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Abstract

Reconstructing dynamic hand-object contacts is essential
for realistic bimanual manipulation, yet it remains chal-
lenging due to heavy occlusions, complex surface details,
and limitations in existing capture techniques. In this pa-
per, we introduce a novel markerless capture method for
accurate and efficient dynamic bimanual hand–object ma-
nipulations. Our approach leverages a dynamic, articulated
representation based on 2D Gaussian surfels to model com-
plex interactions. By binding these surfels to MANO [43]
meshes, we harness the inductive bias of template mod-
els to stabilize and accelerate optimization. To evaluate
dynamic contacts, we curated a new hand–object manip-
ulation dataset with ground-truth contacts, and we demon-
strate that our method achieves state-of-the-art dynamic re-
construction quality and significantly improves contact es-
timation accuracy.

1. Introduction
Skillful object manipulation is one of the most common, yet
impressive, human physical abilities. Human manipulation
of objects is highly dynamic and involves the coordinated
movements of fingers in both hands to perform complex
tasks. An important step in analyzing or replicating ma-
nipulations is understanding the dynamic contacts between
hands and objects [8]. Contact provides a measure of spa-
tial proximity [4, 47, 60] and influences the kinematics and
dynamics [3, 29, 62] of the interaction.

Despite its significance, accurately capturing and re-
constructing dynamic contacts remains a challenge. Ex-
isting markerless contact capture methods rely on low-
dimensional parameterized models for both the hand and
the object. Representations such as hand skeletons [13, 24],
meshes [1], neural fields[34], or parametric hand shape
models [43] are often used, but struggle to capture fine
contact details. Recently, Gaussian-Splatting methods [7,
17, 19, 22, 23, 28, 33, 50, 52, 54–56] have demonstrated
impressive results in accurate pixel-aligned reconstruction,
and Gaussian-based hand avatars [18, 37] have proved su-

perior to other template-based methods. However, they are
not designed for capturing dynamic contacts with relative
hand-object motion, common in complex manipulations.

We address these limitations with a method for cap-
turing contact in complex bimanual hand-object manipula-
tions. Our method employs multi-view markerless capture
for natural manipulations, representing hands and objects
with 2D Gaussian surfels [17] that accurately model sur-
faces and appearance for contact estimation. Specifically,
we bind 2D Gaussian surfels to a parametric hand mesh [43]
for each hand. Unlike grasping, where the object remains
static [37], our approach supports dynamic manipulation,
involving both in-hand and between-hand object motions.
To support this, we initialize a model-free 2D Gaussian sur-
fel model for the object and track its pose over time. Then,
based on surfel pair distances, we can efficiently compute
instantaneous and accumulated contacts.

Evaluating dynamic contacts is challenging due to the
difficulty in obtaining reliable ground truth. Therefore,
we introduce a dataset that provides ground truth contacts
even under heavy occlusion and rapid motion. We ob-
tain ground truth contacts using an improved paint residue
method [20, 37] redesigned for gathering complex manipu-
lations at scale. Experimental results demonstrate that our
method achieves state-of-the-art reconstruction quality and
contact estimation accuracy.

In summary, our contributions are:
• We introduce a method for accurate contact capture in

complex bimanual hand-object manipulation sequences.
Our method reconstructs both the hand and the object
with dynamic 2D Gaussian surfels [17] for accurate sur-
face modeling without misalignments.

• We curate and capture a dataset containing ground truth
contact labels for challenging scenes with heavy occlu-
sion and rapid motion.

2. Related Work
Capturing and Modeling Contact. Accurately capturing
and modeling dynamic hand-object contact is essential for
analyzing and replicating complex hand-object manipula-
tions. However, the skeletal structure and soft tissue of
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Figure 1. Our method captures dynamic contacts with a markerless system using a contact-aware dynamic articulated Gaussian representa-
tion. Given multi-view RGB videos, we bind Gaussian surfels to MANO mesh locally where they remain rigged throughout optimization.
For objects, Gaussians are initialized by placing a coarse point cloud in the global coordinate space.

human hands pose significant challenges. Early methods
relied on instrumented gloves [15, 27, 46], specialized sen-
sors [12, 36, 58], or thermal imaging [4] to capture contacts,
but these methods may restrain natural hand movements,
affect tactile feedback, or even fail to capture dynamic
changes. Existing works attempt to model dynamic contacts
using hand skeletons [11, 13, 24], customized meshes [1],
and MANO models [5, 9, 14, 30, 43, 47]. Although these
methods exhibit impressive quality and generalization, they
often suffer from misalignment and lack the fine details cru-
cial for precise contact analysis. Inspired by the success of
Gaussian Splatting, recent works [18, 37] adopt 3D Gaus-
sians for appearance modeling that significantly improves
reconstruction quality. However, these methods requires
multi-view videos with minimal occlusions, a carefully de-
signed optimization procedure for training an animatable
Gaussian hand, and fail to capture dynamic contacts in ma-
nipulation scenes.

Dynamic Scene Representation. Recently, 3D Gaus-
sian Splatting (3D-GS) [22] has become a popular represen-
tation for novel view synthesis. Building on 3D-GS, a flurry
of work on dynamic scenes has emerged [7, 19, 23, 28, 33,
41, 50, 52, 54–56]. Dynamic3DGS [33] learns transforma-
tions of Gaussian primitives over time, facilitating dynamic
tracking [49]. Deformable3DGS [56] and 4DGS [50] define
a deformation field mapping canonical Gaussian primitives
to specific time steps, but this approach struggles with new
content appearing or disappearing. While these techniques
perform well on general scenarios, few provide a dedi-
cated approach for articulated objects like hands. Addition-
ally, driving these methods with a predefined hand model
or using them in complex, real-world manipulations re-
mains a major challenge. Efforts like GaussianAvatars [38]
and SurFhead [25] apply Gaussian Splatting to rig para-
metric models (e.g., FLAME [26]) for head avatar recon-

struction [16, 40, 48, 51, 53], highlighting the potential of
template-driven Gaussian Splatting. However, exploiting
dymanic reconstruction for complex hand object manipu-
lations with template models such as MANO [43] remains
unexplored.

3. Preliminary
3D Gaussian Splatting (3D-GS) [22] represents a scene us-
ing anisotopic 3D Gaussian primitives. Each gaussian is
defined by a mean position xi ∈ R3 and a 3D covariance
matrix Σi, where the covariance matrix Σi is decomposed
into a rotation matrix Ri and a scaling matrix Si. Appear-
ance is modeled by opacity σi ∈ R and color ci ∈ Rk using
spherical harmonics, and the parameters are optimized via
rendering loss with a tile-based rasterizer and α-blending.
2D Gaussian Splatting (2D-GS) [17] extends this to more
accurately reconstruct geometry using 2D Gaussian sur-
fels. Each surfel is defined by a mean position x, scaling
s = (su, sv), and rotation r = (ru, rv), where ru and rv are
tangential vectors. To enhance surface modeling, ray-splat
intersection is used. We adopt 2DGS as our preferred rep-
resentation to more accurately model geometry surfaces for
contact analysis.

4. Method
Given multi-view videos, V , and their camera parameters,
our method accurately reconstructs the geometry, appear-
ance, and contacts between hands and objects in a manipu-
lation scene. Figure 1 presents our pipeline.

Initialization. To accurately capture hand–object inter-
actions, we extract clear and consistent hand and object
masks from the input multi-view images. We employ Seg-
ment Anything V2 [42] to obtain the foreground segmen-
tation masks, M, which include both hands and objects.
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Figure 2. Qualitative comparisons on our dataset. Our method produces superior reconstruction quality with sharper novel view synthesis
renderings, comparing with Deformable3DGS [56], 4DGaussians [50], Realtime4DGS [55], AT-GS [6], and 3DGStream [45]. Our method
provides high quality reconstruction at the occluded regions, around the edges and at fine-grain details, where the baselines contains
artifacts and blurriness. Zoom in for better views.

Facilitating the precise geometry and appearance modeling,
we initialize a coarse hand surface representation using the
MANO model [44]. A fully automated pipeline [10] esti-
mates a sequence of MANO meshes T from the input multi-
view videos to initialize the hand(s). Additionally, we ini-
tialize each object’s geometry using coarse point clouds, O,
obtained either from offline scans or from the reconstruction
of the first frame.

Template-based Gaussian Hand. To accurately capture
hand surface geometry and appearance, we attach 2D Gaus-
sian surfels to the triangular faces of the MANO mesh. Each
surfel is defined in the local coordinate system of its parent
triangle rather than moving freely in 3D space. With the
MANO parameters T j at time step j, the dynamics of each
surfel are decoupled into a global transformation—driven
by the parent triangle’s motion in world coordinates—and
a relative transformation within the triangle’s local system.
Following the approach in [39], we define each triangle’s lo-
cal coordinate system by setting its barycenter as the origin
T. We then construct a rotation matrix R by concatenat-
ing the direction vector of one edge, the triangle’s normal
vector, and their cross product. This matrix transforms co-
ordinates from the triangle’s local system to the global coor-
dinate system. In the local system, each 2D Gaussian surfel
is characterized by a mean position x, rotation r, and scal-
ing s. We represent the left and right hand as two separate
groups of 2D Gaussian surfels, GH = {G left

H ,Gright
H }.

Object and Scene Composition. Given a sparse point
cloud as initialization, we represent an object by a group of
2D Gaussian surfels in the world coordinate. We introduce
a learnable parameter P to track the object’s pose along the
sequence. We represent all objects as GO and the whole
dynamic scene as G = {GH ,GO}. At timestep j, hands

and objects are transformed to the deformed space by the
corresponding MANO parameters T j and pose parameters
Pj . During training, we adopt adaptive density control with
binding inheritance [39] for hands and regular adaptive den-
sity control [17] for objects. During rendering, all the 2D
Gaussian surfels are projected onto an image plane and ren-
dered by a differentiable tile-based rasterizer.

Optimization. We supervise the rendered images by
photometric loss, LC , defined in 3DGS [22]. Following
2DGS [17], we use the depth distortion term Ld to en-
courage concentration of surfels and the normal consistency
loss Ln to approximate the surface. Following GaussianA-
vatars [39], we use two rigging regularization terms Lp and
Ls to restrict the position and scale of hand surfels for bet-
ter alignment with their parent triangles. We observe that
Gaussian surfels become elongated in contact regions which
result in artifacts in the estimated contact maps. Thus, to
improve accuracy, we also introduce an isotropic regulariza-
tion term, Li, that constrains the shape of Gaussian surfels.
The overall loss function is:

L = Lc + λ1Ld + λ2Ln + λ3Lp + λ4Ls + λ5Li, (1)

where λ1, λ2, λ3, λ4, and λ5 are 100, 0.005, 0.01, 1 and 0.1
respectively.

Dynamic Contact Estimation. Leveraging our accurate
hand and object surface models, we estimate hand–object
contact at each frame by comparing their respective Gaus-
sian surfels, following prior methods [9, 37, 47]. Specifi-
cally, for each 2D Gaussian surfel on the hand, we find the
closest 2D Gaussian surfel on the object. The pair is con-
sidered to be in contact if the Euclidean distance is less than
a pre-defined threshold τ .
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Figure 3. Contact Comparisons: We compare accumulated contacts of our method with MANUS, MANO, and HARP on ground truth
contacts from MANUS-Grasps dataset. Our method provides more accurate contact estimation.

5. Experiments
5.1. Dataset
Benchmarking dynamic hand-object contact estimation is
challenging because most real-world hand–object manipu-
lation datasets [2, 9, 10, 24, 30–32, 35, 47, 59] lack ground-
truth contact annotations. Although a few datasets provide
ground truth via thermal imaging [4] or wet-paint trans-
fer techniques [37], these methods are limited to grasp-
ing tasks with static objects rather than dynamic manipu-
lation scenarios. To address this gap, we introduce the new
dataset, which features diverse real-world hand–object ma-
nipulation sequences with ground-truth contacts. Specif-
ically, our dataset integrates data from three multi-view
hand–object interaction datasets: GigaHands [10], DiVa-
360 [32], and MANUS-Grasps [37], which offers bimanual
complex manipulation, long-range bimanual hand object in-
teraction, and unimanual dynamic grasps, respectively. As
these datasets do not include ground-truth contact labels
for bimanual manipulations, we additionally captured six
new complex bimanual manipulation sequences using an
improved paint residue method [20, 37]. In total, there are
37 hand-object manipulation sequences, with 21 sequences
containing ground truth contacts.

5.2. Baselines
For dynamic scene reconstruction, we compare our
method with five state-of-the-art approaches: 4DGaus-

sians [50], Deformable-3DGS [56], Realtime4DGS [57],
3DGStream [45], and AT-GS [6]. However, these meth-
ods do not naturally support dynamic contact estimation,
as they do not differentiate between hands and objects.
Therefore, to evaluate contact estimation, we select another
group of baselines that are state-of-the-art analytical meth-
ods for contact estimation: MANO [43], HARP [21], and
MANUS [37].

5.3. Evaluation on Dynamic Reconstruction
Qualitative Comparisons. Figure 2 presents qualitative
comparisons of dynamic reconstruction on our dataset.
Compared to baselines, our method presents higher recon-
struction quality with clearer and more detailed reconstruc-
tion, especially in contact regions. Our approach accurately
reconstructs both low-frequency non-interactive areas and
high-frequency hand–object interactions. Moreover, while
other unstructured Gaussian representations methods tend
to generate floating artifacts, our template-based Gaussian
representation enforces a strong inductive bias that reduces
such artifacts with fewer Gaussian primitives, resulting in
better 3D consistency.

Quantitative Comparisons. Table 1 presents quantita-
tive comparisons on dynamic reconstruction with PSNR,
SSIM and LPIPS [61] metrics. As indicated in Table 1, our
method outperforms state-of-the-art baselines in all metrics
across all scenes.
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Dataset GigaHands [10] DiVa-360 [32] MANUS-Grasps [37]
Method—Metric SSIM↑ PSNR↑ LPIPS↓ Mem SSIM↑ PSNR↑ LPIPS↓ Mem SSIM↑ PSNR↑ LPIPS↓ Mem
Deformable3DGS [56] 0.970 26.37 0.039 5MB 0.978 29.20 0.036 5MB 0.970 29.58 0.042 6MB
4DGaussians [50] 0.963 25.82 0.045 136MB 0.975 28.35 0.041 136MB 0.967 28.60 0.044 136MB
Realtime4DGS [57] 0.969 26.14 0.044 168MB 0.957 21.99 0.062 103MB 0.974 29.85 0.044 291MB
AT-GS [6] 0.972 26.62 0.038 380MB 0.979 28.41 0.033 160MB 0.972 29.40 0.039 122MB
3DGStream [45] 0.96 28.12 0.061 15MB 0.960 29.34 0.043 15MB 0.946 26.41 0.084 16MB
Ours 0.982 30.06 0.018 13MB 0.983 32.18 0.020 11MB 0.974 32.67 0.021 8MB

Table 1. Reconstruction Quality Comparison. We compare our dynamic reconstruction results against other Gaussian-based approaches
on multiple datasets, showing that our method achieves superior performance in SSIM, PSNR, and LPIPS metrics with the highest memory
efficiency.

MANO HARP MANUS Ours
mIoU↑ 0.168 0.182 0.211 0.226
F1 score↑ 0.279 0.299 0.343 0.378

Table 2. Contact Accuracy Comparison. We evaluate con-
tact accuracy against other methods and demonstrate consistent
improvements across all metrics.

5.4. Evaluation on Dynamic Contact Estimation
Qualitative Comparisons. Figure 3 provides qualitative
comparisons on accumulated contact estimation with other
methods. It shows that our method yields more accurate
dynamic contact estimates that closely match the ground
truth, unlike the over-segmentation seen in baseline meth-
ods. This improvement stems from our template-based
Gaussian representation which enforces a strong inductive
bias that reduces noise and removes floating artifacts around
contact regions.

Quantitative Comparisons. Table 2 quantitatively eval-
uates contact estimation accuracy using Intersection over
Union (IoU) and F1-score metrics [37] by comparing es-
timated and ground truth contact maps. As shown in Ta-
ble 2, our method consistently outperforms all baselines on
the dataset, which aligns with the visual results in Figure 3.
Notably, while other Gaussian-based hand models[37] use
approximately 300k Gaussians per sequence, achieves su-
perior results with only about 10k Gaussians per sequence
on average, underscoring its efficiency in dynamic contact
estimation.

6. Conclusion
We introduced a novel markerless capture method that cap-
tures dynamic contacts for bimanual hand-object manipu-
lations. The method leverages a dynamic articulated rep-
resentation based on 2D Gaussian surfels to capture com-
plex manipulations. Additionally, it takes advantage of
the inductive bias from template models through binding
surfels to MANO [43] meshes, which efficiently stabilizes
and speeds up the optimization process. To evaluate dy-
namic contacts, we curate a new hand-object manipulation
dataset with ground truth contacts. Extensive experiments

on our dataset demonstrate that our method achieves state-
of-the-art dynamic reconstruction quality and significantly
improves the accuracy of dynamic contacts capturing.

Limitations & Future Work. While our primary
focus in this paper is accurate dynamic contact estima-
tion, we acknowledge that the complexity of hand and
object dynamics in everyday life extends far beyond
our current exploration. Our work has concentrated on
modeling two hands manipulating rigid objects, with-
out addressing the challenges posed by articulated or
more general objects. We also see potential for enhancing
the evaluation metrics for dynamic contacts in future works.
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