
CSCI 1430 Final Project Report:
Magic Eraser

Team Members: Andrew Li, Michelle Lu, Abhyudaya Sharma & Aaron Zhang.
TA Name: Siddarth Diwan. Brown University.

Abstract

Ever since the invention of photographs, people have
captured unwanted objects and people in their images. Pho-
tobombs, crowds and solar glare are some things people try
to remove from their images. Our project leverages a cutting-
edge photo editing tool akin to Google’s Magic Eraser: an
artificial intelligence backed web application that not only
seamlessly removes unwanted objects, but is also accessi-
ble to laypeople without knowledge of convoluted, difficult
software like Photoshop and Gimp.

The web application utilizes YOLOv8 for image segmen-
tation and stable-diffusion-inpainting for inpainting. The
integration of these two models not only adheres to min-
imizing user effort, but also achieves high-fidelity image
editing. The ongoing adaptation and improvement of these
models further refine the tool’s capabilities, balancing user-
friendliness with sophisticated technological innovation.

1. Introduction
With the advent of photography, there are several use

cases where a user may want to remove unwanted elements
from their photos, including photobombs, crowds, and solar
glare. Though it is possible to use existing software like Pho-
toshop and Gimp, these applications require high learning
curves and are difficult to use.

Google introduced a photo editing tool in 2021 called
Magic Eraser that easily eliminates unwanted people and
things in a picture. Upon its release, this technology sparked
much buzz about its ability to enhance the visual appeal and
aesthetics of photographs.

However, there are limitations behind Google’s Magic
Eraser. The first is that Google’s Magic Eraser automatically
fills in details which may not be what the user wants. That
is, there is no user prompt to the technology. The second
is that Google’s Magic Eraser requires access to an individ-
ual’s complete photo library and does not work across all
platforms (limited to iOS and Android).

Identifying these limitations, we implemented a photo
editing tool akin to Google’s Magic Eraser that grants users

Figure 1. Google prompts users for access to their complete photo
library

the flexibility to remove objects and inpaint the image in a
less privacy-invasive way.

The pipeline for the application consists of three Com-
puter Vision tasks:

• Object Recognition

• Segmentation

• Inpainting

These three functionalities are combined into a web-
application where users can upload a picture, get a list of
recognized objects, choose which object to remove, and vi-
sually see the object segment to be removed in the image
before the application removes it. The web application then
displays an output image without the object in it that can be
easily downloaded and exported.

2. Related Work
Google’s Magic Eraser [1] is publicly available software

tool that can remove unwanted objects from images. Users
can use their phones to select objects for removal. Magic
Eraser then automatically fills in the missing details after
removing the selected objects.

In 2019, Xin Hong, Pengfei Xiong, Renhe Ji and Hao-
qiang Fan released DFNet [2], an inpainting model that took
in as inputs the original image with objects removed as well
as the mask of the object that was removed. They constructed

1



several new neural network blocks that improved perfor-
mance by forcing the model to train on the missing areas.
The authors also developed new model losses that focused
more on the model’s performance on missing regions.

Rombach et al. debuted Stable Diffusion, a text-to-image
generation model, in 2022 [3]. The authors also created an
inpainting model by training on top of the existing Stable
Diffusion v1 weights. The stable diffusion model was trained
on 256 Nvidia A100 GPUs for a total training time of over
150,000 hours.

3. Method

For optimal functionality of our Magic Eraser, we identify
two underlying problems to solve: extracting objects from
the background of an image and filling in missing regions
left by selected objects in the image when prompted. Our
approach, therefore, consists of two major components:

Segmentation Image segmentation is the process of iden-
tifying which pixels of an image belong to one object.
For segmentation, we decided to use YOLOv8, a state-
of-the-art pre-trained image segmentation model that
accurately identifies thousands of different objects. We
take the polygon surrounding the object and generate a
mask image.

Inpainting Inpainting is the process of filling in missing
details in an image. We implemented inpainting two
ways:

• Reimplementing and training a custom DFNet
model [2] from scratch in Tensorflow on 10 mil-
lion images from the MIT Places2 dataset. [4]

• Using an existing pre-trained
stable-diffusion-inpainting model
from Hugging Face [3].

For training our DFNet model, we perused the original
paper [2] and reimplemented their novel neural network
blocks and custom losses in Tensorflow. We assembled an
architecture identical to what was described in the paper
and then trained it on a Windows 10 PC with an Nvidia
3060Ti GPU using WSL2 on Ubuntu 22.04. This model’s
architecture does not allow the user to provide a prompt and
would try to automatically generate the missing contents.

By using the existing stable diffusion model, users can
input a custom prompt for inpainting, giving them more
flexibility about the contents that will be inpainted. Since
this model is trained on over 2 billion images, the quality of
the outputs are far beyond anything we could achieve with
our limited budget. This is the model we use for our web
application.

4. Results

4.1. Web Application

We created a web application for users to uitilize the mod-
els we used in a seamless manner. The user is first prompted
to with a screen to upload their own image or choose an
existing photo:

Upon uploading an image, the user must crop the image so
that it is a square, as the inpainting model requires images to
be 512x512. Users have the ability to zoom in on the region
they would like to use, in addition to moving the highlighted
region:

Once the user is happy with the selected region, they are
then prompted with a dropdown box to select the object
they would like to mask and inpaint. In the event that there
are multiple objects with the same label (ie, multiple dogs),
users may refer to the image on the left, as a red box will
appear to denote the object currently selected:

Once the desired object has been selected, the user may enter
a prompt for our model to use for inpainting purposes. In
this example, the prompt was “cat”:



The user is then prompted with the resulting image and are
given the option to either download the image or upload a
new one:

As previously mentioned, there are two main components
to our web application: segmentation and inpainting. The
results of this will be discussed in the following two sections.

4.2. Segmentation

Using YOLO, we were able to not only detect the pres-
ence of objects, but also identify what these objects were.
Some examples of this are shown below:

4.3. Inpainting

As previously mentioned, we employed two separate tac-
tics to handle the task of inpainting:

DFNet Our outputs of tests conducted on our trained-from-
scratch DFNet model were somewhat poor. Please see
Figure 2 for an example. We attribute the inaccuracy to
tight time constraints and a large dataset. More specif-
ically, even on a powerful Nvidia 3060Ti GPU, each
epoch took an average of approximately 12 hours, leav-
ing us only able to train the model for around 10 epochs.
We believe that with more compute and time avail-

Figure 2. DFNet Output after 10 epochs

abililty, our DFNet model would be able to perform as
well as, or even exceed, what Hong et al. were able to
achieve.

Stable Diffusion Inpainting We demonstrated our We-
bApp, which employs the Stable Diffusion Inpaint-
ing model, and its functionality to several qualified
acquaintances in the Brown Computer Science depart-
ment before asking them to try the Magic Eraser out
for themselves. The most common feedback our We-
bApp received was that, while not perfect, the Stable
Diffusion model did a far better job of achieving the
user’s expected functionality following segmentation.
Many also appreciated the incorporation of natural lan-
guage processing embedded within the Stable Diffusion
interface.



Figure 3. Stable Diffusion Inpainting Outputs

Figure 4. More Stable Diffusion Inpainting Outputs

Figure 5. Bad Stable Diffusion Outputs (prompt = ”sky and clouds”)

In figures 4 and 5, we include several examples of pairs
of inputs and outputs to our WebApp along with a user
query. For most images, the model performs well. How-
ever, there are some cases when the model’s outputs are
not what we would have expected.

4.4. Technical Discussion

From training the DFNet model, we learnt that training
complex deep learning models requires a significant amount
of compute and that it quickly gets expensive when we need
to rent GPUs from cloud providers. Hyperparameter tun-
ing, another important puzzle that needs to be solved during
training, also becomes significantly harder when one training

epoch takes several hours (which in our case took approx-
imately 12 hours). For most students and organizations, to
get good results while not burning money, we feel like using
and/or building on top of existing pre-trained models is the
only way to achieve good results.

Another aspect worth considering is the storage of images
that are being uploaded. Currently, we utilize UploadThing
to store the images uploaded by users. Because we are cur-
rently using the free version, there is a limitation of 2GB.
In the event that we max out on this limit, any calls to our
API to upload images will error. To mitigate this, we can
manually go in and delete existing images stored, but this
would be an undesirable solution since this compromises the
integrity of the storage application. Furthermore, this also
raises questions about user privacy, as we do not explicitly
state how we store the images they upload and the duration
in which we do so. Because we delegate the storage of im-
ages to UploadThing, this means that our app’s reliability
and confidentiality depends on UploadThing. If it were to
be compromised, this would have an incredibly large impact
on our application.

Moreover, the input file size for our specific stable diffu-
sion model is restricted to 512 x 512 pixels. To comply with
this limitation, all input images are cropped to this square
format, and we provide tools for users to adjust zoom and
shift scales to fine-tune the focus of the image before upload-
ing. However, this approach presents challenges for editing
non-square photos since information in the photo will in-
evitably be lost. While users may include a border around
their image to ensure that all of the objects in the image
are included, this may compromise the resolution of their
images, depending on the original dimensions. In essence,
this restriction can affect the final quality and authenticity of
the edited photo.

Finally, our web application is developed using Next.js
and deployed on Vercel. Utilizing third-party services like
Vercel means we must adhere to their operational condi-
tions and limitations. That is, any server outages or periods
of excessive traffic on Vercel’s end can directly impact the
availability and performance of our application. Addition-
ally, we are operating on Vercel’s free tier, which while does
grant us a majority of functionality, there are a few missing
features such as password protection and access to web ana-
lytics and speed insights. Without these features, it becomes
challenging to refine and improve the application effectively.

5. Conclusion
We present a user-friendly Magic Eraser tool that allows

users to remove unwanted objects from images. From our
results, we can conclude that AI models are impressive and
generally work well for the majority of input images. How-
ever, it is still possible for them to create non-realistic outputs
that do not resemble the real world.



6. Social Impact
We discuss several potential social impacts that our Magic

Eraser may have. One concern that our Magic Eraser miti-
gates is user privacy. Google’s Magic Eraser requires access
to a user’s full photo library, which some may feel uncom-
fortable with. In contrast, our model only requires the input
image a user chooses without asking for permission to access
any other photos in the user’s library. Although we do not
have a privacy policy at this moment, it is possible for us to
delete uploaded images after a short duration of time (say 24
hours). This will ensure that users’ sensitive images are not
exposed even if there is a data breach or vulnerability in our
software.

Another potential issue with images generated by our
Magic Eraser is the creation of fake information. In the past
few years, fake news have become a real problem. It is not
impossible to imagine that fake news can lead to a differ-
ent election outcomes. There is also a real danger of fake
news disrupting peace and causing communal violence. The
problem is not limited to just large-scale global or regional
disinformation campaigns; fake information could be an oc-
cupational or legal hazard. For instance, a fake Twitter post
saying that a company will refuse to provide health insurance
can sow the seeds of distrust in the eyes of its employees.

Our Magic Eraser isn’t immune from these issues. Al-
though most of our outputs are easily distinguishable from
real-life images, a malicious actor could still use our tools to
swindle unknowing individuals. Given the right input photos
and prompts, it’s possible for certain output images to look
more realistic and convey/elicit specific responses. This is-
sue becomes further compounded when the malicious actor
knows the other individual personally – an added level of
trust and personal connection makes it easier to scam un-
suspecting individuals. Furthermore, these images may not
be carefully analyzed to determine their authenticity. Many
times, we look at photos in an effort to gain additional in-
formation, without questioning its source or message. This
instinct, while efficient for our day-to-day activities, unfortu-
nately amplifies the risks that our Magic Eraser poses.

We also need to consider how our Magic Eraser can be
used in the context of bias and fairness. The use of tools such
as our Magic Eraser to remove certain objects or people from
photos could potentially perpetuate biases or reinforce stereo-
types. For instance, selectively editing out individuals from
diverse backgrounds could contribute to underrepresenta-
tion in media and perpetuate harmful stereotypes. Similarly,
indiscriminate applications of our Magic Eraser could be
made towards inadvertently erasing culturally significant
elements from photos, leading to cultural appropriation or
erasure. Users should be mindful of the cultural context of
the images that are inputted and consider the implications of
removing or altering certain elements of the image. Finally,
given that the Stable Diffusion Inpainting model was trained

on subsets of LAION-2B(en), which consists of images that
are primarily limited to English descriptions, this means texts
and images from communities that communicate through
other languages may be insufficiently accounted for.

The environmental impact of training and using models
is also a concern. It is estimated that training just the stable
diffusion inpainting model produced over 11,250 kg of car-
bon dioxide. According to the EPA, equivalent to driving a
petrol car for over 42,000 km. Until we can ensure that the
electricity for training deep learning models is from renew-
able sources, deep learning models can have a significant
contribution towards global warming and climate change.
Furthermore, each time a user tries to use our Magic Eraser,
we are wasting precious energy that could have been used
for filtering water or growing food in developing countries.

We also reflect upon the potential impact of our Magic
Eraser on user’s self-perception. Tools like our Magic Eraser
may increase the prevalence of heavily edited photos on
social media and thus, may contribute to unrealistic beauty
standards and adversely impact individuals’ self-image and
self-esteem. This could have ramifications for mental health
and well-being, particularly among young people.

Legal and copyright issues can arise with our Magic
Eraser. The use of Magic Eraser-like tools to edit or remove
copyrighted elements from photos may raise legal and copy-
right concerns. Users need to be aware of copyright laws
and licensing agreements when editing and sharing photos
to avoid infringing on the rights of content creators.

Regarding copyright, it is important to know what the
copyright status of the images used to train the model was.
If the training dataset consisted of copyrighted images, and
the model learns to reproduce said images verbatim, the
user may be in violation of copyright laws. In such situation,
the onus may also lie on us, the developers of the model.
The dataset curators might also share some responsibility.
As far as we know, the existing copyright law was written
decades ago when generative AI models were not a thing.
Since the law has not been amended to keep up with recent
developments, it is unclear who the blame should fall onto.

Our solution makes it easy to remove objects; however,
it also removes the legitimacy that humans have generally
attributed to images. Images hold immense value – an image
can literally capture history, an image can be the deciding
factor in a judicial trial, an image can evoke passionate emo-
tions and bring change in our world. By dismembering the
authenticity that is inherent of images, generative AI models
have the potential to destroy the fabric of trust that under-
lies human lives. Software developers, including us, have
the responsibility to correctly place an indelible mark on
AI-produced content that cannot be removed. Although there
are several such efforts in the works, until every developer
adopts one such standard, we have, unfortunately, eroded all
trust in our digital communications.



References
[1] Google Magic Eraser. https://blog.google/

products/photos/magic-eraser/. Accessed:
2024-05-14. 1

[2] Xin Hong, Pengfei Xiong, Renhe Ji, and Haoqiang Fan. Deep
fusion network for image completion. In Proceedings of the
27th ACM international conference on multimedia, pages 2033–
2042, 2019. 1, 2

[3] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick
Esser, and Björn Ommer. High-resolution image synthesis with
latent diffusion models. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR),
pages 10684–10695, June 2022. 2

[4] Bolei Zhou, Agata Lapedriza, Aditya Khosla, Aude Oliva, and
Antonio Torralba. Places: A 10 million image database for
scene recognition. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2017. 2

Appendix
Team contributions

All team members contributed to the success of this
project.

Abhyudaya Sharma & Aaron Zhang Set up the dev envi-
ronment on a Windows PC with Nvidia 3060Ti GPU.
Worked on implementing and training DFNet from
scratch in Tensorflow. Implemented the web application
backend using FastAPI and Hugging Face. Created the
production app environment and deployed the backend
on GCP using an Nvidia T4 equipped cloud virtual
machine. Also worked on the project poster and this
report.

Andrew Li & Michelle Lu Worked on the YOLO segmen-
tation model for object detection and masking. Built
the frontend of the web application using Next.js and
TypeScript, starting with high-fidelity Figma prototypes.
When building the web application, thoroughly consid-
ered user experience and workflow to provide a seam-
less experience. Integrated web application with Up-
loadThing as the database and deployed web applica-
tion on Vercel. Also worked on the project poster and
this report.

https://blog.google/products/photos/magic-eraser/
https://blog.google/products/photos/magic-eraser/

