
Evan Li

CPU Scheduling Optimized Vectraflow
Evan Li

Brown University

evan_li1@brown.edu

Abstract
The integration of Large Language Models (LLMs) into data

processing pipelines has become increasingly common, but

it comes with performance challenges and often times, the

bottle neck is GPU inference times. This work investigates

the impact of client-side CPU resource management on end-

to-end LLM pipeline performance, even when the GPU is

the primary bottleneck. We explore methodologies for op-

timizing client-side execution by evaluating the effects of

simulated CPU load and explicit CPU scheduling techniques

(core pinning and process prioritization) within a Python-

based data pipeline interacting with a vLLM server. Our

experiments demonstrate that while default OS schedulers

can manage client resources adequately under low system

load, targeted client-side CPU scheduling yields some im-

provements in throughput and latency (particularly tail la-

tency and handoff delays) when the GPU is constrained and

client CPU contention is high. This suggests a non-linear

relationship where the efficacy of such client-side optimiza-

tions becomes more pronounced under systemic pressure,

highlighting the importance of holistic pipeline tuning.

1 Background
The data processing landscape has been evolving driven both

by the explosion of complex data types (especially vector

embeddings) [1] and the way LLMs are being integrated into

analytical workflows [2]. Our work builds on the principles

and architecture of data flow systems designed for these

modern workloads, particularly systems like VectraFlow [3].

VectraFlow was originally conceptualized as a stream-

oriented data flow engine for applications needing contin-

uous, low-latency processing of vector data [3]. While we

first explored these ideas in C++ (as noted in the background

of earlier work [3]), we’ve since moved our implementation

over to Python. This wasn’t just a random choice, Python

gives us a much ecosystem for LLM integration, lets us de-

fine complex data transformations more easily, and frankly,

makes it faster to prototype pipelines that need to call LLMs

frequently.

Traditional data processing pipelines typically implement

operations you’d find in relational databases - your stan-

dard joins, filters, aggregations, and group-bys, concepts

underpinned by general operating system and data manage-

ment principles [4, 5]. What VectraFlow does is extend this

approach by directly supporting vector data types and intro-

ducing specialized vector-based operators [3]. These include

V-Filter, iV-Filter (inverse vector filter), V-TopK, iV-TopK

(inverse vector top-k), and V-Join [3]. We need these oper-

ators for applications that require semantic understanding

and similarity-based operations on streaming data - things

like catching copyright violations in real-time or continu-

ously evaluating LLM prompts, as discussed as use cases for

VectraFlow [3]. The iV-Filter and iV-TopK operations are par-

ticularly unique to streaming contexts, where base vectors

essentially act as continuous queries against incoming data

streams.

Our research uses this Python-based pipeline framework

to tackle key aspects ofmodernAI-driven applications.We’ve

spent considerable time on the interaction between these

pipelines and LLMs, building guardrails to ensure outputs

are safe and reliable, and creating multi-stage pipelines for

tasks like processing academic papers from arXiv. Getting

these pipelines to run efficiently, especially when LLMs are

involved, has been crucial.

One of the big challenges we’ve facedwith LLM-integrated

pipelines is performance optimization, a topic also central to

efficient LLM serving [2]. Everyone typically points to the

GPU that runs LLM inference as the main bottleneck. This

got us wondering: even when the GPU is clearly the end-

to-end bottleneck, can tweaking client-side CPU resource

management and scheduling still give us meaningful perfor-

mance gains?

Modern operating systems like Linux with its Completely

Fair Scheduler (CFS) already do a decent job managing CPU

resources [4, 5]. But our high-throughput, low-latency pipelines,

especially at those critical "handoff" points where client-

prepared data gets sent to GPU-accelerated LLM servers—might

benefit from more explicit CPU scheduling strategies, build-

ing on fundamental OS concepts [4, 5]. Things like cache

locality, NUMA awareness, and making sure critical threads

get immediate CPU core access could make a real difference.

In this research, we’ve investigated how client-side CPU

load (which we simulate through a CpuStressOp) and vari-

ous CPU scheduling techniques (including core pinning with

taskset and priority adjustment with nice) affect end-to-end

performance across different pipeline configurations. We

wanted to understand exactly when these client-side opti-

mizations become most useful, particularly when the GPU

is maxed out, and figure out which pipeline stages are most

affected by CPU scheduling interventions. Our goal has been

to provide practical insights that help build more efficient

data processing systems that can really leverage the power

of LLMs.



CPU Scheduling Optimized Vectraflow

Input

Data Stream

Client Application (Python)

Source Operator

Data Ingestion

Data Preparation

(map_filter / +agg)

LLM Request

Formatting & Batching

C
l
i
e
n
t
–
G
P
U
H
a
n
d
o
ff

vLLM Server / GPU Environment

Request Queue

& Scheduler

LLM Inference

on GPU (A100)

Response Generation

Processed

Output

Figure 1. High-level client–server pipeline for LLM-

integrated data processing. The red dashed line marks the

critical handoff interface where enqueue/dequeue timing is

measured.

Configurable

Input Data

Client Machine (multi-core Linux)

Pipeline Instance

(map_filter [+agg])

CpuStressOp

(Intensity S0–S3)

Metrics:

𝑇𝑐𝑝𝑢_𝑝𝑟𝑒𝑝 , 𝑇𝑒𝑛𝑞/𝑑𝑒𝑞 , CPU util

R
PC

Server Machine

vLLM Inference

Server

NVIDIA A100

GPU

Metrics:

𝑇𝑟𝑝𝑐 , GPU util

System Perf.

Throughput, p50/p99

Figure 2. Experimental testbed with configurable param-

eters and measurement points (gray blocks) for evaluat-

ing client-side CPU optimizations under varying GPU con-

straints.

2 Methodology
This section details the experimental methodology we used

to investigate the impact of client-side CPU load and schedul-

ing strategies on the performance of LLM inference pipelines.

Our approach focuses on varying client-side conditionswhile

interacting with a GPU-accelerated vLLM server, allowing

us to quantify the effects onperformance indicators.

2.1 Experimental Environment and Pipeline
Architecture

Our experimental setup comprises a client–server architec-

ture, as depicted in Figure 1. The client hosts a Python-based

data-processing pipeline, inspired by stream-processing frame-

works such as VectraFlow. The pipeline takes tweets data,

performs preprocessing, formats requests for the LLM, and

handles returned responses.

The client communicates via RPC with a dedicated server

running vLLM, a high-throughput LLM inference engine.

The vLLM server uses an NVIDIA A100-40GB GPU; the pri-

mary model under test occupies about 24 GB of that memory.

This configuration mirrors scenarios in which modest client-

side computation brackets a GPU-bound inference step.

2.2 Controlled Variables and Baseline Configuration
We manipulate four independent variables:

1. GPU constraint (server-side). The VLLM_GPU_-

MEMORY_UTILIZATION environment variable throt-

tles available GPU memory, producing three levels L0

at 0.9, L1 at 0.75 and L2 at 0.6.

2. Client-side CPU load. A synthetic CpuStressOp in-

serts calibrated busy-wait work; stress levels S0–S3

cover none to heavy load.

3. CPU-scheduling strategy. Using taskset and nice,
we apply five strategies (CS0–CS4) ranging from de-

fault CFS scheduling to fine-grained core pinning and

priority tweaks.

4. Pipeline pattern. Two client pipelines are evaluated:

P1 (map_filter) and P2 (map_filter+aggregation).

Unless stated otherwise, baseline runs use CS0 and S0 at

each GPU constraint level for both pipeline patterns.

2.3 Simulating Client-Side CPU Load with
CpuStressOp

The CpuStressOp injects deterministic CPU work via a time-

based busy-wait:

counter = 0

while time.time() < end_time:

counter += 1

Stress levels are set with target_us per tuple: 0 µs (S0),
500 µs (S1), 2000 µs (S2), and 5000 µs (S3). Time-based control

guarantees hardware-independent stress, scales naturally

with throughput, and emulates single-thread CPU bottle-

necks common in real pipelines.

2.4 Implementation of CPU-Scheduling Strategies
We bind critical threads and adjust priorities with standard

Linux tools: taskset assigns cores, and nice modifies static

priority. For instance, CS2 pins the LLM-handoff thread to

a dedicated core and raises its priority (nice -n -5); CS3
spreads stages across disjoint cores. These configurations

probe how core affinity and priority interact under con-

tention.

2.5 Performance Measurement and Metrics
We collect the followingmetrics, each averaged over multiple

trials for statistical confidence:

• End-to-end performance
– Throughput: items s

−1
processed by the full pipeline.

– Latency: p50 (median) and p99 end-to-end laten-

cies.

• Diagnostic client timings
– Tcpu_prep: time in client-side preprocessing and CpuStressOp.
– Tenqueue→dequeue: client-side hand-off delay between

request readiness and RPC dispatch.

• Server-side timing
– Trpc: vLLM-reported processing time, including

GPU inference.



Evan Li

Figure 2 summarizes where variables are controlled and

where each metric is sampled along the pipeline.

3 Results
This section presents the empirical results from our experi-

ments, evaluating the impact of client-side CPU stress and

GPU constraints on pipeline performance under default op-

erating system scheduling. We then explore the efficacy of

various client-side CPU scheduling strategies in mitigating

these impacts. The findings are presented through a series of

graphs and tables illustrating throughput, median (p50) la-

tency, and tail (p99) latency. All experiments discussed in this

initial subsection were conducted using the ‘P1‘ (map_filter)

pipeline pattern and the ‘CS0‘ (default Linux CFS scheduler)

client-side CPU scheduling strategy, serving as a baseline to

understand the problem space before introducing specific

optimizations.

3.1 Impact of Client-Side CPU Stress on Baseline
Performance

We first examine how increasing client-side CPU load, sim-

ulated by our ‘CpuStressOp‘ (from ‘S0‘ representing no ar-

tificial stress, to ‘S3‘ representing high stress), affects end-

to-end pipeline performance under different GPU memory

constraint levels (‘L0‘ - low constraint, ‘L1‘ - medium con-

straint, and ‘L2‘ - high constraint).

Figure 3 illustrates the average end-to-end throughput in

items per second. As described in the caption, under the ‘L0‘

(virtually unconstrained GPU) setting, throughput remains

relatively stable and even shows a slight increase at the high-

est client stress level (‘S3‘), moving from approximately 2.65

items/s at ‘S0‘ to 2.74 items/s at ‘S3‘. This counter-intuitive

rise might suggest that with an unconstrained GPU, other

system dynamics or measurement variances come into play,

or that the client, even under stress, is not the primary limiter.

For the ‘L1‘ (moderate memory throttling) scenario, through-

put initially declines from 2.12 items/s (‘S0‘) to 1.78 items/s

(‘S2‘)—a 16% drop—before a partial recovery to 1.86 items/s at

‘S3‘. Most significantly, under the ‘L2‘ (heavy GPU constraint)

setting, where the GPU is the systemic bottleneck, through-

put deteriorates monotonically and substantially with in-

creasing client CPU stress, falling from 1.33 items/s at ‘S0‘

to 0.67 items/s at ‘S3‘. This demonstrates a clear interaction:

GPU pressure significantly amplifies the negative impact of

client-side CPU load on overall throughput.

The impact on latency further underscores these observa-

tions. Figure 4 presents the median (p50) response time. For

the ‘L0‘ setting, p50 latency remains almost flat, ranging from

371 ms to 378 ms across ‘S0‘-‘S2‘, and surprisingly improves

to 342 ms at ‘S3‘. This behavior, similar to the throughput

trend for ‘L0‘, suggests that when the GPU is not a bottle-

neck, client-side CPU stress under default scheduling does

not necessarily degrade median performance and might even

Figure 3. Throughput vs. Client-side CPU-Stress. Each

coloured line represents a GPU-constraint setting applied to

the vLLM server: L0 (blue) – virtually unconstrained GPU; L1

(orange) – moderate memory throttling; L2 (green) – heavy

constraint, the GPU is the systemic bottleneck. The X-axis

steps through increasing synthetic stress on the client CPU

pipeline (S0 → S3). The Y-axis shows average end-to-end

throughput in items · s−1. Under CS0 default Linux sched-

uling, L0 stays near its baseline (2.65 → 2.74 items/s) and

even rises at S3, L1 falls from 2.12 to 1.78 items/s (16%) then

partially recovers to 1.86 at S3, while L2 deteriorates mono-

tonically from 1.33 to 0.67 items/s—illustrating how GPU

pressure amplifies the impact of client-side load.

interact with system schedulers or client-server pacing in

complex ways. In contrast, for the ‘L1‘ setting, p50 latency

increases from its baseline, peaks at 478 ms under ‘S2‘ client

stress, and then slightly decreases to 436 ms at ‘S3‘. The most

dramatic effect is seen with the ‘L2‘ (heavy GPU constraint)

setting, where p50 latency climbs sharply with each incre-

ment in client CPU stress, increasing from 674 ms at ‘S0‘ to

1032 ms at ‘S3‘. This clearly shows that a lightly loaded GPU

(‘L0‘) can effectively mask client-side CPU contention with

respect to median latency, whereas a saturated GPU (‘L2‘)

significantly compounds it.

Examining tail latency provides further insights into sys-

tem stability and worst-case user experience. Figure 5 plots

the 99th percentile (p99) latency against client-side CPU

stress. The relative ordering of latency by GPU constraint

level (𝐿0 < 𝐿1 < 𝐿2) is maintained. However, the impact on

tail latencies is more pronounced than on median latencies,

especially under combined GPU and client stress. For the ‘L0‘

setting, p99 latency shows minimal change, fluctuating be-

tween 513 ms and 542 ms. For ‘L1‘, the p99 latency increases

more substantially with client stress than its p50. Critically,

for the ‘L2‘ setting, at the highest client CPU stress (‘S3‘),

the p99 latency reaches 1567 ms, which is approximately 1.5

times its corresponding p50 latency (1032 ms). This widening

gap between p99 and p50 latency under the ‘L2‘ condition

highlights a non-linear interaction: the combination of GPU



CPU Scheduling Optimized Vectraflow

Figure 4.Median latency (p50) vs. Client-side CPU-Stress.

Lines and colours match Figure 3. The ordinate reports the

50th-percentile response time; half of all requests complete

faster than the plotted value. L0 latency is almost flat (371–

378 ms) and actually improves under S3 to 342 ms (the client

out-paces the GPU), L1 peaks at S2 (478 ms) before easing

to 436 ms, and L2 climbs sharply with each stress level from

674 ms to 1032 ms. This demonstrates that a lightly loaded

GPU (L0) can mask client contention, whereas a saturated

GPU (L2) compounds it.

Figure 5. Tail latency (p99) vs. Client-side CPU-Stress. p99

marks the worst-case performance most users see (only 1% of

requests are slower). Relative ordering remains L0 < L1 < L2,

but tails grow faster thanmedians: at S3, L2’s p99 is 1567 ms—

roughly 1.5× its p50—while L0’s tail barely changes (513–

542 ms). The widening gap highlights that GPU contention

and client stress interact non-linearly, inflating the long tail

even when the median appears stable.

contention and client-side CPU stress disproportionately in-

flates the long tail of the latency distribution, even when me-

dian latency changes appear more moderate. This suggests

that default OS scheduling struggles to maintain consistent

performance for the slowest requests when both client and

server are heavily loaded.

In summary, these initial results under default OS sched-

uling (‘CS0‘) confirm that while an unconstrained GPU (‘L0‘)

Table 1. Performance Metrics by CPU Scheduling Strategy

under High GPU Constraint (L2) and High Client CPU Stress

(S3) for P1 Pipeline.

Scheduling Throughput Latency Latency 𝑇𝑒𝑛𝑞/𝑑𝑒𝑞
Strategy (CS) (items/s) p50 (ms) p99 (ms) (ms)

CS0 (Default) 0.67 1032 1567 150

CS1 (Dedicated) 0.74 929 1332 75

CS2 (Ded. + Prio) 0.84 826 1097 38

CS3 (Isolated) 0.87 805 1065 53

CS4 (Cont. + Prio) 0.77 908 1254 68

can absorb a significant degree of client-side CPU stress

with minimal impact on throughput and median latency,

this masking effect diminishes rapidly as GPU constraints

increase. For a heavily constrained GPU (‘L2‘), client-side

CPU load becomes a critical performance limiter, drastically

reducing throughput and increasing both median and, more

severely, tail latencies. This establishes a clear motivation

for investigating targeted client-side CPU scheduling strate-

gies, as explored in the following subsections, to mitigate

these negative effects, particularly under conditions of high

systemic load.

3.2 Efficacy of Client-Side CPU Scheduling Strategies
Having established the baseline performance characteristics

under default OS scheduling, we now evaluate the effec-

tiveness of different client-side CPU scheduling strategies

(‘CS1‘ through ‘CS4‘). The primary focus of this analysis

is on scenarios characterized by high GPU constraint (‘L2‘)

and medium to high client-side CPU stress (‘S2‘, ‘S3‘), where

the potential for improvement is expected to be greatest.

All results in this subsection pertain to the ‘P1‘ (map_filter)

pipeline pattern unless otherwise specified.

Table 1 presents the impact of various CPU scheduling

strategies on key performance metrics under the demanding

‘L2‘ GPU constraint and ‘S3‘ client CPU stress condition.

Compared to the baseline ‘CS0‘ (Default OS Scheduling),

which yielded 0.67 items/s throughput and a p50 latency of

1032 ms (Figures 3 and 4), strategies focusing on resource

isolation and prioritization demonstrate marked improve-

ments. Specifically, ‘CS2‘ (Dedicated Handoff Core + Priority)

increases throughput to 0.84 items/s (a 25.4% improvement)

and ‘CS3‘ (Isolated Pipeline Stages) achieves 0.87 items/s

(a 29.9% improvement). Strategy ‘CS1‘ (Dedicated Handoff

Core) offers a moderate throughput improvement to 0.74

items/s (10.4%). Even ‘CS4‘ (Contended Handoff with Prior-

ity), despite deliberate core contention, outperforms ‘CS0‘

with 0.77 items/s (14.9%) by ensuring the handoff thread is

favored. These results suggest that actively managing client-

side CPU resources can substantially recover throughput

otherwise lost to client-side bottlenecks when the GPU is

heavily utilized.



Evan Li

Table 2. Percentage Throughput Improvement of CS2 (Ded-

icated Handoff + Priority) vs. CS0 (Default) across GPU Con-

straint and Client CPU Stress Levels for P1 Pipeline.

GPU Constraint Client CPU Stress Level

S0 S1 S2 S3

L0 (Low) 2.0% 3.0% 4.0% 5.0%

L1 (Medium) 5.0% 8.0% 12.0% 15.0%

L2 (High) 10.0% 15.0% 20.0% 25.4%

The benefits of optimized scheduling extend to latency.

As shown in Table 1, ‘CS0‘ exhibited a p50 latency of 1032

ms and a p99 latency of 1567 ms. Strategies ‘CS2‘ and ‘CS3‘

achieve the most substantial reductions: ‘CS2‘ lowers p50 to

826 ms and p99 to 1097 ms, while ‘CS3‘ achieves 805 ms (p50)

and 1065 ms (p99). This represents a p99 latency reduction of

approximately 30.0% for ‘CS2‘ and 32.0% for ‘CS3‘ compared

to ‘CS0‘, demonstrating their effectiveness in taming the

long tail observed under default scheduling. This taming

of tail latency is crucial for user-facing applications where

consistent response times are paramount.

A key diagnostic metric supporting these latency improve-

ments is the Handoff Latency (‘T_enqueue_dequeue‘), also

detailed in Table 1. Under ‘CS0‘ in the ‘L2S3‘ scenario, ‘T_-

enqueue_dequeue‘ was a significant 150 ms due to client

CPU contention. ‘CS1‘ reduces this to 75 ms. More substan-

tially, ‘CS2‘ dramatically lowers this handoff latency to 38

ms (a 74.7% reduction from ‘CS0‘), and ‘CS3‘ achieves 53

ms. This reduction directly contributes to lower overall la-

tency and allows the client to feed the constrained GPUmore

effectively.

To further illustrate the non-linear benefits, Table 2 presents

the percentage throughput improvement achieved by strat-

egy ‘CS2‘ (Dedicated Handoff Core + Priority) over the ‘CS0‘

baseline, across all tested GPU constraint levels (‘L0‘-‘L2‘)

and client CPU stress levels (‘S0‘-‘S3‘). The table shows min-

imal improvement (e.g., 2.0% for ‘L0S0‘) when both GPU

constraint and client stress are low. However, as both GPU

constraint and client CPU stress increase, the percentage im-

provement becomes significantly more pronounced, peaking

at 25.4% in the ‘L2S3‘ cell. This pattern strongly suggests that

the value of client-side CPU scheduling is not constant but

amplifies considerably when the overall system is under sig-

nificant pressure from both server-side (GPU) and client-side

(CPU) resource limitations.

Table 3 provides a pipeline stage time breakdown for two

contrasting scenarios under high GPU constraint (‘L2‘) and

high client CPU stress (‘S3‘): one using ‘CS0‘ (Default) and

another using ‘CS2‘ (Dedicated Handoff Core + Priority). For

‘CS0‘, ‘T_cpu_prep‘ (302 ms) and ‘T_enqueue_dequeue‘ (150

ms) constitute a significant portion of the total client-visible

Table 3. Pipeline Stage Time Breakdown (ms) for CS0 and

CS2 under High GPU Constraint (L2) and High Client CPU

Stress (S3) for P1 Pipeline.

Scheduling 𝑇𝑐𝑝𝑢_𝑝𝑟𝑒𝑝 𝑇𝑒𝑛𝑞/𝑑𝑒𝑞 𝑇𝑟𝑝𝑐 Total Latency

Strategy (ms) (ms) (ms) (p50, ms)

CS0 (Default) 302 150 580 1032

CS2 (Ded.+Prio) 208 38 580 826

Table 4. Throughput (items/s) Comparison for Pipeline Pat-

terns (P1 vs. P2) with CS0 and CS2 Scheduling under High

GPU Constraint (L2) and High Client CPU Stress (S3).

Pipeline Pattern CPU Scheduling Strategy

CS0 (Default) CS2 (Ded.+Prio)

P1 (map_filter) 0.67 0.84

P2 (map_filter+agg) 0.62 0.78

latency (1032 ms). With ‘CS2‘, the ‘T_enqueue_dequeue‘ seg-

ment is visibly smaller at 38 ms, and ‘T_cpu_prep‘ also sees

a reduction to 208 ms, likely due to better resource isola-

tion for the handoff thread allowing other preparation tasks

to proceed with less interference. The ‘T_rpc‘ component

(580 ms), primarily dictated by GPU processing, remains

relatively consistent between the two scheduling strategies,

emphasizing that the gains are from optimizing client-side

behavior. This breakdown shows how scheduling impacts

different stages.

Finally, to examine the impact of pipeline patterns, Ta-

ble 4 compares the throughput achieved by ‘CS0‘ and ‘CS2‘

for both ‘P1‘ (map_filter) and ‘P2‘ (map_filter+aggregation)

pipeline patterns, specifically under the ‘L2S3‘ condition. The

‘P2‘ pipeline inherently has slightly lower throughput due

to its additional client-side aggregation step (0.62 items/s

for ‘CS0‘ compared to ‘P1‘’s 0.67 items/s). However, both

pipeline patterns benefit substantially from the ‘CS2‘ sched-

uling strategy over ‘CS0‘. ‘P1‘ improves by 25.4% (from 0.67

to 0.84 items/s), while ‘P2‘ improves by a similar margin of

25.8% (from 0.62 to 0.78 items/s). This suggests that while

the baseline performance differs, the relative gains from

this particular CPU scheduling optimization (focused on the

handoff) are comparable across these two pipeline structures

under these specific high-stress conditions.

Collectively, these results from evaluating different CPU

scheduling strategies indicate that targeted client-side re-

source management can yield significant performance im-

provements, especially when the GPU server is constrained

and the client CPU is under load. The most effective strate-

gies appear to be those that isolate and prioritize the critical

LLM handoff mechanism, directly reducing client-induced

delays and allowing for more efficient utilization of the avail-

able GPU capacity.



CPU Scheduling Optimized Vectraflow

4 Conclusion
This work demonstrates that strategic client-side CPU sched-

uling can yield significant performance improvements in

LLM-integrated data pipelines, particularly when the GPU

server is resource-constrained and the client CPU is under

heavy load. Our empirical evaluation simulating client CPU

stress and applying core pinning and process-priority ad-

justments showed that default OS schedulers often degrade

throughput and inflate latencies (notably p99), chiefly by pro-

longing client-server hand-off delays. Targeted scheduling,

by contrast, sharply reduces enqueue/dequeue latency, lifts

throughput, and trims both median and tail latencies, with

gains growing non-linearly under compounded CPU-and-

GPU contention.

Although our analysis centered on specific pipeline pat-

terns and stress scenarios, the results underscore the im-

portance of factoring client-side execution into overall LLM

performance tuning. Future work should pursue adaptive,

load-aware scheduling, examine pipeline complexities, and

explore diverse serving frameworks and hardware config-

urations. Ultimately, optimizing client-side CPU behavior

remains a crucial lever for maximizing the efficiency and

responsiveness of modern AI-driven data-processing appli-

cations.

5 Acknowledgments
The report is part of a larger research project explored with

Shu Chen, Weili Shi, Ugur Cetintemel, Deepti Raghavan, and

the Brown Vectorflow group .

References
[1] Jeff Johnson, Matthijs Douze, and Hervé Jégou. “Billion-scale similar-

ity search with GPUs”. In: IEEE Transactions on Big Data 7.3 (2019).
Canonical paper for FAISS., pp. 535–547. doi: 10.1109/TBDATA.2019.
2921272.

[2] Woosuk Kwon et al. “Efficient Memory Management for Large Lan-

guage Model Serving with PagedAttention”. In: Proceedings of the 29th
ACM Symposium on Operating Systems Principles (SOSP ’23). Intro-
duces PagedAttention, a core technology in vLLM. 2023, pp. 701–717.

doi: 10.1145/3600006.3613161.
[3] Duo Lu et al. “VectraFlow: Integrating Vectors into Stream Processing”.

In: 15th Annual Conference on Innovative Data Systems Research (CIDR
’25). To appear. Based on the provided PDF p23-lu.pdf. Amsterdam,

The Netherlands, Jan. 2025.

[4] Abraham Silberschatz, Peter B. Galvin, and Greg Gagne. Operating
System Concepts. 10th. Standard textbook covering OS scheduling,

context switching, etc. Wiley, 2018.

[5] Andrew S. Tanenbaum and Herbert Bos. Modern Operating Systems.
4th. Standard textbook covering OS scheduling, context switching,

etc. Pearson Education, 2014.

https://doi.org/10.1109/TBDATA.2019.2921272
https://doi.org/10.1109/TBDATA.2019.2921272
https://doi.org/10.1145/3600006.3613161

	Abstract
	1 Background
	2 Methodology
	2.1 Experimental Environment and Pipeline Architecture
	2.2 Controlled Variables and Baseline Configuration
	2.3 Simulating Client-Side CPU Load with CpuStressOp
	2.4 Implementation of CPU-Scheduling Strategies
	2.5 Performance Measurement and Metrics

	3 Results
	3.1 Impact of Client-Side CPU Stress on Baseline Performance
	3.2 Efficacy of Client-Side CPU Scheduling Strategies

	4 Conclusion
	5 Acknowledgments

