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Abstract—The stated goal for visual data exploration is to operate at a rate that matches the pace of human data analysts, but the ever
increasing amount of data has led to a fundamental problem: datasets are often too large to process within interactive time frames.
Progressive analytics and visualizations have been proposed as potential solutions to this issue. By processing data incrementally in
small chunks, progressive systems provide approximate query answers at interactive speeds that are then refined over time with
increasing precision. We study how progressive visualizations affect users in exploratory settings in an experiment where we capture
user behavior and knowledge discovery through interaction logs and think-aloud protocols. Our experiment includes three visualization
conditions and different simulated dataset sizes. The visualization conditions are: (1) blocking, where results are displayed only after
the entire dataset has been processed; (2) instantaneous, a hypothetical condition where results are shown almost immediately; and
(8) progressive, where approximate results are displayed quickly and then refined over time. We analyze the data collected in our
experiment and observe that users perform equally well with either instantaneous or progressive visualizations in key metrics, such as
insight discovery rates and dataset coverage, while blocking visualizations have detrimental effects.

Index Terms—Exploratory analysis, interactive visualization, progressive visualization, scalability, insight-based evaluation

1 INTRODUCTION

HE literature [1], [2], [3], [4] often states that a delay of

one second is the upper bound for computer responses
after which users lose focus on their current train of
thought. In order to ensure a highly interactive environment
for data analysis, a visual data exploration system should
therefore strive to present some actionable and understand-
able artifact for any possible query over any dataset within
a one second threshold. It is important to note that this arti-
fact does not need to be the complete or most accurate
answer, but it should be an answer that allows users to keep
their attention on their current task.

Traditionally, visual data exploration systems employ a
strategy whereby user-issued queries are offloaded to a
database management system (DBMS), and the results are
displayed once the complete answer is computed. We call
this the blocking approach: a user’s current train of thought
is blocked until the query result is fully computed. Even
with modern hardware and state-of-the-art DBMSs that can
process millions of data points per second, this traditional
approach suffers from the basic issue that some datasets
will still be too “big” to yield results for user queries within
interactive thresholds.
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A wide variety of strategies, including precomputation,
prefetching, sampling, and progressive computation, have
been proposed to overcome this fundamental limitation.
However, each of these approaches comes with its own set
of advantages and challenges. In particular, progressive com-
putation, where data is processed incrementally in small
chunks, offers an interesting tradeoff between result accu-
racy and computation speed. Moreover, unlike many of the
other approaches, progressive computation also provides a
number of natural opportunities to incorporate user feed-
back and computational steering. The research community
has recently regained interest in progressive computation,
attempting to analyze and exploit some of the peculiarities
of this approach [5], [6], [7], [8], [9], [10]. However, the
effects of progressive computation—and progressive visual-
ization—on user behavior and knowledge discovery in
exploratory settings have not been studied in detail.

The aim of this work is to investigate how progressive vis-
ualizations affect users in exploratory settings. To this end,
we design and conduct an experiment where we compare
three different visualization conditions: (1) instantaneous,
(2) blocking, and (3) progressive. The instantaneous visuali-
zation condition acts as a stand-in for hypothetical systems
where all queries, independent of the dataset size, return and
display accurate results within a strict latency constraint. On
the other hand, blocking visualizations simulate traditional
systems where results are displayed only after the full dataset
has been processed. Blocking visualizations are limited by the
throughput of the underlying computation engine; that is, the
wait time increases proportionally to the size of the dataset.
Finally, progressive visualizations, where data is processed
incrementally in small chunks, present approximate results
to the user at different points during the computation. To
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Fig. 1. Two coordinated visualizations. Selections in the left filter the data
shown in the right.

compare each of these strategies, we capture interaction logs
and verbal data from the participants using a think-aloud
protocol. We then extract several knowledge discovery and
user activity metrics from these recordings, and we analyze
these metrics to test how progressive visualizations compare
to the alternatives. For the purpose of our study, we picked
simple uncertainty visualizations and update strategies and
are specifically not testing different variations in those.

The main contributions of this paper are two-fold. First,
we find that progressive visualizations significantly outper-
form blocking visualizations in almost all knowledge dis-
covery and user activity metrics. Second, our results show
that, surprisingly, progressive visualizations do not differ
substantially from the best case scenario of instantaneous
visualizations across many key metrics (e.g., insights per
minute, insight originality, visualization coverage percent-
age). These findings suggest that progressive visualization
is a viable solution to achieve scalability in visual data
exploration systems.

2 RELATED WORK

Our research builds upon related work in the areas of Big
Data Visual Analytics and Latency in Computer Systems.

2.1 Big Data Visual Analytics

Visual data analysis, or the task of gaining insights from a
dataset through visualizations, is an interactive and iterative
process where users must frequently switch between a wide
range of distinct but interrelated tasks. While the specific set
of tasks that recur in visual data analysis, as well as the tools
that support them, are relatively well understood [11], [12],
the constantly increasing volume of data has forced the
interaction paradigm away from interactive approaches
back to large-scale batch processing [13].

Thus, we seek to address this fundamental conflict in
visual exploratory data analysis. On one hand, we want to
provide an experience where users can actively steer the
exploratory process, allowing them to see results for each
action without the distraction of a slow and unresponsive
interface. On the other hand, constantly growing amounts
of data and increasingly complex analysis techniques make
it impossible to compute and deliver accurate responses
within latency thresholds that are suitable to keep users on
their current train of thought.

The research community has proposed several approaches
to address this problem, each with its own set of advantages
and challenges. We introduce a simple use case to illustrate
these different approaches. Imagine a visual data exploration
system that processes tabular data, allowing users to create
simple aggregated histograms over this data by selecting dif-
ferent attributes. Furthermore, histograms are linked together,
where selections in one visualization trigger (filtering
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operations in others, such as in GraphTrail [14], Panoramic-
Data [15], and Vizdom [16]. Fig. 1 shows an example where
the user only wants to see the histogram of income for a spe-
cific age range.

Conceptually, the simplest way to implement a data
exploration system to support these interactions is through
a blocking approach. After the user requests a particular his-
togram, the system scans the full dataset to perform the
required aggregation and displays the result only after proc-
essing all of the data points. Using this approach, the user
cannot see results until after the entire dataset has been
processed. Response times of blocking systems are therefore
proportional to the size of the dataset. Several commercially
available visual analysis tools, including Tableau [17] (and
its research predecessor Polaris [18]), Spotfire [19], and
Microsoft Power Pivot [20], use a blocking approach.

Precomputation provides an opportunity to reduce the
latencies of the blocking approach by performing some of
the computation up front before a user begins exploration.
The system can perform this precomputation during a load-
ing phase and simply return a result from its cache when
the user issues a request. This approach requires a substan-
tial time and processing investment during the initial load-
ing phase but can completely eliminate visualization
latency during data exploration. However, a major draw-
back of precomputation is the potentially enormous number
of both visualizations and exploration paths the user can
take. In particular, the number of possibilities depends both
on the characteristics of the data as well as the exploration
tasks supported by the system. Permitting arbitrarily fil-
tered histograms (e.g., as shown in Fig. 1) drastically
increases the number of required precomputations. Even
with these issues, many systems have successfully used pre-
computation to improve the user experience. For instance,
some commercial DBMSs support the creation of online
analytical processing (OLAP) cubes [21], where the data is
pre-aggregated along selected dimensions. Other research
systems introduce improvements to these techniques using
more advanced algorithms and data structures [22] or by
exploiting modern hardware (e.g., GPUs) [23].

Similar to precomputation, prefetching incrementally pre-
computes results during user exploration rather than com-
puting all possible results a priori. Prefetching approaches
typically either limit the degrees of freedom given to the
user or employ an intelligent oracle that predicts the user’s
most likely subsequent actions, such as in a map application
where users can perform only pan and zoom actions. Since
the user can only transition to a very limited number of pos-
sible next states (i.e., panning left/right/up/down or zoom-
ing in/out), the system can therefore use the time that a user
spends examining a specific region to prefetch neighboring
tiles that might be requested next. Both ForeCache [24] and
Semantic Windows [25] use prefetching by exploiting local-
ity in the user’s exploratory behavior to predictably prefetch
chunks of data in anticipation of subsequent. Other pre-
fetching based systems use models to estimate the most
likely action the user will perform next. These predictive
models can be built using a wide variety of different infor-
mation. For example, Doshi et al. [26] propose and compare
different techniques that incorporate a user’s interaction his-
tory, while Ottley et al. [27] show that certain personality
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traits affect user exploration strategies. Prefetching systems
need to provide a fallback strategy for cases when the pre-
diction fails, most commonly by reverting to a blocking
approach for cases when the user issues a query for which
the result has not yet been prefetched. Furthermore, even
with prefetching, the result might take too long to compute
if the user only spends a short amount of time between
interactions.

While all of the approaches discussed thus far are guaran-
teed to return completely accurate results for all queries, sam-
pling takes a fundamentally different approach by trading
speed for accuracy. Instead of computing the completely accu-
rate result, the system uses a small sample of the data to com-
pute the histogram and presents it to the user with some
quality metric for the approximation (e.g., confidence inter-
vals, error bars). Systems that use sampling can return results
for all user queries within the specified interactivity time con-
straints without needing to precompute any query results.
The data management community has heavily explored the
development of approximate query engines. For example,
BlinkDB [28] is a SQL engine that uses sampling to answer
queries over large datasets and allows users to specify accu-
racy or response time requirements. DICE [29] similarly sup-
ports subsecond latencies for large datasets using a variety of
optimizations including sampling.

Although sampling-based approaches can provide users
with a quick overview of the dataset, they also introduce a
completely new set of challenges. For instance, rare (but
potentially important) datapoints might not be captured in
the sample. Additionally, even experts sometimes have
trouble interpreting statistical accuracy metrics [30], [31].
Ferreira et al. [32] introduced specialized visualizations that
mitigate some of these issues, but further research is neces-
sary in order to apply their findings to different visualiza-
tion types and analysis tasks.

Progressive systems are an extension of sampling-based
approaches that incrementally compute results over increas-
ingly larger samples in order to provide more accurate
results to the user over time. This concept is well known in
the graphics domain and widely used on websites to
improve user experience when loading high-resolution
images [33]. A down-sampled, low-resolution image is dis-
played quickly and replaced with the high-resolution ver-
sion when fully downloaded. This concept was previously
explored in the data management community [34], where
most of the subsequent research focused on creating pro-
gressive versions of well known DBMS operations (e.g.,
joins [35], [36], aggregations [37]). More recently, progres-
sive approaches have gained interest among the HCI and
visualization communities [5], [6], [7], [8], [10], [38]. Progres-
sive Insights [6] is an example of a progressive system that
allows the user to analyze common patterns in event
sequence medical data. Fisher et al. [5] presented sampleAc-
tion, a tool that simulates progressive queries over large
datasets, and discuss and analyze the implications of such
queries and different confidence metrics through quantita-
tive case studies. While this approach has similar draw-
backs to sampling (e.g., bad for finding outliers, does not
work with ordered data, requires statistical sophistication
from users), many authors [7], [8], [16], [38] advocate for its
usefulness in exploratory data analysis. For example, it
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allows users to decide what level of accuracy they need and
provide opportunities to inject user-steerability into algo-
rithms and computations. However, the effects of this
approach in terms of user performance and behavior have
not yet been analyzed in detail.

2.2 Latency in Computer Systems

As many have argued [12], [39], the goal of visual data explo-
ration systems is to operate at a rate that matches the pace of
data analysts. Systems should therefore attempt to keep query
response times below thresholds that will make users lose
focus on their current task. A study by Liu et al. [40] shows
that latencies of 500 ms have significant effects on user perfor-
mance in data exploration scenarios. In other domains, includ-
ing web search [41], [42] and video games [43], even smaller
latencies (300 and 100 ms, respectively) can negatively influ-
ence user performance. Frameworks proposed by Nielsen
and others [1], [2], [3], [4] suggest that responses within one
second allow users to stay on their current train of thought,
while response times over ten seconds exceed the average
attention span. We use these models to justify the different
delay times used in our experiment.

3 EXPERIMENTAL DESIGN

The aim of this work is to investigate how progressive visual-
izations influence users during exploratory data analysis, as
well as how these techniques compare to blocking and instan-
taneous visualizations. We use a full-factorial three visualiza-
tion conditions (blocking, instantaneous, progressive) x 2
dataset-delay conditions (6, 12 s) x 2 dataset-order conditions
(123, 312) experiment. Our experiment is based on work by
Liu et al. [40] and Guo et al. [44], which suggest using a hybrid
evaluation approach that uses system logs and insight-based
metrics coded from think-aloud protocols in order to analyze
both (1) user interactions and (2) analysis performance. We
expect that users will generate more insights per minute with
instantaneous visualizations than with progressive ones (H1)
and that users will generate more insights per minute with
progressive visualizations than with blocking ones (//2). Fur-
thermore, we anticipate user activity levels to be higher with
instantaneous visualizations than with progressive ones (H3)
as well as higher with progressive visualizations than with
blocking ones (/74). This section provides a detailed descrip-
tion of the experimental design.

3.1 Visualization Conditions

In order to understand how progressive visualizations influ-
ence users in terms of knowledge discovery and interaction
behavior, we compare them against two baseline visualization
conditions: (1) blocking and (2) instantaneous. The instanta-
neous condition represents a hypothetical ideal scenario
where the system always return query results within the time
constraint regardless of dataset size. The blocking condition
represents the other extreme, which is how many current
visual data exploration systems operate. For blocking visual-
izations, query results are displayed only after the computa-
tion over the entire dataset concludes, with visualization
latencies scaling with dataset size. The progressive condition
bridges the instantaneous and blocking conditions by display-
ing an approximate result as soon as possible and then
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Fig. 2. Schematic time scale showing when different visualization condi-
tion display results.

incrementally refining the results over time. Eventually, the
full and completely accurate result is displayed, as in the
blocking approach, but initial approximate results are still
returned as soon as possible.

Fig. 2 shows a schematic illustration of the differences
between these three conditions. Assuming that a given
hardware platform requires x seconds to compute and dis-
play the full query result, then a system operating in the
hypothetical instantaneous mode will return results imme-
diately; a blocking system will use the full  seconds before
displaying any results; and the progressive system will
show inaccurate results that are incrementally refined
throughout the x seconds.

3.2 Datasets

We use three datasets from different domains in our experi-
ment. The first dataset (DS1) contains information about
cars [45] (eight attributes: seven quantitative, one nominal),
such as “acceleration” and “horsepower.” The second one
(DS2) includes data about wines (seven attributes: five quan-
titative, two nominal), with attributes including “type”,
“country of origin” and several different ratings. Finally, the
third one (DS3) is a subset of the 1994 US census [45] (nine
attributes: three quantitative, six nominal). We use a fourth
dataset (Titanic) to introduce participants to the system.

The datasets contain 10,000 data points each. We intro-
duce a dataset-delay factor that has two possible values
(6 or 12 s) and is used to artificially delay the computation
of visualizations for the progressive and blocking condi-
tions. In the blocking case, the user will have to wait either
6 or 12 s before any visualization is displayed, while the
computation spans the entire time period (6 or 12 s) with

filter
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10 incremental updates in the progressive case. While 6 and
12 s still represent relatively small times (it is common to
have datasets large enough that computations can take
hours), we chose these values for two reasons: (1) these
delays are above and below the 10 second threshold that is
often stated as the average attention span [2]; and (2) they
are small enough to make an in-lab user study feasible.

3.3 System
We created an experimental system specifically for our
study. The UL shown in Fig. 3, consists of a list of the current
dataset’s attributes (a) and four visualization panels (v1-v4).
Users can drag and drop attributes onto the axes of the visu-
alization panels, and tapping on an axis cycles through dif-
ferent aggregation functions (e.g.,, count, average). Our
system supports two visualization types: (1) bar charts and
(2) 2D-histograms. Visualizations are always binned and
never show individual data points, which allows us to fix the
time required to display a visualization, even for arbitrarily
large datasets. That is, the number of visual elements to ren-
der is decoupled from the size of the underlying dataset.
Selecting a bin in a visualization triggers a brushing oper-
ation in which the selected data points are highlighted in all
other visualizations. In the example (Fig. 3), the user
selected the rightmost bar in v2. All other visualizations
now shade bins in two different colors: blue indicating the
overall amount and purple the amount of data points that
corresponds to the user’s selection. Bar height and rectangle
area are scaled to reflect the number of data points that
match the selection. A textbox (c) permits finer-grained
brushing control through arbitrary Boolean statements (e.g.,
highlight all wines where price < 35 and vintage > 2010).
Similarly, a second textbox (b) supports filtering operations
through Boolean statements to select a specific subset of the
data. Brushing and filtering operations require all affected
visualizations to recompute their results from scratch,
regardless of the current visualization conditions. For exam-
ple, selecting an additional bar in v2, and thereby changing

brush
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Fig. 4. The blocking and progressive visualization conditions.

the currently applied brush, will force all other visualiza-
tions (i.e., v1, v3, and v4) to recompute. Depending on the
visualization condition, v1, v3, and v4 will either show the
results of the new brushing action instantaneously, a load-
ing animation until the full result is available, or incremen-
tally updated progressive visualizations. The system does
not perform any form of result caching.

Upon startup, the system loads the selected dataset into
memory. The system randomly shuffles the data points in
order to avoid artifacts caused by the natural oder of the
data and to improve convergence of progressive computa-
tions [46]. We approximate the instantaneous visualization
condition by computing queries over entire dataset as
quickly as possible. Initial microbenchmarks for a variety of
queries over the small datasets used in the experiment
yielded the following measurements: time to compute a
result ~ 100 ms and time to render a visualization ~ 30 ms.
Although not truly instantaneous, a total delay of only
~ 130 ms is well below the guideline of one second, there-
fore allowing us to simulate the instantaneous condition.
We simulate the blocking condition by artificially delaying
the rendering of a visualization by the number of seconds
specified through the dataset-delay factor. In other words,
we synthetically prolong the time necessary to compute a
result in order to simulate larger datasets. While a blocking
computation is ongoing, we display a simple loading ani-
mation, but users can still interact with other visualization
panels, change the ongoing computation (e.g, selecting a
different subset), or replace the ongoing computation with a
new query (e.g., changing an axis). Fig. 4 (top) shows an
example of a blocking visualization over time.

We implemented the progressive condition by process-
ing the data in chunks of 1,000 data points at a time, with
approximate results displayed after each chunk. In total, we
refresh the progressive visualization 10 times, independent
of the dataset-delay factor. We display the first visualization
as quickly as possible, with subsequent updates appropri-
ately delayed so that the final accurate visualization is dis-
played after the specified dataset-delay condition. Note that
the initial min and max estimates might change afters seeing
additional data, in which case we extend the visualization
by adding bins of the same width to accommodate new
incoming data. Throughout the incremental computation,
we display a progress indication in the bottom left corner of
a visualization (Fig. 3d). Progressive visualizations are aug-
mented with error metrics indicating that the current view
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is only an approximation of the final result. Even though
95 percent confidence intervals based on the standard error
have been shown to be problematic to comprehend in cer-
tain cases [47], we still opted to use them for bar charts due
to their wide usage and familiarity. We render labels with
margins of error (e.g., “£3%”") in each bin of a 2D-histo-
gram. Fig. 4 (bottom) shows an example of a progressive
visualization and how it changes over time. Note that the
confidence intervals in the example are rather small, but
their size can change significantly based on the dataset and
query.

Our system is implemented in C# / Direct2D. We tested
our system and ran all sessions on a quad-core 3.60 GHz,
16 GB RAM, Microsoft Windows 10 desktop machine with
a 16:9 format, 1,920 x 1,080 pixel display.

3.4 Procedure

We recruited 24 participants from a research university in
the US. All participants were students (22 undergraduate,
two graduate), all of whom had some experience with data
exploration or analysis tools (e.g., Excel, R, Pandas). 21 of the
participants were currently enrolled in and halfway through
an introductory data science course. Our experiment
included visualization condition as a within-subject factor
and dataset-delay and dataset-order as between-subject fac-
tors. Note that the dataset-delay has no direct influence on
the instantaneous condition, but it is used as a between-
subject factor to test if it affects the other visualization condi-
tions. To control against ordering and learning effects, we
fully randomized the sequence in which we presented the
different visualization conditions to the user and counterbal-
anced across dataset-delay conditions. Instead of fully ran-
domizing the ordering of datasets, we opted to create two
predefined dataset-orderings and factored them into our
analysis. The two possible dataset-ordering values were 123
and 312 (i.e., DS1 followed by DS2 followed by DS3 and DS3
followed by DS1 followed by DS2, respectively), and we
again counterbalanced across dataset-ordering. We seed our
system’s random number generator differently for each ses-
sion to account for possible effects in the progressive condi-
tion caused by the sequence in which data points are
processed. While each participant did not experience all pos-
sible combinations of visualization, dataset-ordering, and
dataset-delay conditions, all users saw all visualization con-
ditions with one specific dataset-delay and dataset-ordering.
For example, participant P14 was assigned dataset-ordering
312, dataset-delay 6 s, and visualization condition ordering
[blocking, instantaneous, progressive]. In total, this adds up
to four trial sub-groups, each with six participants: (dataset-
delay = 6 s & dataset-order = 123), (dataset-delay = 12 s &
dataset-order = 123), (dataset-delay = 6 s & dataset-order =
312) and (dataset-delay = 12 s & dataset-order = 312). Within
each subgroup, we fully randomized the order in which we
presented the different visualization conditions.

After a 15 minute tutorial of the system, including a sum-
mary of the visualization conditions and how to interpret con-
fidence intervals and margins of error, we instructed the
participants to perform three exploration sessions. In the case
of participant P14, these three sessions included (1) blocking
visualizations on DS3, (2) instantaneous visualizations on
DS1, and (3) progressive visualizations on DS2 all with 6 s
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Fig. 5. Insights per minute: Boxplot (showing median and whiskers at 1.5 interquartile range) and overlaid swarmplot for insights per minute (left)
overall, (middle) by dataset-delay, and (right) by dataset-order. Higher values indicate better.

delay. Each session was open-ended and we asked the partici-
pants to explore the dataset at their own liking and pace. We
allotted 12 minutes per session, but participants were free to
stop earlier. We used a think-aloud protocol [48] where partic-
ipants were instructed to report anything they found interest-
ing while exploring the dataset. Throughout each session, we
captured both screen and audio recordings and logged low-
level interactions (mouse events) as well as higher-level
events (“axis changed”, “aggregation changed”, “textbox
brush/filter”, “visualization brush,” and “visualization
updated/stopped/completed”). An experimenter was pres-
ent throughout the session, and participants were free to
ask any technical questions or questions about the meaning
of dataset attributes. At the end of the three sessions, we
asked participants to give feedback about the tool and
whether they had any thoughts regarding the different
visualization conditions.

3.5 Statistical Analysis
Our study is designed as a full-factorial 3 (visualization con-
ditions) x 2 (dataset-delay conditions) x 2 (dataset-order
conditions) experiment. We applied mixed design analysis
of variance tests (ANOVA) with visualization condition as
the within-subject factor and dataset-delay and dataset-
order as the between-subject factors to assess the effects of
our factors on the various metrics we computed. Note that
the dataset-delay factor should have no influence on trials
where the visualization condition is set to instantaneous.
We tested the assumption of sphericity using Mauchly’s
test, and we report results with corrected degrees of free-
dom using Greenhouse-Geisser estimates if violated. We
report all significant (i.e., p < 0.05) main and interaction
effects of these tests. For significant main effects, we con-
ducted further analysis through Bonferroni corrected post
hoc tests and for more nuanced interpretation, we opted to
include Bayes factors for certain results and report BFj fac-
tors along with corresponding significance labels [49]. Effect
sizes are reported through Pearson’s r coefficient, and sig-
nificance levels are encoded in plots using the following
notation: * p < 0.05; % p < 0.01; %% p < 0.001.

4 ANALYSIS OF VERBAL DATA

Inspired by previous insight-based studies [40], [44], [50], we
manually coded insights from the audio recordings and
screen captures. An insight is a nugget of knowledge
extracted from the data, such as “France produces more
wines than the US”. We followed the verbal data segmenta-
tion approach proposed by Liu et al. [40] and adopted their
coding process in which the first author did the bulk of the
coding, but we iteratively revised finished codes with

collaborators to reduce bias. In our case, we decided to count
observations that are within the same visualization, have the
same semantics, and are on the same level of granularity as
one insight. For example: “It looks like country 1 makes the
most cars, followed by country 2 and country 3” was coded
as one single insight, whereas an observation across two vis-
ualizations (through brushing) such as “Country 1 makes
the most cars and seems to have the heaviest cars” was
counted as two separate insights. We did not categorize
insights or assign any quality scores or weights to insights
nor did we quantify accuracy or validity of insights. For our
analysis, all insights were treated equally.

4.1 Number of Insights Per Minute

In order to get a quantifiable metric for knowledge discovery,
we normalized the total insight count for each session by the
duration of the session. Fig. 5 shows this resulting “number of
insights per minute” metric across different factors. Our
results show that this metric was significantly affected by
the type of visualization condition (£'(1.452,29.039) = 6.701,
p < 0.01).

Post hoc tests revealed that the instantaneous condition
showed a slight increase of number of insights per minute
over the progressive condition (1.47740.568 versus
1.361 £0.492, respectively), which was not statistically
significant (p = 1.0, = 0.080). However, the blocking con-
dition reduces the number of insights per minute to
1.069 £ 0.408, which differed significantly from both the
progressive  (p < 0.05,7=0.292) and instantaneous
(p < 0.001,r = 0.383) conditions. A Bayesian Paired Sam-
ples T-Test that tested if measure; < measure; revealed
strong evidence for an increase in insights per minute from
the blocking condition to the progressive condition
(BFjy = 13.816), extreme evidence for an increase from
blocking to instantaneous (BFj, = 134.561), and moderate
evidence for no change or a decrease between instantaneous
and progressive (BFjy = 0.130). In summary, blocking visu-
alizations produced the fewest number of insights per
minute, whereas the instantaneous and progressive visual-
izations performed equally well.

4.2 Insight Originality

Similar to [44], we grouped insights that encode the same
nugget of knowledge together and computed the originality
of an insight as the inverse of the number of times that
insight was reported by any participant. That is, insights
reported more frequently by participants received lower
overall originality scores. A participant received an insight
originality score of 1 if he or she had only unique insights
(i.e., insights found by no other users). The lower the score,
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Fig. 6. Insight originality: Boxplot (showing median and whiskers at 1.5 interquartile range) and overlaid swarmplot for insight originality (left) overall,
(middle) by dataset-delay, and (right) by dataset-order. Higher values indicate more original insights.

the less original the insights were on average. We averaged
originality scores across insights for each session and show
plots for this insight originality metric across different fac-
tors in Fig. 6. We did not find any significant effects that
influence the insight originality metric, which indicates that
the originality score seems unaffected by any of the factors
for which we controlled.

5 ANALYSIS OF INTERACTION LOGS

To analyze how our visualization conditions affect user
behavior, we computed several metrics from either the
mouse-movement events or the high-level system-specific
events.

5.1 Visualization Coverage

We were interested in analyzing how much of the possible
space of visualizations our participants covered. To create a
metric for visualization coverage, we computed the set of
unique visualizations possible within each dataset. We con-
sidered all attributes, both visualization types supported by
our system, and all possible aggregation functions. How-
ever, we ignored the axis-to-attribute mapping (e.g., a visu-
alization with attribute A on the x-axis and attribute B on
the y-axis is considered the same as if the axes were flipped).
We then extracted and counted up all visualizations a par-
ticipant created during a session from the interaction logs.
Our final visualization coverage metric is the percentage of
possible visualizations a participant created per minute.

Fig. 7 plots this metric across different factors. Our analy-
sis shows that the type of visualization condition signifi-
cantly affects the percentage of the total visualizations
that a participant covered per minute (F(2,40) = 9.847,
p < 0.001). Post hoc tests revealed that the instantaneous
condition showed a slight increase in percentage over the
progressive condition (1.553 + 0.690 percent versus 1.311+
0.651 percent, respectively), which was not statistically sig-
nificant (p = 0.226, r = 0.251). However, the blocking condi-
tion reduces the percentage of total visualizations covered
per minute to 0.845 & 0.449 percent, which differed signifi-
cantly from both the progressive (p < 0.01,r = 0.545) and
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instantaneous (p < 0.001,r = 0.740) conditions. Partici-
pants explored more visualizations per minute with the
instantaneous and the progressive condition and there is no
significant difference between the two.

Note that we did not assign any “importance” or
“quality” scores to different visualizations. All visualiza-
tions have the same weight, even though some visualiza-
tions might be more informative than others or multiple
visualizations might convey similar insights. Similarly, our
visualization coverage metric is not designed to compare
across different users or sessions, such that two users could
have the exact same coverage score while looking at
completely different parts of the dataset.

5.2 Number of Brush Interactions Per Minute

While the coverage metric considers the number of possible
static visualizations, it does not consider brushing. We mea-
sured the brushing interactions by counting the number of
brush events from the interaction logs, which we then nor-
malized by the duration of a session. The results, shown in
Fig. 8, demonstrate that the type of visualization condition
significantly affected the number of brush interactions per
minute (F'(1.335,26.690) = 17.620,p < 0.0001). Post hoc
tests revealed that the instantaneous condition showed a
significant increase in number of brush interactions per
minute over the progressive condition (4.640 & 4.095 versus
2.108 +1.744, p < 0.01,r = 0.316), as well as over the block-
ing condition (1.190 + 0.737, p < 0.001,r = 0.413). Further-
more, brushing interactions per minute for the progressive
condition were significantly different than for the blocking
condition (p < 0.05,r = 0.29).

Additionally, our results showed a significant between-
subject effect for dataset-order (#'(1,20) = 4.568,p < 0.05)).
A post hoc test revealed that dataset-order 312 increased the
number of brush interactions per minute over dataset-order
123 significantly (3.365 £3.284 versus 1.927 £2.429,
p < 0.05,7 = 0.242). We hypothesize that this effect is due
to the structure of DS3 (census dataset), which in turn leads
to a learning effect. DS3, to which users where exposed first
in dataset-order 321, has considerably fewer qualitative
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Fig. 7. Visualization coverage percentage per minute: Boxplot (showing median and whiskers at 1.5 interquartile range) and overlaid swarmplot for
for visualization coverage % per minute (left) overall, (middle) by dataset-delay, and (right) by dataset-order. Higher values are better.
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Fig. 8. Brush interactions per minute: Boxplot (showing median and whiskers at 1.5 interquartile range) and overlaid swarmplot for brush interactions
per minute (left) overall, (middle) by dataset-delay, and (right) by dataset-order.
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Fig. 9. Visualizations completed percentage: Boxplot (showing median and whiskers at 1.5 interquartile range) and overlaid swarmplot for for
completed visualization % (left) overall, (middle) by dataset-delay, and (right) by dataset-order.
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Fig. 10. Mouse movement per second: Boxplot (showing median and whiskers at 1.5 interquartile range) and overlaid swarmplot for mouse
movement per minute (left) overall, (middle) by dataset-delay, and (right) by dataset-order.

attributes than the other datasets. Users could not use strate-
gies such as looking for trends in 2D histograms or compute
averages across attributes and reverted to using the brush-
ing functionality to correlate across different populations of
the data. We often observed users manually cycle through
one attribute and look for changes in another attribute. For
example, users would create two histograms (e.g., one for
“marital status” and one for “education”) and then manu-
ally select different values in the first histogram (e.g.,
“married”, “widowed”) to determine whether the second
histogram for that subpopulation differed from the overall
population.

5.3 Visualizations Completed

We extracted the number of times a visualization was com-
pleted—the participant waited the full amount of time spec-
ified by the dataset delay until a visualization was
completely accurate—from our log data. We then divided
this count by the number of interactions that forced a visual-
ization to recompute (e.g., axis change, brushing interac-
tion). This gives us the percentage of times an interaction
led to a fully accurate visualization. Fig. 9 visualizes this
metric for different factors. Note that, by definition, this
metric is always 100 percent for the instantaneous condition
and we therefore exclude it from post hoc tests. Our results
show that the percentage of completed visualizations was
significantly affected by the type of visualization condition
(F(2,40) = 169.972,p < 0.0001). Post hoc tests revealed that
the blocking condition showed an increase of percentage of

completed visualizations over the progressive condition
(56.22 + 15.01 percent versus 45.99 + 14.14 percent, respec-
tively), which was statistically significant (p < 0.05,r =
0.296). In short, people often moved ahead without waiting
for the full result.

5.4 Mouse Movement Per Minute

Finally, to compute a simple metric of a participant’s activ-
ity level, we calculated the distance in pixels the mouse was
moved per minute and show the results in Fig. 10. Our anal-
ysis shows that the type of visualization condition signifi-
cantly affected the mouse movement per minute metric
(F(2,40) = 5.431,p < 0.01). Post hoc tests revealed that the
instantaneous condition showed a slight decrease of mouse
movement per minute over the progressive condition
(303.799 + 128.243 versus 313.912 £ 139.1299, respectively),
which was not statistically significant (p = 1.0,7 = 0.051).
However, the blocking condition reduces movement per
minute to 258.060 & 131.536, which differed significantly
from both the progressive (p < 0.05,7 = 0.315) and instan-
taneous (p < 0.05,r = 0.245) conditions. Mouse movement
is a crude indication of a user’s activity level, and our test
shows that these levels are lowest with the blocking condi-
tions. Again we find no difference between instantaneous
and progressive visualizations.

6 PERCEPTION OF VISUALIZATION CONDITIONS

During our exit interview, we asked participants to provide
feedback about the different visualization conditions they
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experienced. Most participants liked the instantaneous visu-
alizations best, but preferred the progressive ones over
blocking. Below are quotes from our participants that
describe these preferences:

“I liked the progressive one better than blocking, but obviously
the instantaneous one is best.” “I initially felt the loading one
[progressive] was weird because graphs change over time. But
after seeing this one [blocking] I can appreciate the value of it [pro-
gressive].” “[Blocking] slows the process. But when it’s one or the
others [instantaneous or progressive], I can see one thing and then
that naturally leads to the next thing I want to do. Here [blocking]
I have to keep track of the last thing that I loaded while I do some-
thing else. It's [blocking] just more stilted and less continuous.”
“You see a rough picture in the beginning and then you can think
about it while it's actually finishing. That's way better than just a
loading animation.”

A few participants expressed positive remarks towards
blocking visualizations or commented that they adapted
their strategies because of the wait-time:

“The slow one [blocking] made me feel more confident about
what 1 saw, because there is lots of data behind it.” “It [blocking]
actually helped me to use the time to think. But it also might limit
you from finding really interesting facts, because you're going in
with an idea, you're using the loading time to come up with things
that you think might be true. Without the loading time you could
just randomly mess around with the data and find interesting
things.” “I used the loading time to do something else.”

7 DISCUSSION

Our analysis provides evidence that overlaps with findings
in previous work, such as by Liu et al. [40], which finds that
even small latencies have an impact on user performance in
exploratory settings. Our results show that knowledge dis-
covery and user activity measures are negatively influenced
by the blocking condition when compared to instantaneous
visualizations. This intuitively makes sense and it is widely
acknowledged that low latency leads to improved user
experience and user performance. The more interesting evi-
dence we present in this paper arises when we compare
blocking to progressive visualizations or instantaneous to
progressive visualizations.

The difference between the progressive and blocking
conditions is that users can see approximate results while a
query is ongoing rather than a loading animation. However,
the overall delay until a final, 100 percent accurate visuali-
zation arrives is exactly the same for both conditions. Yet,
our data shows that users generated more insights per min-
ute, had a higher visualization coverage percentage, and
displayed higher levels of mouse movements when given
progressive rather than blocking visualizations. Addition-
ally, the percentage of completed visualizations (i.e., visual-
izations where users waited the full number of dataset-
delay seconds to get the final answer) is higher in the block-
ing than the progressive condition. This result suggests that
users are efficiently using these in-between and approxi-
mate visualizations to either pre-process information,
extract insights early, or to decide that the result is not what
they were looking for and then move on to the next visuali-
zation. A participant expressed it this way: “It’s much easier
to look at a rough picture of the final data rather than just to see
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nothing at all. You can start to get an idea of relationships and
things like that.”. Based on our analysis we accept hypothesis
H?2 (more insights with progressive than blocking) as well
as H4 (higher user activity levels with progressive than
blocking).

The instantaneous visualization condition represents a
hypothetical system that can provide results to the user
almost immediately for any query, minimizing interference
to the user’s thought process. While increasing amounts of
data make systems that provide instantaneous visualiza-
tions practically infeasible, the evidence presented in our
analysis shows that progressive visualizations might per-
form almost as well. We did not observe any significant dif-
ferences across all of our metrics for the instantaneous and
the progressive conditions except for the brush interactions
per minute metric. We can therefore not accept H1 (more
insights with instantaneous than progressive) or 3 (higher
user activity levels with instantaneous than progressive).

However, there are some open questions that our study
does not address. While our data suggests that approximate
visualizations might help users grasp certain characteristics
of a dataset rapidly, they simultaneously introduce a set of
new challenges. For example, prior work in psychology [30],
[31] has shown that even experts sometimes have trouble
interpreting standard accuracy metrics (e.g., confidence
intervals, error bars). While we did not observe any cases in
our study where participants misinterpreted visualizations
based on their uncertainty, these cases are also hard to cap-
ture. Our participants often reported high-level trends like
“these two categories seem about equal in counts”, “there is a
slight negative correlation between these two wvariables”. How
much of a change would need to occur between the approx-
imate and the final visualization before users would retract
these insights? Progressive visualizations expose funda-
mental limitations when it comes to exploration sessions on
datasets where it is important to capture insights that are
based on outliers or small subsets of the data. It might take
a long time to sample those rare datapoints, and visualiza-
tions can therefore take a long time to converge to a view
that shows those features prominently.

The second open question is how refresh rates for progres-
sive visualizations affect user interaction and whether or not,
in the extreme case, a simple one-sample visualization pro-
vides the same benefits. For example, techniques such as the
one presented by Stolper et al. [6] that allow users to decide
when to update a visualization might be less distracting than
our approach of constant regular updates. There are reasons
to believe that progressive visualizations have advantages
over approximate visualization that are based on a single
sample. For example, users can decide individually when a
visualization is accurate enough for their liking or their cur-
rent task. We observed that some users tend to hold off with
reporting insights until after several progressions, especially
for visualizations where there was a high visual variance
between updates. In other cases, participants waited for
uncertainty metrics to be in a range small enough for them to
make judgments. One of our participants stated: “I didn’t
want to draw any conclusion right away. Especially in this one
visualization where the error bar was across the whole graph, I
decided to wait.”. While these anecdotal findings make a case
for progressive visualizations over simple sampling-based
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ones, our study does not provide the means for a quantitative
comparison between the two.

8 FUTURE WORK AND CONCLUSION

We investigated how progressive visualizations affect users
in exploratory data analysis scenarios. Through a controlled
experiment, we compared progressive visualizations to
blocking and instantaneous visualizations and found signifi-
cant differences in insight-based metrics and user activity
levels across all three approaches. We observed that progres-
sive visualizations outperform blocking visualizations in
almost all metrics and that progressive visualizations do not
significantly differ from the ideal scenario of instantaneous
visualizations in terms of generated insights per minute,
insight originality, or visualization coverage percentage.

However, this study is just a first step towards under-
standing progressive visualizations. We studied only sim-
ple forms of uncertainty visualizations and we also
excluded other factors from the study, such as if users are
able to fully grasp the meaning of approximate answers and
how distracting the visualization updates are. We plan to
carry out several follow-up studies where we compare dif-
ferent update strategies and different types of uncertainty
representations. Furthermore, we intend to get a better
understanding of how a user’s behavior changes between
instantaneous and progressive visualizations through in-
depth sequential interaction log analysis, potentially cou-
pled with eye-tracking data. Gaining such understanding
would help optimize visual representations and interactions
with progressive visualizations.
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