries, such as time-range queries, ag-
gregations, and correlations across sources, without needing
to know an exact query to index. This design takes inspira-
tion from lightweight database indexes like zone maps [68]
designed to accelerate analytical queries while limiting index
space overhead [20, 42, 52, 65]. Loom leverages inexact index-
ing to amortize index maintenance costs, but this means Loom
must scan chunks that the indexes identify as relevant. Index-
ing chunks still vastly reduces the amount of data scanned.

Second, to support interactive observability queries,
the indexes must be effective at filtering out irrelevant data,
but queries must also coexist with concurrent, high-rate in-
gest processing. Loom addresses this challenge with a lay-
ered, append-only index design that accelerates queries by
time, data source, and distributive and holistic aggregations,
which are common query dimensions in observability. Loom
avoids coordination between high-rate ingest and concurrent
queries: rather than making the indexes a shared data struc-
ture between ingest and queries, Loom does not expose parts

513

F.Solleza, S. Li, W. Sun, R. Tang, M. Schwarzkopf, A. Crotty, D. Cohen, N. Tatbul, S. Zdonik

of the index still under construction to queries. This avoids
synchronization at the cost of requiring a scan over a few
megabytes of unindexed, in-memory data.

Third, low probe effect is crucial to prevent resource con-
tention between ingest, queries, and application workloads
on the shared host machine from confounding obtained mea-
surements. Loom addresses this with the design of its hybrid
log, which has a CPU-efficient ingest path and a small fixed
memory footprint. Loom also provides simple, observability-
oriented query operators that similarly use little CPU and
memory. This design reduces probe effect by virtue of its small
resource footprint and lack of thread coordination costs.

We evaluated our Loom prototype with two workloads
based on real-world scenarios. Experiments show that Loom
keeps up with ingest rates of up to 9M records/second without
dropping data, while also efficiently serving typical observ-
ability queries (e.g., aggregations, histograms, correlation
queries). By contrast, InfluxDB, a widely used TSDB, drops
38-93% of data as its read-optimized indexing is too slow
for HFT workloads, and takes 7-160x longer than Loom to
answer queries. Loom also exceeds the ingest performance
of FishStore [63], a recent system optimized specifically for
ingesting high-volume data, and improves query latency by
1.5-17x over it. Finally, Loom achieves ingest performance
and probe effect on par with writing the data to a raw file.

In summary, this paper makes the following contributions:

(1) Loom, a system that efficiently captures and queries
HFT data by combining log-based storage and sparse
indexes to simultaneously achieve high ingest rate, in-
teractive query latency, and low probe effect;

(2) Loom’s observability-oriented, multi-layer indexing
design that creates time-based and value-based indexes
over HFT with low overhead; and

(3) query execution strategies and implementation mech-
anisms that efficiently answer typical observability
queries over recent and historical HFT with low re-
source footprint and probe effect.

Loom has some limitations. It is designed for ad hoc and sit-
uational analysis of recently generated HFT. For long-term
storage, engineers should move data into existing storage sys-
tems that, e.g., support compression. Loom supports high-rate
ingest but, like any system, has a finite capacity. Extremely
high data rates (e.g., capturing all incoming/outgoing packets
on a busy host) can overwhelm Loom, though such workloads
are rare in practice because they impose high probe effect.

2 Background
2.1 Motivating Example

As amotivating example, consider a performance engineer
who receives an alert that their Redis cache is experiencing
occasional high request tail latency. They begin by collecting

Loom: Efficient Capture and Querying of High-Frequency Telemetry

I InfluxDB

o & 20 | ClickHouse
B F
oS
& E

0 -
o
© o 50+
As

a7
0 T

100k 500k 750k 1.4M ™

Figure 2: As ingest rate increases, InfluxDB and ClickHouse
spend an increasing fraction of available CPU resources
on index maintenance. Once CPU resources run out, they
quickly start to drop a substantial percentage of data.

application telemetry (865k records/second) and observe high
latency in one out of every 5M records. The engineer then
traces this back to slow recv system calls by using eBPF to
collect system call latencies (+ 2.7M records/second). After
further investigation, they collect network packets destined
for Redis (+ 3.6M records/second) and discover mangled pack-
ets [67] from a buggy eBPF packet filter that correlate exactly
with slow recv system calls and slow requests.

This example illustrates the hardest parts of a typical HFT
workload: the engineer iteratively drills down by formulating
and testing hypotheses about rare events by correlating data
from multiple sources. The correlations are unknown a priori,
and the goal is to find such needle-in-a-haystack relationships
in fine-grained, high-rate data.

2.2 HFT Workloads

HFT workloads exhibit two key characteristics: high data
rate and the use of multiple data sources. HFT sources like
performance-oriented applications (e.g., key-value stores) or
kernel-level tracing like eBPF can each generate millions of
records per second. Engineers typically combine multiple HFT
sources for analyses (i.e., correlation), which means the total
HFT rate can reach several million records per second. They
require fast, low-latency queries to interactively iterate over
hypotheses as they drill down in their investigation [1, 28, 35].

However, probe effect inherently limits the rate and size of
HFT that a system can generate, so HFT records are typically
small [53-55, 64]. As it is difficult to interpret correlations
from many sources, engineers also typically correlate only a
handful of HFT sources at a time.

A system for HFT must therefore (i) keep up with high-
rate data, (ii) support the interactive iteration that engineers
require, and (iii) impose low probe effect on applications.

2.3 Existing Approaches

Current approaches fail to keep up with HFT, either dropping
data or making queries slow and cumbersome.

514

SOSP ’25, October 13-16, 2025, Seoul, Republic of Korea

Ground InfluxDB Mangled
e u Truth u (sampling) L 4 Packets
S E 200 A R
S
z9 .
A Jadnnet leecdShns ot oSa? dhle ses 20 s2nim and ol
2 0 o oeoe . .
T T T T T T T T T
01 2 3 4 5 6 7 8 9 10

Time (seconds)

Figure 3: In the motivating example (§2.1), high-latency
Redis requests correlate with packets where a buggy packet
filter mangled the destination port. To keep up with the data
rate, InfluxDB needs to sample data. Because these events
are rare (six mangled packets out of 35M packets affecting
six operations out of 9M), sampling captures only one of the
slow requests and none of the mangled packets.

Time series databases (TSDBs) struggle with high-rate
ingest because they maintain indexes designed to speed up
queries. For example, TSM-Bench [19] found that two LSM-
tree-based TSDBs, InfluxDB [30] and ClickHouse [51], per-
form best for write-intensive workloads. These systems see
an increasing index update cost as the ingest rate increases
because they add more background threads to manage in-
dexing. With finite CPU resources, systems must eventually
either increase backpressure (i.e., high probe effect) or drop
data. Figure 2 shows the percentage of total CPU resources
available (16 CPUs) spent on index maintenance in InfluxDB
and ClickHouse as a function of the ingest rate, as well as
the fraction of data dropped on ingest when these TSDBs
fall behind. At 100k writes/second, InfluxDB and ClickHouse
spend 2% of CPU on index maintenance. This increases to 15%
at 500k writes/second, and at 1.4M writes/second, it increases
to 23%, or about four cores. InfluxDB and ClickHouse drop
9% of data at this point, as I/O, request handling, and index
maintenance compete for CPU. Consequently, the CPU time
spent on index maintenance no longer increases when the
rate goes up to 6M writes/second (as in §2.1 and Figure 3), but
the fraction of data dropped increases sharply to 77%.

Sampling can help reduce the data rate to ensure the stor-
age system (e.g., a TSDB) can keep up. Unfortunately, this is
not a panacea, as sampling can miss rare events and correla-
tion requires coordinated sampling across multiple sources.
Figure 3 shows the impact of sampling on the example from
§2.1. We uniformly sampled about 10% of the data, which
results in a data rate sufficient for InfluxDB to keep up. The
ground truth in red shows that six slow Redis requests (out
of 9M) occur over a 10-second window, yet sampling cap-
tures only one of those requests. To compound this problem,
sampling failed to capture any of the six mangled packets,
since they are exceedingly rare (six out of 35M packets). The

SOSP ’25, October 13-16, 2025, Seoul, Republic of Korea

only way to draw a correlation between the two events is to
capture slow requests and the mangled packets that caused
them. While one could bias sampling or perform retroactive
sampling [66], such targeted sampling is not possible for the
“unknown unknown” of mangled packets.

Log-based systems (e.g., FasterLog [41], FuzzyLog [23],
FishStore [63]) can keep up with high-rate ingest but have pro-
hibitively high query latency because they need to scan thelog.
To avoid scanning the whole log, these systems typically build
back-pointer record chains using rules or heuristics that iden-
tify exactly the records required for a query. For example, Fish-
Store builds record chains using arestricted indexing structure
that sets up exact-match rules called “predicated subset func-
tions” (PSFs). While PSFs excel at finding exact matches, they
are not flexible enough for common classes of HFT queries.
Since PSFs require a priori knowledge of the exact query, they
cannot support queries that look back an arbitrary amount of
time (e.g., between 10 and 20 minutes ago) or queries that de-
pend on the data distribution (e.g., records with latency above
the 99.99'" percentile). For these types of queries, FishStore
needs to scan irrelevant data, leading to high query latency.
In §2.1’s example, FishStore takes 40 seconds to return the
99.99'" percentile Redis requests over a 60-second window,
and extracting the packet traces takes another 84 seconds.

Custom scripts to post-process raw data written to files
are common in ad hoc performance debugging [12]. Such
scripts must scan the data and require engineers to write pars-
ing and analysis code. For the example in §2.1, this requires
50 LoC (as opposed to single-line queries in InfluxDB and
FishStore), and the script takes 35 seconds to run, using 8 GB
of host memory. Doing so slows down drill-down analysis, as
engineers must write a new script for every query.

3 Loom Overview

Loom is a new system to capture and query HFT on a single
host machine. It supports high-rate ingest and interactive,
low-latency queries while using limited resources.

Loom is designed for use as a library within a monitoring
daemon (Figure 4), which is a data collector like the Open-
Telemetry Collector [44] or FluentD [29]. The monitoring dae-
mon receives data from a variety of HFT sources, including
user-space applications instrumented by developers, kernel
probes (e.g., collecting eBPF events), and hardware events
(e.g., via perf stat). The monitoring daemon uses Loom’s
API to manage the data it receives. An engineer can then use
Loom to investigate an issue by:

(1) enabling sources of interest, which generate HFT that

the monitoring daemon pushes into Loom;

(2) adding indexes over these sources to speed up queries

across dimensions of interest (Loom always maintains
a time-dimension index by default);

515

F.Solleza, S. Li, W. Sun, R. Tang, M. Schwarzkopf, A. Crotty, D. Cohen, N. Tatbul, S. Zdonik

Host Machine

~N
Monitoring Daemon

Loom
L|brary

Storage

HFT Sources

push(...)

Ingress > queny(...)

.............

Figure 4: Loom is a library intended for use within a
monitoring daemon running locally on a host. HFT sources
send data to the monitoring daemon, which invokes Loom’s
API to store data. Querying clients (e.g., an engineer) use
Loom’s API to run queries over the data.

push(...)

@ Record Log

In-Memory Persistent
Timestamp Index

0000000000000/00000)

Chunk Index

Chunk R
L[Summary J™>(000000000000 -)

Figure 5: Loom’s architecture revolves around three logs
that span main memory and persistent storage. During ingest,
Loom timestamps each record and writes it to the record log.
Loom also updates a chunk summary for the current chunk
of records and eventually writes this summary to the chunk
index. It also records timestamps in a timestamp index that
indexes by time. For queries, Loom scans the indexes first,
then the matching chunks and the active chunk in memory.

\4

o Query
Operators

_J

(3) issuing queries over the data in Loom by composing
one or more query operators; and
(4) repeating this process of enabling/disabling sources,
indexes, and queries as necessary.
In practice, engineers will typically use a front-end (e.g., a
dashboard or CLI) to instantiate query operators with appro-
priate parameters (e.g., the source, time range).
Goals. Loom must support the high write throughput com-
mon in HFT while also offering interactive query latencies.
This requires indexes, which could be costly to maintain.
Loom must update its indexes without introducing probe
effect to the monitored application and without using exces-
sive resources. Finally, Loom must support common classes of
observability queries: time-range and time-based correlation
queries, histograms, aggregates (including holistic aggregates
like percentiles), and outlier detection.
Design Choices. We now use Figure 5 to explain Loom’s
architecture, components, and key design choices.

Loom: Efficient Capture and Querying of High-Frequency Telemetry

First, Loom organizes its storage as three append-only logs
that span main memory and persistent storage: the record log
stores the raw records (Figure 5, @), and the other two logs
store indexes over the record log. Loom breaks the record
log into fixed-size chunks that serve as the units of indexing
for the chunk index, which indexes by record values, while
the timestamp index indexes by time. Hybrid logs help Loom
support high write rates by buffering recent data in mem-
ory and amortizing disk writes through large I/O batches.
They perform no further data transformations (e.g., sorting,
compaction) after chunks are finalized and written.

Second, Loom uses the chunk index and timestamp index
as sparse, append-only indexes specialized to the classes of
queries common in HFT. The indexes are sparse because they
only identify the chunks that contain records of interest rather
than the specific records themselves. Each entry in the chunk
index is a chunk summary: a small, lightweight structure
that contains metadata about a chunk, incrementally updated
while the chunk accumulates records. When Loom finalizes
a chunk, it writes the chunk summary to the chunk index
(Figure 5,(2)). To build a coarse-grained index by time, Loom
also regularly stores a timestamp in the timestamp index (Fig-
ure 5,(3)). This design makes updating indexes cheap, as it
amortizes appending a new entry over a chunk of data rather
than for every individual record.

Queries use these indexes to skip irrelevant chunks but
might need to scan chunks that match in the index. Loom’s
hybrid logs for timestamps and indexes grow far more slowly
than the record log, so a substantially larger portion of these
index logs resides in memory to accelerate queries.

Third, Loom delays exposing under-construction chunk
summaries to queries. This reduces the CPU cost of writes,
since they no longer need to coordinate with reads (e.g., by
taking a lock or performing an atomic operation). This helps
Loom support high-rate ingest with limited CPU resources.
When serving queries, Loom scans the most recent records in
the record log that do not yet have a finalized chunk summary.
This is fast, since chunks are small (e.g., 64 KiB).

Fourth, Loom provides a limited set of query operators de-
signed to efficiently serve typical observability queries with-
out burdening host resources. All query operators have a
constant maximum memory footprint and run in a single
thread. This avoids contention between queries and on-host
production workloads. Loom’s query operators scan, filter,
and aggregate data, leveraging indexes where possible, and
can be composed. This API ensures that more complex oper-
ators (e.g., joins that may require significant memory) must
execute outside Loom (and ideally off-host).

Managing Historical Data. Loom is primarily designed for
ad hoc analysis of ingested HFT that can be discarded after use.
This scenario is common in practice (e.g., using temporary

516

SOSP ’25, October 13-16, 2025, Seoul, Republic of Korea

files to store data from perf) due to the sheer volume of HFT.
For use cases like post-mortem analysis that require long-term
storage, Loom complements existing solutions. Specifically,
it can capture HFT so that engineers can identify the data of
interest for long-term retention or copy data in bulk for com-
pression and/or long-term storage (e.g., HDFS [25], Kafka [26])
outside the critical path.

4 Design

At the heart of Loom’s design is a hybrid log abstraction that
spans main memory and persistent storage, as well as alayered
set of indexes geared toward typical observability queries.

4.1 Hybrid Log Abstraction

To support high ingest rates, Loom is built around an append-
only log data structure. Following standard design [3, 4, 7, 61],
each inserted record receives a unique address correspond-
ing to its physical offset in the log, making the lookup for a
specific record address O(1). To amortize memory and I/O
overhead, Loom interleaves records from many sources in the
record log, with records from the same source linked together
using these addresses as back-pointers to form a record chain.

Loom’s hybrid log abstraction is carefully designed to im-
pose minimal overhead on the write path while operating
within a fixed resource envelope. Loom must be highly CPU-
efficient in order to keep up with ingest rates of millions of
records per second without scaling out to many threads such
that the CPU load would contend with the application, risking
probe effect. Loom stages writes to each log in a fixed-size
(e.g., 64 MiB) block in memory. Therefore, in the common
case, writes in Loom take only a few hundred cycles. Once the
block fills up, Loom evicts its contents to persistent storage
in a background thread and switches writing into a second
block. Similarly, when the second block fills up, Loom evicts
it in the background and switches back to the first block, then
repeats this process.

4.2 Layered Sparse Indexes

Log-based systems excel at supporting high ingest rates but
often fall short when trying to provide interactive query la-
tencies. Loom turns to ideas from sparse indexes in database
systems [20, 42, 52, 65, 68] to efficiently skip large amounts
of irrelevant data during query processing without adding
significant overhead to the write path. Loom builds two light-
weight index structures on top of the record log: the chunk
index and the timestamp index.

Target Queries. Loom’s indexes target common classes of ob-
servability queries. Such queries usually focus on time ranges,
value ranges, aggregates, and data-dependent ranges (e.g.,
high percentiles). For example, correlation queries often re-
trieve data for the same time range from different sources,
while aggregates may count or average events during a time

SOSP ’25, October 13-16, 2025, Seoul, Republic of Korea

Kind Timestamp Event

1 Record 14 Latency: 10s

2 Record 17 Latency: 13s

3 Record 18 Latency: 9s

4 Internal 19 Chunk Summary
5 Record 25 Latency: 11s

6 Record 29 Latency: 23s

7 Internal 31 Chunk Summary
8 Record 32 Latency: 6s

9 Record 33 Latency: 12s

Figure 6: Running example. In rows 1-3, 5-6, and 8-9,
records from an HFT source that captures latency arrive
in Loom at the given timestamp. In rows 4 and 7, Loom
fills a fixed-size chunk with records. Timestamps increase
monotonically but are not consecutive (i.e., records from
other sources or internal events may exist in between events).

window. These also compose: a query might first retrieve data
above a data-dependent threshold (e.g., 99.99'" percentile) and
then query other sources for times around the timestamps of
the outlier records. Loom’s layered indexes seek to support
these query classes efficiently—although Loom can execute
other operations (e.g., substring search), it cannot leverage
any indexes and must scan data.

Running Example. To illustrate Loom’s indexes, consider
the example shown in Figure 6, which depicts a timeline of
events.Rows 1-3, 5-6, and 8-9 are records from an HFT source
that contain a latency value. Rows 4 and 7 are internal events
triggered by Loom filling a fixed-size chunk. Timestamps in-
crease monotonically but are not consecutive, as Loom may
have received records from other sources between the events.
Record Log. When Loom receives a record from a source, it
appends the record to the record log. Loom links records from
the same source using back-pointers, building a record chain
with each new record pointing to the previous record from
the same source. The record log in Figure 7 shows records
from the example in Figure 6 in green boxes and back-pointers
using dashed green lines. Rows 1 and 2 in Figure 6 correspond
to(T14, L10)and (T17, L13)in Figure 7, respectively. Loom
interleaves records from multiple sources in the record log.
For example, records from other sources can arrive between
timestamps 14 and 17, so Figure 7 indicates this with ellipses
(...)between the records.

Loom breaks the record log into fixed-size chunks (blue
boxes in the record log in Figure 7). It appends the new records
to the most recent active chunk (dashed box in Figure 7). The
record log contains only one active chunk, which becomes
immutable when it fills up (solid boxes in Figure 7).

Chunk Index. Loom maintains a summary of new records
appended to the active chunk. When Loom fills the chunk and
makes it immutable, it writes this summary into the chunk

517

F.Solleza, S. Li, W. Sun, R. Tang, M. Schwarzkopf, A. Crotty, D. Cohen, N. Tatbul, S. Zdonik

‘,""‘\‘-"‘:;;:-~\
Timestamp
\ \ \
A 4
Chunk (Chunk Summ.) (Chunk Summ.)
Index
])
4 P __»

Record
Log

V-

Figure 7: Loom stores chains of raw records from sources
(dotted arrows) in the record log, summaries for each chunk
in the chunk index, and timestamps for key events in the
timestamp index. Entries in the indexes have addresses to
relevant chunks or records in the record log (solid arrows).

Specified Bins Outlier Bins
Bin1 Bin 2 Bin0 Bin3
[10-15))| [15-20) <10 20=<
Chunk Summary Chunk Summary
*Bin0 *Bin1 Other *Bin1 *Bin3 Other
e Count: 1 * Count: 2 histograms’ e Count: 1 e Count: 1 histograms’
*TR:18-18 || * TR: 14-17 || bins ... *TR: 25-25 || * TR: 29-29 }]bins ...
T14
L10
v =ty

Figure 8: A detailed view of the chunk summaries in Figure 7.
Summaries contain statistics for records in a chunk that fall in
an index-specific histogram bin. Loom constructs a summary
for the active chunk, but the summary is not accessible to
queries. When the active chunk fills up, Loom writes the sum-
mary to the chunk index and makes it available for queries.

index. Figure 7 shows chunk summaries as filled blue boxes in
the chunk index. Loom uses the chunk index for two purposes:
answering queries in the record log without needing to read
the chunks and skipping irrelevant chunks. Figure 8 continues
using the example in Figure 6 to illustrate the chunk index.

The monitoring daemon (or a client calling into it) defines
an index for a source’s data using a histogram abstraction
(i-e., a set of bins for different value ranges). Since observabil-
ity queries typically care about outliers, Loom also adds two
outlier bins above and below the histogram. In Figure 8, the
histogram (in gray) for the source’s latency value has four
bins. The monitoring daemon defines bins 1 and 2, and Loom
adds bins 0 and 3.

Loom chooses this histogram abstraction due to its flexi-
bility. Histograms can serve value-range queries (e.g., “Does
a chunk have data in bins above a threshold?”), aggregates
(e.g., “count/sum/max/min of items in each bin”), and per-
centiles (e.g., “sum bins until the count exceeds X%”), as well
as exact-match queries (with match/no-match bins).

Loom: Efficient Capture and Querying of High-Frequency Telemetry

Specifying the histogram requires a priori knowledge com-
mon in observability. For example, a service-level objective
could specify the histogram’s maximum bin, or a historic
query latency distribution might inform a histogram for new
latencies. In some cases (e.g., percentages), the range of pos-
sible values is inherent. Unlike exact indexing approaches,
histograms require no knowledge of query parameters.

Chunk summaries contain statistics on the values that fall

within a histogram’s bins, including the maximum, minimum,
sum, timestamp range, and number of records. Figure 8 con-
tains two chunk summaries corresponding to the two filled
chunks in the record log. The first contains entries for bins
0 and 1, since its corresponding chunk contains records with
latencies that fall into these bins: the records at timestamps
14 and 17 fall into bin 1, and the record at timestamp 18 is an
outlier falling into bin 0. The second contains entries for bins 1
and 3 for the same reason. Chunk summaries have pointers to
their corresponding chunks in the record log. Just as chunks
in the record log contain records from different sources, the
chunk summary contains bins from other histograms with
records in the chunk.
Timestamp Index. Loom uses the timestamp index to keep
track of a coarse-grained timeline of events and their loca-
tions in the other logs. This helps queries quickly find relevant
records in the chunk index and record log based on time. The
timestamp index is always active and requires no specifica-
tion, so sources without a specified (or a poorly specified)
histogram still benefit from the timestamp index.

Loom writes timestamp index entries for two events: (i) pe-
riodic intervals when a source pushes a record, and (ii) when
Loom fills and indexes chunks in the record log. The entry con-
tains the timestamp and a pointer to the corresponding record
written or chunk summary created during that timestamp.

Figure 7 shows timestamp index entries for records that ar-

rived at timestamps 17, 25, and 32, as well as timestamps 19 and
31 corresponding to the creation of chunk summaries. Like
the record log, timestamp entries also have back-pointers to
previous timestamp entries from the same source or previous
chunk summary creation events.
Implications of Layering. The layered index design ensures
that each layer is more coarse-grained and smaller than the
layer below. Each chunk summary in the chunk index amor-
tizes many records in the record log, so index entries have
small storage overhead. The entries in the timestamp index
are infrequent and even smaller than chunk summaries, so
writing them adds little overhead.

For example, a 10-minute workload that produces 4.7M
records/second will create a record log of 253 GiB—the chunk
index is 3 GiB, and the timestamp index is 256 MiB. Loom
stores the indexes themselves in hybrid logs. Each hybrid log
uses two blocks of host memory (128 MiB), but alarger fraction

518

SOSP ’25, October 13-16, 2025, Seoul, Republic of Korea

of the indexes resides in memory, owing to their smaller size
(e.g., 50% of the timestamp index and 4% of the chunk index, as
opposed to 0.0004% of the record log). This speeds up queries
as index scans can happen on in-memory data.

4.3 Query Processing

To execute an observability query, Loom uses the timestamp
and chunk indexes to progressively reduce the amount of data
needed to answer the query. It does so in three steps. First,
Loom uses the timestamp index to identify the locations in
the chunk index and record log that might contain relevant
data. Then, it uses the chunk index to filter or partially aggre-
gate chunks. Finally, Loom reads only these chunks from the
record log necessary to calculate a complete result.

Loom has three query operators that follow this access
pattern: raw scan, indexed range scan, and indexed aggregate.
These operators can be composed into complex queries and
correlations. For example, a query to find all requests that
exceed the 99" percentile latency is a data-dependent value-
range query, where the value of interest—the 99" percentile
latency—is unknown. This query first uses the indexed aggre-
gate operator to find the 99 percentile latency, then finds
records above that value via an indexed range scan. Compos-
ing these operators also enables data-dependent time-range
correlation, as needed for the example in §2.1, where a miscon-
figured packet filter affects individual application requests.
The query in §2.1 uses the indexed aggregate and indexed scan
operators to retrieve the slowest request, then uses a raw scan
to retrieve packets in the temporal vicinity of this request.

The raw scan operator retrieves records from a source
that arrived in Loom during a specified time range, iterating
from the most to least recent record. The operator uses the
timestamp index to identify the address of the source’s most
recent record that falls within the time range. It then scans
the source’s record chain backward from that address until
finding a record prior to the requested time interval.

The indexed range scan operator retrieves records from a
source within a time range (e.g., the last two minutes) and an
indexed value within a value range (e.g., latency >50ms) using
a specified histogram index. Loom first uses the timestamp
index to find the chunk summaries in the chunk index that
fall within the time range. Then, it identifies the histogram
bins that contain the queried value range and scans the chunk
summaries to identify chunks in the record log that contain
relevant records. Finally, it scans these chunks to retrieve
the records. If the requested time range includes recent data,
Loom also scans the source’s records in the active chunk.

The indexed aggregate operator returns the value for ag-
gregates (e.g., min/mazx, percentile) for a time range using a
specified histogram index. To calculate distributive aggregates
(min, max, count, sum), the operator identifies the relevant

SOSP ’25, October 13-16, 2025, Seoul, Republic of Korea

F.Solleza, S. Li, W. Sun, R. Tang, M. Schwarzkopf, A. Crotty, D. Cohen, N. Tatbul, S. Zdonik

Schema Operators

define_source(source_id)
close_source(source_id)
define_index(source_id, index_func, bins)
close_index(index_id)

Define a new source.
Remove an existing source.
Define a new index.
Remove an existing index.

Data Ingest Operators
push(source_id, bytes)
sync(source_id)

Write records from a source with content bytes.
Make all records from a source visible to queriers.

Query Operators
raw_scan(source_id, t_range, func)

indexed_scan(source_id, index_id, t_range, v_range, func)

indexed_aggregate(source_id, index_id, t_range, method)

Scan a source in a time range.
Scan a source in a time and value range using an index.
Aggregate a source in a time range using specified method.

Figure 9: Loom API. A monitoring daemon uses this API to define sources and indexes, write data into those sources, and

perform complex queries using a set of query operators.

chunk summaries using the timestamp index. It then calcu-
lates a partial result using the bins in the chunk summaries
for which all records fall inside the query’s time range. Finally,
Loom scans chunks in the record log for which the chunk
summaries’ bins partially fall inside the query’s time range.

Holistic aggregates like percentile typically require look-
ing at all the data at once and sorting it [13]. To avoid this, the
operator treats bins in the chunk summaries as a cumulative
distribution function (CDF). First, it counts the number of
records that fall within each bin (accounting for partial time
range coverage by scanning chunks, as before). Examining
each bin’s count and summing them, the operator identifies
which bin contains the queried percentile. Finally, it scans
each chunk in the record log that contains records in that bin
to calculate the final result.

4.4 Coordination-Avoiding Queries

Query execution typically occurs concurrently with ingest.
While queries over historical data touch only immutable parts
of the hybrid logs, queries for very recent data need to access
the active in-memory block. In this case, Loom needs to coor-
dinate shared access between queries and the writer. A simple
solution would lock the in-memory block while the query
scans it, but this could block writes for an extended time. For
example, with 64 MiB blocks, scanning the block takes up to
60ms, during which 500k new records arrive.

Loom instead opts for an approach based on lock-free snap-
shots, where the writer has uncontended access to the hybrid
log’s in-memory blocks. The reader attempts to copy the por-
tion of the in-memory block that already contains data and
which the writer willno longer touch (i.e., it makes a snapshot).
This copy fails if the writer concurrently flushes the block to
storage. The reader detects this and reattempts to read the
data from persistent storage. This means queries never block
writes but also that a query can miss data. The next section
discusses the consistency implications of this choice.

519

4.5 Guarantees

Traditional database systems typically provide high-overhead
transactional guarantees unnecessary for HFT settings. To
meet its performance requirements, Loom relaxes some of
these classical guarantees in ways that remain consistent with
the unique needs of observability use cases.
Consistency. Loom linearizes queries and data ingestion at
the point of snapshot creation. All data that arrived before this
point is included in the query, and data that arrives afterward
is not. In the edge case where a query’s time range extends
into the future from Loom’s perspective, Loom’s snapshot can
become stale, since new records with timestamps within the
queried time range can arrive after Loom creates the snapshot.
We expect such queries to be rare.
Durability. Loom’s hybrid log avoids flushing records ac-
knowledged to clients to persistent storage immediately. While
doing so would ensure that the records survive if the machine
crashes, flushing imposes prohibitive overhead on the write
path, and delaying acknowledgment to the client induces
probe effect. Instead, Loom’s persistence serves to maintain
a fixed memory footprint by evicting older data. A machine
failure therefore causes Loom to lose the data in the active
in-memory block. Given the limited size of the in-memory
block (e.g., 64 MiB), the lost data represents only the absolute
freshest data (i.e., on the order of a few hundred milliseconds).
Since Loom runs in a monitoring daemon process, if a mon-
itored application (e.g., a key-value store) crashes, Loom can
be used to diagnose the crash using data it received from the
application. However, if the application and the monitoring
daemon process also crash (e.g., due to a kernel panic), then
Loom loses its in-memory data. Whole-host failures and fail-
ures of the monitoring daemon are outside of Loom’s scope.

5 Implementation

Our Loom prototype is a library that consists of 6k lines of
Rust. The library can integrate into a monitoring daemon

Loom: Efficient Capture and Querying of High-Frequency Telemetry

or directly into an application. We integrated Loom with
the OpenTelemetry Collector, a vendor-agnostic monitoring
daemon compatible with many applications [44]. This makes
Loom deployable as a drop-in replacement for existing teleme-
try backends. For our experiments, we also implemented a
bare-bones monitoring daemon in Rust (2k LoC) to remove
sources of overhead that might confound our evaluation.

5.1 Loom API

Figure 9 outlines Loom’s API. The monitoring daemon uses
this API to write data into Loom and execute queries.
Source and Index Definition. The monitoring daemon uses
the schema operators to define and close ad hoc sources and in-
dexes. A source has a unique ID and can have multiple indexes.
Loom indexes records from a source based on a user-defined
function (UDF) supplied on index definition and based on a
histogram describing the bins in the index.

This API supports exact-match indexes (e.g., “== "ERROR"”
or “> 10”) by specifying a singular bin and an index_func
that returns a value in that bin for matching records.
Ingest. The monitoring daemon uses push to write records
into Loom, specifying a source ID and the bytes to be written.
The daemon can call sync to force queryability for a source.

Querying. The monitoring daemon uses the raw_scan query
operator to apply a UDF (func) to every record in a source. The
indexed_scan provides the same functionality, but it lever-
ages Loom’s indexes to find records in a source that qualify
by time and value range. Finally, indexed_aggregate aggre-
gates records using Loom’s indexes, taking advantage of the
query access patterns described in the previous section.

5.2 Internal Timestamps

Loom uses the system’s monotonic clock to internally times-
tamp records and key events, so Loom’s timestamps represent
the arrival time of the records. With this internal timestamp
approach, Loom supports time-range queries efficiently with-
out the cost of sorting and indexing external timestamps that
can arrive out of order. The timestamp index coarsely indexes
data by internal timestamp, which allows Loom to efficiently
execute time-range queries for historical data by seeking back-
ward in the timestamp index until the requested time and then
scanning the record log from there.

If external timestamps are required (e.g., for true “happens-
after” relationships), Loom can support them because records
can carry their own timestamps in the data. Chunk summaries
can capture such external timestamps as indexed min/max
values, so Loom can efficiently retrieve matching records sim-
ilarly to how it serves aggregates. Alternatively, a query could
retrieve records within an over-approximated time range
(e.g., +/- 1 minute of the external time) that accounts for late-
arriving records. Either way, the client sorts the returned
records based on the embedded external timestamp.

520

SOSP ’25, October 13-16, 2025, Seoul, Republic of Korea

5.3 Changing Workloads

Loom’s API allows it to react to changing workloads. When
the workload changes, the monitoring daemon (or an engi-
neer) can close a source’s out-of-date index and define a new
one using a new histogram. Doing so has no impact on ingest
performance, as the new histogram is only active for newly
arriving data from the specified source (i.e., older data is not
re-indexed). Consequently, the new index only accelerates
queries on data that arrives after the index was defined.

5.4 Write Path

Loom carefully coordinates the sequence in which it writes to
the record log, chunk index, and timestamp index. To process
a new record, it first takes a timestamp for that record and
writes it to the record log. If it detects that the record is now in
anew chunk, it finalizes the chunk summary for the previous
chunk and writes that to the chunk index. It then writes this
event into the timestamp index. Finally, Loom makes the most
recent entries in the record log, chunk index, and timestamp
index queryable (in that order) using an atomic operation that
indicates to readers which portion of the in-memory blocks
is now immutable.

5.5 ReadPath

To avoid contention with the write path, a reader makes a
copy (i.e., a snapshot) of the in-memory blocks of each of the
logs up to a high watermark set by the writer (and updated
periodically and on sync calls) that denotes immutable data.
The reader then reads that snapshot. During the copy, how-
ever, the writer might flush and recycle a block, resulting in
an invalid copy. Loom employs a lock-free versioning mech-
anism to detect this event. Observing the event indicates that
the block was persisted to storage, so Loom continues reading
from persistent storage instead.

6 Evaluation

Our evaluation seeks to answer five key questions:
(1) Can Loom keep up with HFT’s high ingest rate while
also supporting interactive read queries? (§6.1)
(2) How do Loom’s ingest and query performance compare
to those of state-of-the-art alternatives? (§6.1)
(3) What probe effect does Loom induce compared to these
alternative approaches? (§6.2)
(4) How does Loom’s hybrid log perform relative to the
persistent data structures used in other systems? (§6.3)
(5) How do Loom’s indexes impact query latency? (§6.4)
We evaluate Loom and baseline systems using two case studies
based on real-world scenarios, as well as synthetic workloads
for drill-down experiments.
The Redis case study is the motivating workload from §2,
where an engineer observes occasional high latency in a Re-
dis deployment, ultimately caused by a misconfigured packet

SOSP ’25, October 13-16, 2025, Seoul, Republic of Korea

F.Solleza, S. Li, W. Sun, R. Tang, M. Schwarzkopf, A. Crotty, D. Cohen, N. Tatbul, S. Zdonik

Records
Phase | Data Collected ‘ per second ‘ size ‘ Queries ‘ Query Type
P1 Application req. latency 865k | 48B | 99.99' percentile latency records Scan over data
P2 | + OS syscall latency +27M | 48B | +99.99 percentile sendto latency records Correlation b/w records
P3 + Client TCP packets +3.5M | varies | Packets 5 sec. before/after slow app. requests Time-driven scan
a: Redis workload: scan and correlation queries.
Records
Phase | Data Collected ‘ per second ‘ size ‘ Queries ‘ Query Type
P1 RocksDB req. latency 47M | 48 B | Maximum, 99.99™ percentile request latency Aggregation
P2 + OS syscall latency +3.2M | 48 B | Maximum, 99.99'" percentile pread64 latency | Agg. on 3% of data
P3 + OS page cache events +39k | 60B | Count number of page cache events Agg.on 0.5% of data

(mm_filemap_add_to_page_cache)

b: RocksDB workload: aggregation queries.

Figure 10: End-to-end experiments cover scan, correlation, and aggregation queries at ingest rates that increase across three
phases in each experiment. Each phase’s throughput is additive (“+ N”) over the previous phase’s total ingest throughput.

Percentage of data dropped
InfluxDB | FishStore | Loom
P1 38.2%
Redis P2 86.3% 0% 0%
P3 90.1%
P1 87.9%
RocksDB P2 92.8% 0% 0%
P3 92.7%

Figure 11: End-to-end, InfluxDB falls behind and drops
38-97% of data. Loom and FishStore capture complete data.

filter. Its queries (Figure 10a) cover data-dependent range
scans for high-latency requests (Phase 1), correlation with
slow syscalls (Phase 2), and data-dependent, time-windowed
correlation with TCP packets (Phase 3).

The RocksDB case study is based on a real-world Linux per-
formance debugging example [5]. Figure 10b shows its queries,
which cover aggregations (max, 99.99'" percentile latency)
over HFT (Phase 1), aggregation on a subset of data collected
(Phase 2; 250k records/second, 3% of data), and aggregation
on very rare events (Phase 3; 0.5% of data).

Baselines. We evaluate Loom against InfluxDB 1.7 [30], a
widely used time series analytics database focused on expres-
sive queries, and FishStore [63], a state-of-the-art research
query engine designed for HFT-style observability data and
queries. We also evaluate Loom’s hybrid log directly against a
persistent B-tree in LMDB [22], LSM-tree-based RocksDB [49],
and FishStore’s log based on FasterLog [41].

Metrics. We measure the ingest throughput achieved by dif-
ferent systems (in records/second and MiB/second), as well
as the fraction of data dropped on ingest. For read queries, we
measure latency and the percentage of ground truth data miss-
ing from the result. Missing data occurs because the system
dropped it on ingest.

521

Setup. All experiments were conducted on a server running
Ubuntu 22.04 (Linux v5.15) with two Intel® Xeon® Gold 6150
CPUs (36 2.7 GHz), 377 GiB RAM, and a Samsung 2 TB NVM
Drive for persistent storage.

6.1 End-to-End Evaluation

We first evaluate end-to-end performance of Loom on the
Redis and RocksDB workloads, comparing against state-of-
the-art systems (InfluxDB and FishStore). In the experiment,
all systems continuously ingest data and concurrently serve
different queries (per Figure 10) in three phases.

InfluxDB drops 38-93% of data on ingest because it falls
behind (Figure 11). To make the query latency comparison
apples-to-apples, we also compare against an idealized In-
fluxDB with infinitely fast ingest by preloading the data before
issuing queries (“InfluxDB-idealized”). A good result for each
system would show no dropped data and interactive (i.e., <10
seconds) query latency. While low resource use is desirable,
the experiment lets all systems use unlimited resources.

Redis Workload. This workload is characterized by an ingest
rate increasing sharply across phases (865k records/second in
Phase 1 to 7M records/second in Phase 3) and data-dependent
scan queries to support correlations (Figure 10a).

Figure 12 shows the query latencies. In Phase 1 and Phase 2,
Loom is consistently 14-97x faster than InfluxDB-idealized
and 1.5-10x faster than FishStore. For InfluxDB, the Slow
Requests query is dominated by calculating the 99.99% per-
centile; the data fetch and scan take less than one second. In
FishStore, this query is faster in Phase 1 than in Phase 2 (8.7 vs.
20.3 seconds) because FishStore’s log interleaves data from all
sources, and FishStore must therefore read more data to find
the relevant records in Phase 2. Phase 2’s Slow sendto Execu-
tions query takes longer (184 seconds) in InfluxDB-idealized
than the Slow Requests query because the former reads and

Loom: Efficient Capture and Querying of High-Frequency Telemetry

SOSP ’25, October 13-16, 2025, Seoul, Republic of Korea

InfluxDB-idealized I FishStore I Loom

Slow Slow Slow sendto Maximum
— Requests Requests Execution Latency Request ~ TCP Packet Dump
72
= 50 - 50 50 ~
Q
=
& 2 > ©
5 - & ® < g
> o * 9 I =
5 : : - S
2 i i —
& 0 0 0

a: Phase 1 b: Phase 2 c: Phase 3

Figure 12: In Phases 1 and 2 of the Redis workload, Loom has 1.5-10% lower latency than FishStore and 14.4-97x lower latency
than (unrealistic) InfluxDB-idealized. For Phase 3, Loom outperforms FishStore by 2-46x and InfluxDB-idealized by 7-11x.

scans more data. In FishStore, both Phase 2 queries have simi-
lar latencies, as the log interleaves data from multiple sources
and queries have to scan data from other sources.

Phase 3 has two queries: Maximum Latency Request, which
benefits from indexing because it selects few application
requests, and TCP Packet Dump, which fetches the records
within a given 10-second window and must scan millions of
records even with a time index. Loom outperforms InfluxDB-
idealized by 7-11x and FishStore by 2—46x. InfluxDB-idealized
executes Maximum Latency Request relatively quickly (4.3 sec-
onds) due to its “tag” index. FishStore executes the same query
in a streaming fashion, so it avoids having to load all the data
into memory. Hence, the query latency (18.3 seconds) is com-
parable to the Phase 2 queries, even though FishStore must
traverse more data to find the relevant records. Loom is fastest
(0.4 seconds), as it scans mainly the chunk summaries in the
chunk index, in addition to two partial chunks at the start
and end of the 10-second window. TCP Packet Dump forces
InfluxDB into an expensive scan over its LSM-tree that results
in high latency (104.3 seconds), while FishStore—lacking a
time index—must scan the log until the relevant time window.
Loom finds the relevant chunks via its time index. Because
of the number of records scanned, the latency (14.2 seconds)
is still higher than for the other queries.

RocksDB Workload. This workload is characterized by high-
rate ingest (4.7-8M requests/second) and aggregation queries
in all phases, with increasingly selective queries (Figure 10b).

Figure 13 shows the query latencies. In Phase 1, Application
Max Latency benefits from indexes that track maximum val-
ues, while Application Tail Latency must compute a percentile
aggregation. InfluxDB-idealized runs these queries in 23.1 and
380 seconds, as InfluxDB’s indexes do not support percentile
aggregations, and the tail latency query aggregates over mil-
lions of records. This changes in Phase 2, where pread64 Max
Latency and pread64 Tail Latency queries need to aggregate
over only 3% of the data. Here, InfluxDB’s “tag” index allows it
to efficiently find subsets of data and scan them to calculate the

522

percentiles (23-26 seconds). FishStore needs to scan records
for all queries, resulting in slow queries (48 and 38 seconds).
Since FishStore loads all relevant records into memory, it can
calculate the max and percentiles simultaneously. In Phase 1,
the Application Tail Latency query is faster in FishStore than
InfluxDB because FishStore retrieves records from its PSF
index. FishStore’s PSF builds a back-pointer chain of records
that match exactly a provided predicate, so scans on a pred-
icate can quickly access relevant records in FishStore’s log.
This changes in Phase 2, where InfluxDB’s indexes are more
effective in summarizing and skipping to small portions of
data that FishStore must scan. Loom serves all four maximum
and tail latency queries largely from chunk summaries, so
they are fast (0.5-3.2 seconds).

In Phase 3, all systems benefit from indexing. The “tag”
index in InfluxDB, which is most effective on narrow subsets
of data, helps the Page Cache Count query, which touches
only 0.5% of the data. In FishStore, we installed a PSF that se-
lects only data from the page cache event source, so FishStore
quickly retrieves the data. Finally, Loom uses counts stored
in chunk summaries to answer the query.

Discussion. This experiment shows that Loom and FishStore
have the ingest performance required to keep up with HFT,
while InfluxDB struggles with high-rate ingest. However, Fish-
Store’s PSF indexes are too restrictive and cannot accelerate
important classes of HFT queries. InfluxDB’s indexes (“tag” in-
dex and value indexes) accelerate distributive aggregates (e.g.,
maximum) and value-range queries, but not holistic aggre-
gates (e.g., percentiles). Loom’s hybrid log and layered indexes
help it maintain high ingest throughput while simultaneously
achieving interactive query latency.

In this experiment, FishStore and InfluxDB use substan-
tially more CPU resources than Loom: FishStore has eight
index threads and InfluxDB uses 16 ingest threads, in addition
to any background resources these systems require. Loom
uses only one CPU but still keeps up with ingest, also having
the lowest overall query latency.

SOSP ’25, October 13-16, 2025, Seoul, Republic of Korea

F.Solleza, S. Li, W. Sun, R. Tang, M. Schwarzkopf, A. Crotty, D. Cohen, N. Tatbul, S. Zdonik

InfluxDB-idealized I FishStore I Loom

Application Application pread64 pread64 Page Cache
— Max Latency Tail Latency Max Latency Tail Latency Event Count
< 504 50 - 50
2 o

[
k . 2s |
2 n N o A a2 wn
(] =) N o — — [q\] —
5 0 0- 0 ——
a: Phase 1 b: Phase 2 c: Phase 3

Figure 13: In Phase 1 and 2 of the RocksDB workload, Loom runs aggregate queries (i.e., max and percentile) 7-160x faster
than (unrealistic) InfluxDB-idealized and 8-17X faster than FishStore. In Phase 3, all systems benefit from indexing.

[\
o

14.08%

—_
()

4.10%

Probe Effect

0
N

D A b A\
\o““@?\s‘ﬁ\s‘o‘;xs‘&ﬁ‘o‘e pa ©

oo™

Figure 14: Probe effect for RocksDB Phase 3: InfluxDB’s
heavy-weight indexing has 14% probe effect, while FishStore
with indexes (-I) sees 9.9% probe effect proportional to the
number of PSFs installed. FishStore without indexes (-N) still
has 6.6% probe effect. Loom has similar probe effect (4.83%)
to capturing data to a raw, unindexed file (4.10%).

6.2 ProbeEffect

We now evaluate what probe effect Loom and state-of-the-art
systems impose on the application being monitored. We run
Phase 3 of the RocksDB workload (~8M records/second), in-
gesting the data without any concurrent queries, and measure
probe effect (i.e., the decline in performance) on RocksDB’s
application-level request throughput. Without telemetry col-
lection, RocksDB achieves 5.06M operations/second.

We consider telemetry collection into (i) InfluxDB; (ii) Fish-
Store with indexing (FishStore-1, 3 PSFs); (iii) FishStore with-
out indexing (FishStore-N); (iv) writing the data to a raw file
(as e.g., perf record would); and (v) Loom. A good result
would show that RocksDB sees high throughput and incurs
low probe effect from telemetry collection. Probe effect above
7% is often considered problematic in industry [54].

Figure 14 shows the results. InfluxDB has high probe effect
(14.1%, 3.82M operations/second) because its heavy-weight
indexing strategy consumes significant resources. Although
more lightweight than InfluxDB, FishStore’s probe effect in-
creases with the number of PSF indexes added. FishStore
with indexing has 1.5 higher probe effect (9.9%, 4.19M op-
erations/second) than without indexing (6.6%, 4.37M oper-
ations/second). Writing to a raw file, which represents the
bare minimum overhead for telemetry collection, incurs 4.1%

523

© LMDB (1 CPU)

2 20 H I FishStore (1 CPU)
g~ P FishStore (8 CPUs)
=9 B RocksDB (1 CPU)
= 5 10 A RocksDB (8 CPUs)
p= 3 B Loom (I CPU)

~

O -
Q
2 1000 A
m
= 500 A

O -

8 64 256 1024
Record size (bytes)

Figure 15: Loom achieves the highest ingest throughput
with small records at high frequency and is competitive for
large records, even when FishStore uses 3x and RocksDB
uses 8X as many CPU cores.

probe effect (4.87M operations/second). Loom’s 4.83% probe
effect (4.74M operations/second) comes closest to the raw
file baseline. This demonstrates that Loom avoids imposing
unacceptable probe effect on applications.

6.3 Data Structure Ingest Scaling

We now evaluate Loom’s hybrid log by comparing it to alterna-
tive data structures for storage organization. As baselines, we
consider (i) a persistent B-tree (LMDB); (ii) LSM-tree-based
storage (RocksDB); and (iii) a log-structured store (FishStore).
We benchmark with an ingest-only workload consisting of
records whose size varies from 8 to 1024 bytes; this synthetic
benchmark is more demanding than the workload in §6.2.
Observability workloads are dominated by small records (e.g.,
48-60 B for our end-to-end workloads), which makes high
performance on small writes critical.

By design, FishStore and RocksDB scale by accepting writes
from many ingest threads, while LMDB and Loom are de-
signed to accept writes from one ingest thread. Hence, we run
the experiment (i) with FishStore and RocksDB set to accept

Loom: Efficient Capture and Querying of High-Frequency Telemetry

writes from a single ingest thread, comparing under fixed
resources; and (i) with number of concurrent ingest threads
scaled until the baseline systems match Loom’s performance
(i-e., eight CPUs for RocksDB and three for FishStore). We
impose no restriction on the number of background threads
or CPUs each system uses to process writes. For example,
RocksDB with one ingest thread still has its internal paral-
lelism set to the number of CPUs (72 cores). For RocksDB, we
switch off its write-ahead log, as it slows down writes. For
LMDB, we write data in APPEND mode designed for bulk loads
of sequential data, the fastest ingest method in LMDB.

Figure 15 shows the results. Across the board, LMDB’s B-
tree construction means it cannot match Loom’s performance
rooted in fast, log-based storage. When writing 8-byte and
64-byte records, Loom also outperforms FishStore’s log and
RocksDB’s LSM-tree. This is because writing small records
is a CPU-bound task: write throughput is far from saturat-
ing I/O bandwidth. LSM-trees/RocksDB in particular suffer
due to the CPU cost of merging. As the record size increases,
this advantage for Loom shrinks, as FishStore and RocksDB
amortize their CPU costs over larger writes, and multiple
writer threads can saturate SSD bandwidth better. At 256-byte
records, FishStore with three CPUs matches Loom. RocksDB
with eight CPUs only (marginally) outperforms Loom at 1024-
byte records, writing 1.1M records/second. Similarly, 1024-
byte records amortize FishStore’s CPU costs over the shared
log, so it performs best, writing 1.4M records/second.

Loom’s large block flushes effectively use the disk band-
width under limited resources. Notably, while achieving high
performance, RocksDB with eight CPUs and FishStore with
three CPUs have significant probe effect, reducing co-located
application performance by 29% and 19%, respectively. By
contrast, Loom has only 2% probe effect.

6.4 Impactof Indexes

Next, we consider the impact of Loom’s indexes on query
latency. We perform an ablation study in which we run Loom
(i) without any indexes; (ii) with only the timestamp index;
(iii) with only the chunk index; and (iv) with both indexes
(the default). The experiment runs Phase 2 of the RocksDB
workload. We vary the lookback time (i.e., how far in the past
the queried data starts) and query for high-latency syscalls
within a 120-second window. A good result would show that
the indexes reduce query latency.

Figure 16 shows the results. Without indexes, the query
takes hundreds of seconds, and latency increases linearly
with lookback distance. Adding a timestamp index removes
this growth proportional to lookback, as the timestamp in-
dex helps Loom scan the hybrid log starting from the right
address. However, the query still takes 150-160 seconds, as
it must scan all data within the 120-second window. Com-
bining timestamp and chunk indexes achieves both benefits

524

SOSP ’25, October 13-16, 2025, Seoul, Republic of Korea

+- No index ~A- Chunk index only
--¥-- Timestamp index only —@— Both indexes
— 5001) -’
2 PR
o2 25098 .
g g 20 7 T A
O % ~ /A _____
. 0 t—e @ L]
T T T T
20 60 120 300
Lookback (s)

Figure 16: Loom’s time index is effective at reducing query
latency as a function of how far a query looks back in time;
the range index reduces the amount of data scanned within
the query window (120 seconds). These benefits compose.

@ 151 —@— Full Index
‘E; é\. 10 4 —>%— FishStore Exact
Oz 5- o
—
O T T T T
60 120 300 600
Lookback (s)

Figure 17: For exact-match queries, FishStore outperforms
Loom for short lookbacks, but Loom outperforms FishStore
for longer lookbacks. This is because FishStore lacks range
or percentile indexes.

simultaneously, reducing query latency below five seconds
independent of lookback duration. This shows that Loom’s
indexes are effective and necessary for good performance.

Unlike Loom’s indexes, FishStore’s indexes are exact in-
dexes optimized for exact matches on point lookups (e.g., a
specific error ID) and range queries (e.g., all records with a
value greater than 50). Although Loom’s histogram-based
indexes are more flexible, they can also mimic the behavior
of exact indexes by treating them as a histogram with a single
bin. We now compare the performance of Loom’s indexes and
FishStore’s exact indexes when Loom emulates exact indexing
via this approach. The setup is the same as before (RocksDB
workload, Phase 2), and we again vary the lookback time from
60 to 600 seconds.

Figure 17 shows the results. FishStore has lower query la-
tency than Loom when querying very recent data (e.g., 2.0
vs. 4.5 seconds at a 60-second lookback). This is because Fish-
Store’s indexes identify exactly the records queried while
Loom needs to scan some irrelevant data because of its coarse-
grained histogram index. But as lookback time increases, Fish-
Store’s query latency increases. This happens because Fish-
Store lacks a time index and must scan all historic data that
matches in the index. Beyond 120 seconds, Loom outperforms
FishStore for this workload.

SOSP ’25, October 13-16, 2025, Seoul, Republic of Korea

7 Related Work

Log-based systems support high-rate ingest and simple
record retrieval using log addresses. They fall into two cat-
egories. First, shared log abstractions exist for different do-
mains, such as distributed transactions and replicated state
machines (e.g., CORFU [3], Tango[4], Scalog [10], vCorfu[61],
FuzzyLog [23], LazyLog [24]). Second, ingest-oriented storage
systems are more directly applicable to HFT, such as Faster-
Log (7, 41] and FishStore [63]. FishStore builds on FasterLog
and indexes data using user-defined PSFs. While these sys-
tems can keep up with write rates required for HFT, they do so
at the expense of query performance, sacrificing indexing en-
tirely (FasterLog) or sacrificing too much indexing expressiv-
ity (FishStore). By contrast, Loom’s approach sacrifices index-
ing specificity, opting for sparse indexes to maintain high write
throughput while supporting a broad class of HFT queries.
Key-value stores like Berkeley DB [43], LevelDB [21], Rocks-
DB [49], PebblesDB [47], WiredTiger [62], and LMDB [22]
are often used to handle high-rate workloads. They use tree-
based indexes with multiple levels of compaction or tree-
construction costs, thereby suffering from write amplifica-
tion [47]. These techniques introduce too much overhead for
HFT, which results in insufficient ingest performance.
Read-optimized time series databases like InfluxDB [30],
OpenTSDB [32], and TimescaleDB [37] store and query time-
structured data, but these systems prioritize read performance
and use high-overhead indexes (e.g., B-trees) that make it dif-
ficult to achieve the ingest rates needed for HFT [6, 19].
Specialized tools like CLP [50], NanoLog [64], uSlope [59],
and LogGrep [60], or systems tracing tools like perf [9] and
ETW [40] store one type of data (e.g., logs or system events)
in a specialized way. It takes significant engineering effort
to query data stored by these tools in conjunction with data
from other sources of HFT. Systems like Prometheus [34],
Jaeger [31], or others [44, 69] are insufficient, as they only
cover specific types of data (e.g., traces) and can only keep up
with the ingest rate of heavily sampled events, not with HFT
needed for drill-down analysis. By contrast, Loom provides
a storage and query engine for arbitrary sources of HFT.
Distributed tracing and diagnosis tools like Fay [12],
Canopy [17], Hindsight [66], and Helios [46] aggregate traces
from distributed applications to identify and diagnose is-
sues. These systems give engineers a broad view of their
deployment, aggregating or sampling data and spreading
work across many nodes. Unlike Loom, they are not designed
to support high-rate data for drill downs on a single machine.
Bespoke tools are also sometimes used for HFT. For example,
Google uses specialized tools to correlate statistics from dif-
ferent layers in the stack for characterizing their services [2].
Loom is a generic tool for drilling down and correlating HFT
from multiple sources to discover rare events.

525

F.Solleza, S. Li, W. Sun, R. Tang, M. Schwarzkopf, A. Crotty, D. Cohen, N. Tatbul, S. Zdonik

8 Discussion and Opportunities

Distributed Environments. Loom is designed to run on a
single node. However, in modern, large-scale systems, corre-
lated events can happen across multiple (potentially many)
nodes. With some additional infrastructure built on top, Loom
could extend to the distributed case.

Specifically, a coordinator could execute correlations or

aggregations on HFT by contacting the Loom instances in the
relevant hosts. To respond to a query, each node would collect
the necessary HFT and calculate intermediate results on-host.
The coordinator would then aggregate these intermediate
results into the final result.
Tracing with Kernel Extensions. Kernel extension pro-
grams written in eBPF are a key source of HFT. eBPF loads
programs into an OS kernel, verifies that these programs are
safe to run, and then runs them in a privileged context.

Several front-ends (e.g., BPFTrace [27], Ply [33], Pixie [45],
BQL [56]) make it simpler for engineers to write, load, and
run eBPF programs for observability. These front-ends alone
cannot efficiently collect the HFT to which they have access,
so they follow a streaming aggregation model whereby they
summarize and then immediately discard events as they occur.
But in this model, an engineer cannot further investigate a
specific event because the data for that event was discarded.
Deploying Loom as a sink for these front-ends would solve
this problem because it can absorb high-rate HFT even while
the front-end summarizes it.

9 Conclusion

This paper introduced Loom, a new system for capturing and
querying HFT. Loom keeps up with the high ingest rates of
HFT while simultaneously serving a broad class of parameter-
ized observability queries with interactive latency. The key to
Loom’s performance is its combination of lightweight, sparse
indexes and fast log-based storage.

Loom achieves higher ingest throughput, drops less data,
and sees lower query latency than state-of-the-art systems,
all with lower resource utilization and little probe effect.

Loom is open-source software and its code is available at:

https://github.com/fsolleza/loom
Acknowledgments

We thank Sam Thomas, Justus Adam, and the members of the
ETOS and Systems groups at Brown for their helpful feed-
back on drafts of this paper. Ugur Cetintemel and Suman
Karumuri also gave feedback on an early version of Loom.
Feedback from the anonymous reviewers and Jonathan Mace,
our shepherd, greatly improved the paper.

This work was supported by a grant from Intel’s Corporate
Research Council, a Microsoft Grant for Customer Experience
Innovation, and a Google Research Scholar Award.

https://github.com/fsolleza/loom

Loom: Efficient Capture and Querying of High-Frequency Telemetry

References

(1]

[10]

[11]

Jaeger Github issue #2693. Unstable performance Jaeger
UI (query) and lacking insights on the ‘why’. URL: https:
//github.com/jaegertracing/jaeger/issues/2693 (visited
on 08/07/2025).

Dan Ardelean, Amer Diwan, and Chandra Erdman.
“Performance analysis of cloud applications”. In: Pro-
ceedings of the 15" USENIX Symposium on Networked

Systems Design and Implementation (NSDI). 2018, pages 405—

417.

Mahesh Balakrishnan, Dahlia Malkhi, Vijayan Prab-
hakaran, Ted Wobbler, Michael Wei, and John D Davis.
“CORFU: A shared log design for flash clusters”. In: Pro-
ceedings of the 9" USENIX Symposium on Networked
Systems Design and Implementation (NSDI). 2012, pages 1-
14.

Mahesh Balakrishnan, Dahlia Malkhi, Ted Wobber,
Ming Wu, Vijayan Prabhakaran, Michael Wei, John
D Davis, Sriram Rao, Tao Zou, and Aviad Zuck. “Tango:
Distributed data structures over a shared log”. In: Pro-
ceedings of the 24" ACM Symposium on Operating Sys-
tems Principles (SOSP). 2013, pages 325-340.

Brendan Gregg. Linux Page Cache Hit Ratio. 2014. URL:
https://brendangregg.com/blog/2014-12-31/linux-
page-cache-hit-ratio.html (visited on 10/09/2024).

Hokeun Cha, Xiangpeng Hao, Tianzheng Wang, Huanchen

Zhang, Aditya Akella, and Xiangyao Yu. “Blink-hash:
An Adaptive Hybrid Index for In-Memory Time-Series
Databases”. In: Proceedings of the 49" International
Conference on Very Large Data Bases (VLDB). 2023,
pages 1235-12438.

Badrish Chandramouli, Guna Prasaad, Donald Koss-
mann, Justin Levandoski, James Hunter, and Mike Bar-
nett. “Faster: A concurrent key-value store with in-
place updates”. In: Proceedings of the 2018 International
Conference on the Management of Data (SIGMOD). 2018,
pages 275-290.

Liz Fong-Jones Charity Majors and George Miranda.
Observability Engineering, Achieving Production Excel-
lence. O’Reilly Media, 2022.

Linux perf wiki Contributors. perf: Linux Profiling with
Performance Counters. URL: https://perf.wiki.kernel.
org/index.php/Main_Page (visited on 10/09/2024).
Cong Ding, David Chu, Evan Zhao, Xiang Li, Lorenzo
Alvisi, and Robbert Van Renesse. “Scalog: Seamless
reconfiguration and total order in a scalable shared
log”. In: Proceedings of the 17" USENIX Symposium on
Networked Systems Design and Implementation (NSDI).
2020, pages 325-338.

Jaana Dogan. Want to Debug Latency? 2018. URL: https:
//rakyll . medium . com / want - to - debug - latency -

526

(12]

[15]

(16]

(19]

(20]

[21]

SOSP ’25, October 13-16, 2025, Seoul, Republic of Korea

7aa48ecbe8f7 (visited on 10/09/2024).

Ulfar Erlingsson, Marcus Peinado, Simon Peter, Mihai
Budiu, and Gloria Mainar-Ruiz. “Fay: Extensible dis-
tributed tracing from kernels to clusters”. In: Proceed-
ings of the 23" ACM Symposium on Operating Systems
Priciples (SOSP). 2011, pages 311-326.

Joseph M Hellerstein and Michael Stonebraker. Read-
ings in database systems. MIT press, 2005.

Alexey Ivanov. Optimizing web servers for high through-
put and low latency — dropbox.tech. 2017. URL: https:
/ / dropbox . tech / infrastructure / optimizing - web -
servers-for-high-throughput-and-low-latency (vis-
ited on 10/09/2024).

Chris Jones. Effective Troubleshooting. URL: https://sre.
google/sre-book/effective-troubleshooting (visited on
10/09/2024).

Theo Julienne. Debugging network stalls on Kubernetes
— github.blog. 2019. URL: https://github.blog/2019-11-
21-debugging-network-stalls-on-kubernetes/ (visited
on 10/09/2024).

Jonathan Kaldor, Jonathan Mace, Michal Bejda, Edi-
son Gao, Wiktor Kuropatwa, Joe O’Neill, Kian Win
Ong, Bill Schaller, Pingjia Shan, Brendan Viscomi, et
al. “Canopy: An End-to-End Performance Tracing And
Analysis System”. In: Proceedings of the 26" ACM Sym-
posium on Operating Systems Priciples (SOSP). 2017,
pages 34-50.

Suman Karumuri, Franco Solleza, Stan Zdonik, and
Nesime Tatbul. “Towards observability data manage-
ment at scale”. In: ACM SIGMOD Record 49.4 (2021),
pages 18-23.

Abdelouahab Khelifati, Mourad Khayati, Anton Dignos,
Djellel Difallah, and Philippe Cudré-Mauroux. “TSM-
bench: Benchmarking time series database systems for
monitoring applications”. In: Proceedings of the 49" In-
ternational Conference on Very Large Data Bases (VLDB).
2023, pages 3363-3376.

Harald Lang, Tobias Mithlbauer, Florian Funke, Pe-
ter A. Boncz, Thomas Neumann, and Alfons Kemper.
“Data Blocks: Hybrid OLTP and OLAP on Compressed
Storage using both Vectorization and Compilation”. In:
Proceedings of the 2016 International Conference on the
Management of Data (SIGMOD). 2016, pages 311-326.
LevelDB maintainers. LevelDB. URL: https://github.
com/google/leveldb (visited on 10/09/2024).

LMDB maintainers. LMDB. URL: https://www.symas.
com/mdb/ (visited on 10/09/2024).

Joshua Lockerman, Jose M. Faleiro, Juno Kim, Soham
Sankaran, Daniel J. Abadi, James Aspnes, Siddhartha
Sen, and Mahesh Balakrishnan. “The FuzzyLog: A Par-
tially Ordered Shared Log”. In: Proceedings of the 13

https://github.com/jaegertracing/jaeger/issues/2693
https://github.com/jaegertracing/jaeger/issues/2693
https://brendangregg.com/blog/2014-12-31/linux-page-cache-hit-ratio.html
https://brendangregg.com/blog/2014-12-31/linux-page-cache-hit-ratio.html
https://perf.wiki.kernel.org/index.php/Main_Page
https://perf.wiki.kernel.org/index.php/Main_Page
https://rakyll.medium.com/want-to-debug-latency-7aa48ecbe8f7
https://rakyll.medium.com/want-to-debug-latency-7aa48ecbe8f7
https://rakyll.medium.com/want-to-debug-latency-7aa48ecbe8f7
https://dropbox.tech/infrastructure/optimizing-web-servers-for-high-throughput-and-low-latency
https://dropbox.tech/infrastructure/optimizing-web-servers-for-high-throughput-and-low-latency
https://dropbox.tech/infrastructure/optimizing-web-servers-for-high-throughput-and-low-latency
https://sre.google/sre-book/effective-troubleshooting
https://sre.google/sre-book/effective-troubleshooting
https://github.blog/2019-11-21-debugging-network-stalls-on-kubernetes/
https://github.blog/2019-11-21-debugging-network-stalls-on-kubernetes/
https://github.com/google/leveldb
https://github.com/google/leveldb
https://www.symas.com/mdb/
https://www.symas.com/mdb/

SOSP ’25, October 13-16, 2025, Seoul, Republic of Korea

[39]

[40]

USENIX Symposium on Operating Systems Design and
Implementation (OSDI). 2018, pages 357-372.

Xuhao Luo, Shreesha G Bhat, Jiyu Hu, Ramnatthan
Alagappan, and Aishwarya Ganesan. “LazyLog: A New
Shared Log Abstraction for Low-Latency Applications”.
In: Proceedings of the 30" ACM Symposium on Operating
Systems Principles (SOSP). 2024, pages 296-312.
Apache Hadoop maintainers. Apache Hadoop. URL: https:
//hadoop.apache.org (visited on 09/01/2025).

Apache Kafka maintainers. Apache Kafka. UrL: https:
//kafka.apache.org (visited on 09/01/2025).

BPFTrace maintainers. bpftrace. 2024. URL: https://
github.com/bpftrace/bpftrace (visited on 01/04/2025).
Elastic maintainers. Slow log. 2025. URL: https://www.
elastic.co/guide/en/ elasticsearch/reference/8.18/
index-modules-slowlog.html (visited on 08/07/2025).
FluentD maintainers. FluentD. URL: https://github.com/
fluent/fluentd (visited on 10/09/2024).

InfluxDB maintainers. InfluxDB. URL: https://www.
influxdata.com/ (visited on 10/09/2024).

Jaeger maintainers. Jaeger. URL: https://www.jaegertracing.

io (visited on 10/09/2024).

OpenTSDB maintainers. OpenTSDB. URL: http://opentsdb.
net (visited on 10/09/2024).

Ply maintainers. Ply, a dynamic tracer for Linux. 2024.
URL: https://github.com/wkz/ply (visited on 01/04/2025).
Prometheus maintainers. Prometheus Documentation.
URL: https://prometheus.io/docs/concepts/metric_
types/ (visited on 10/09/2024).

Prometheus maintainers. Prometheus Queries are very
slow. urL: https://github.com/prometheus/prometheus/
issues/3234 (visited on 08/07/2025).

Redis maintainers. Diagnosing latency issues — redis.io.
2024. UrL: https://redis.io/docs/latest/operate/oss_
and_stack/management/optimization/latency/ (vis-
ited on 10/09/2024).

TimescaleDB maintainers. TimescaleDB. URL: https:
/Iwww.timescale.com/ (visited on 10/09/2024).

Marek Majkowski. The story of one latency spike —
blog.cloudflare.com. 2015. URL: https://blog.cloudflare.
com/the- story - of - one - latency - spike/ (visited on
10/09/2024).

Morgan McLean. Introducing Stackdriver APM and Stack-
driver Profiler. 2018. URL: https://cloud.google.com/
blog/products/gep/introducing - stackdriver - apm -
and-stackdriver-profiler-distributed-tracing-debugging-
and - profiling - for - your - performance - sensitive -
applications (visited on 10/09/2024).

Microsoft. Event Tracing. 2025. URL: https://learn.
microsoft.com/en-us/windows/win32/etw/event-
tracing-portal (visited on 08/07/2025).

527

[41]

(42]

(44]

(45]

[46]

(48]

(49]

[50]

(51]

[52]

F.Solleza, S. Li, W. Sun, R. Tang, M. Schwarzkopf, A. Crotty, D. Cohen, N. Tatbul, S. Zdonik

Microsoft. FasterLog. URL: https://microsoft.github.io/
FASTER/docs/fasterlog-basics (visited on 10/09/2024).
Guido Moerkotte. “Small Materialized Aggregates: A
Light Weight Index Structure for Data Warehousing”.
In: Proceedings of the 24" International Conference on
Very Large Data Bases (VLDB). 1998, pages 476-487.
Michael A. Olson, Keith Bostic, and Margo L. Seltzer.
“Berkeley DB”. In: Proceedings of the 1999 USENIX An-
nual Technical Conference (ATC). 1999, pages 183-191.
OpenTelemetry maintainers. OpenTelemetry Collector.
URL: https://opentelemetry.io/docs/collector (visited
on 10/09/2024).

Pixie. How Pixie uses eBPF. 2024. URL: https://docs.px.
dev/about-pixie/pixie-ebpf (visited on 01/04/2025).
Rahul Potharaju, Terry Kim, Wentao Wu, Vidip Acharya,
Steve Suh, Andrew Fogarty, Apoorve Dave, Sinduja
Ramanujam, Tomas Talius, Lev Novik, and Raghu Ra-
makrishnan. “Helios: hyperscale indexing for the cloud
& edge”. In: Proceedings of the 46'" International Confer-
enceon Very Large Data Bases (VLDB). 2020, pages 3231
3244.

Pandian Raju, Rohan Kadekodi, Vijay Chidambaram,
and Ittai Abraham. “PebblesDB: Building key-value
stores using fragmented log-structured merge trees”.
In: Proceedings of the 26" ACM Symposium on Operating
Systems Principles (SOSP). 2017, pages 497-514.

Jian Reis. Lessons from the trenches: Episode 2 - Replicat-
ing bugs in production is hard (without Snaplet). 2023.
URL: https://www.snaplet.dev/post/lessons-from-the-
trenches-when-the-bugs-are-real-but-the-data-isnt
(visited on 10/09/2024).

RocksDB maintainers. RocksDB. URL: https://rocksdb.
org/ (visited on 10/09/2024).

Kirk Rodrigues, Yu Luo, and Ding Yuan. “CLP: Effi-
cient and Scalable Search on Compressed Text Logs”.
In: Proceedings of the 15" USENIX Symposium on Oper-
ating Systems Design and Implementation (OSDI). 2021,
pages 183-198.

Robert Schulze, Tom Schreiber, Ilya Yatsishin, Ryadh
Dahimene, and Alexey Milovidov. “ClickHouse: Light-
ning Fast Analytics for Everyone”. In: Proceedings of
the 50™ International Conference on Very Large Data
Bases (VLDB). 2024, pages 3731-3744.

Lefteris Sidirourgos and Martin L. Kersten. “Column
imprints: a secondary index structure”. In: Proceedings
of the 2013 International Conference on the Management
of Data (SIGMOD). 2013, pages 893-904.

Richard Sites. Understanding Software Dynamics. Addi-
son Wesley, 2021.

Richard Sites. Data Center Computers: Modern Chal-
lenges in CPU Design. URL: https://youtu.be/QBu2Ae8-

https://hadoop.apache.org
https://hadoop.apache.org
https://kafka.apache.org
https://kafka.apache.org
https://github.com/bpftrace/bpftrace
https://github.com/bpftrace/bpftrace
https://www.elastic.co/guide/en/elasticsearch/reference/8.18/index-modules-slowlog.html
https://www.elastic.co/guide/en/elasticsearch/reference/8.18/index-modules-slowlog.html
https://www.elastic.co/guide/en/elasticsearch/reference/8.18/index-modules-slowlog.html
https://github.com/fluent/fluentd
https://github.com/fluent/fluentd
https://www.influxdata.com/
https://www.influxdata.com/
https://www.jaegertracing.io
https://www.jaegertracing.io
http://opentsdb.net
http://opentsdb.net
https://github.com/wkz/ply
https://prometheus.io/docs/concepts/metric_types/
https://prometheus.io/docs/concepts/metric_types/
https://github.com/prometheus/prometheus/issues/3234
https://github.com/prometheus/prometheus/issues/3234
https://redis.io/docs/latest/operate/oss_and_stack/management/optimization/latency/
https://redis.io/docs/latest/operate/oss_and_stack/management/optimization/latency/
https://www.timescale.com/
https://www.timescale.com/
https://blog.cloudflare.com/the-story-of-one-latency-spike/
https://blog.cloudflare.com/the-story-of-one-latency-spike/
https://cloud.google.com/blog/products/gcp/introducing-stackdriver-apm-and-stackdriver-profiler-distributed-tracing-debugging-and-profiling-for-your-performance-sensitive-applications
https://cloud.google.com/blog/products/gcp/introducing-stackdriver-apm-and-stackdriver-profiler-distributed-tracing-debugging-and-profiling-for-your-performance-sensitive-applications
https://cloud.google.com/blog/products/gcp/introducing-stackdriver-apm-and-stackdriver-profiler-distributed-tracing-debugging-and-profiling-for-your-performance-sensitive-applications
https://cloud.google.com/blog/products/gcp/introducing-stackdriver-apm-and-stackdriver-profiler-distributed-tracing-debugging-and-profiling-for-your-performance-sensitive-applications
https://cloud.google.com/blog/products/gcp/introducing-stackdriver-apm-and-stackdriver-profiler-distributed-tracing-debugging-and-profiling-for-your-performance-sensitive-applications
https://learn.microsoft.com/en-us/windows/win32/etw/event-tracing-portal
https://learn.microsoft.com/en-us/windows/win32/etw/event-tracing-portal
https://learn.microsoft.com/en-us/windows/win32/etw/event-tracing-portal
https://microsoft.github.io/FASTER/docs/fasterlog-basics
https://microsoft.github.io/FASTER/docs/fasterlog-basics
https://opentelemetry.io/docs/collector
https://docs.px.dev/about-pixie/pixie-ebpf
https://docs.px.dev/about-pixie/pixie-ebpf
https://www.snaplet.dev/post/lessons-from-the-trenches-when-the-bugs-are-real-but-the-data-isnt
https://www.snaplet.dev/post/lessons-from-the-trenches-when-the-bugs-are-real-but-the-data-isnt
https://rocksdb.org/
https://rocksdb.org/
https://youtu.be/QBu2Ae8-8LM?t=1641
https://youtu.be/QBu2Ae8-8LM?t=1641

Loom: Efficient Capture and Querying of High-Frequency Telemetry

[55]

[56]

[59]

[64]

8LM?t=1641 (visited on 12/05/2023).

Richard Sites. KUTrace: Where have all the nanoseconds
gone? Tracing Summit 2017.

Franco Solleza, Justus Adam, Akshay Narayan, Malte
Schwarzkopf, Andrew Crotty, and Nesime Tatbul.
Kernel Extension DSLs Should Be Verifier-Safe! ” In:
Proceedings of the 3 ACM SIGCOMM Workshop on
eBPF and Kernel Extensions (eBPF). ACM, 2025.

Franco Solleza, Andrew Crotty, Suman Karumuri, Nes-
ime. Tatbul, and Stan Zdonik. “Mach: A Pluggable Met-
rics Storage Engine for the Age of Observability”. In:
12'" Conference on Innovative Data Systems Research
(CIDR). 2022.

Franco Solleza, Shihang Li, William Sun, Richard Tang,
Malte Schwarzkopf, Nesime Tatbul, Andrew Crotty,
David Cohen, and Stan Zdonik. “Mach: Firefighting
Time-Critical Issues in Complex Systems Using High-
Frequency Telemetry (Demo Paper)”. In: Proceedings
of the 50™ International Conference on Very Large Data
Bases (VLDB). 2024, pages 4425-4428.

Rui Wang, Devin Gibson, Kirk Rodrigues, Yu Luo, Yun
Zhang, Kaibo Wang, Yupeng Fu, Ting Chen, and Ding
Yuan. “uSlope: High Compression and Fast Search on

Semi-Structured Logs”. In: Proceedings of the 18" USENIX

Symposium on Operating Systems Design and Implemen-
tation (OSDI). 2024, pages 529-544.

Junyu Wei, Guangyan Zhang, Junchao Chen, Yang
Wang, Weimin Zheng, Tingtao Sun, Jiesheng Wu, and
Jiangwei Jiang. “LogGrep: Fast and Cheap Cloud Log
Storage by Exploiting Both Static and Runtime Pat-
terns”. In: Proceedings of the 18" European Conference
on Computer Systems (EuroSys). 2023, pages 452—468.
Michael Wei, Amy Tai, Christopher J Rossbach, Ittai
Abraham, Maithem Munshed, Medhavi Dhawan, Jim
Stabile, Udi Wieder, Scott Fritchie, Steven Swanson,
et al. “vCorfu: A Cloud-Scale Object Store on a Shared
Log”. In: Proceedings of the 14'" USENIX Symposium on
Networked Systems Design and Implementation (NSDI).
2017, pages 35—49.

WiredTiger maintainers. WiredTiger. URL: http://source.

wiredtiger.com/ (visited on 10/09/2024).

Dong Xie, Badrish Chandramouli, Yinan Li, and Don-
ald Kossmann. “Fishstore: Faster ingestion with subset
hashing”. In: Proceedings of the 2019 International Con-
ference on the Management of Data (SIGMOD). 2019,
pages 1711-1728.

Stephen Yang, Seo Jin Park, and John Ousterhout. “NanoLog;:

A Nanosecond Scale Logging System”. In: Proceedings
of the 2018 USENIX Annual Technical Conference (ATC).
2018, pages 335-350.

Jia Yu and Mohamed Sarwat. “Two Birds, One Stone:

528

[66]

[67]

(68]

SOSP ’25, October 13-16, 2025, Seoul, Republic of Korea

A Fast, yet Lightweight, Indexing Scheme for Modern
Database Systems”. In: Proceedings of the 22" Inter-
national Conference on Very Large Data Bases (VLDB).
2016, pages 385-396.

Lei Zhang, Zhiqiang Xie, Vaastav Anand, Ymir Vig-
fusson, and Jonathan Mace. “The benefit of hindsight:
Tracing Edge-Cases in distributed systems”. In: Proceed-
ings of the 20™ USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI). 2023, pages 321-
339.

Danyang Zhuo, Monia Ghobadi, Ratul Mahajan, Klaus-
Tycho Forster, Arvind Krishnamurthy, and Thomas
Anderson. “Understanding and mitigating packet cor-
ruption in data center networks”. In: Proceedings of the
2017 Conference of the ACM Special Interest Group on
Data Communication (SIGCOMM). 2017, pages 362—
375.

Mohamed Ziauddin, Andrew Witkowski, You Jung
Kim, Janaki Lahorani, Dmitry Potapov, and Murali
Krishna. “Dimensions Based Data Clustering and Zone
Maps”. In: Proceedings of the 23" International Confer-
enceon VeryLarge Data Bases (VLDB). 2017, pages 1622
1633.

Zipkin maintainers. Zipkin. URL: https://zipkin.io/
(visited on 10/09/2024).

https://youtu.be/QBu2Ae8-8LM?t=1641
http://source.wiredtiger.com/
http://source.wiredtiger.com/
https://zipkin.io/

	Abstract
	1 Introduction
	2 Background
	2.1 Motivating Example
	2.2 HFT Workloads
	2.3 Existing Approaches

	3 Loom Overview
	4 Design
	4.1 Hybrid Log Abstraction
	4.2 Layered Sparse Indexes
	4.3 Query Processing
	4.4 Coordination-Avoiding Queries
	4.5 Guarantees

	5 Implementation
	5.1 Loom API
	5.2 Internal Timestamps
	5.3 Changing Workloads
	5.4 Write Path
	5.5 Read Path

	6 Evaluation
	6.1 End-to-End Evaluation
	6.2 Probe Effect
	6.3 Data Structure Ingest Scaling
	6.4 Impact of Indexes

	7 Related Work
	8 Discussion and Opportunities
	9 Conclusion

