
Compilers Optimization Capstone Abstract

Constant Propagation:

The goal of constant propagation is to replace expressions involving only constants with their

computed values. This can eliminate unnecessary computations and improve the efficiency of the code.

First, we analyze the expressions in the bodies of definitions and the program and match whether the

expression is included in the list of expressions we are required to optimize (ie. Add1, Plus, Let, etc). The

fold function used to do this is also recursive and it “folds” again using the subexpression of the

expression until we conclude whether the expression can be evaluated to a constant or not. If this is

possible, the constant is returned and replaces the original expression. In my code, I used symtab to keep

track of the Let variables and whether they could be collapsed into a constant inside later subexpressions.

Inlining:

Before implementing inlining, I was required to first “uniquify” all variables such that all

variables had globally unique names. This process ensures that variables are not to be confused with each

other if the same variable is used within the scope of another variable. The helper function gensym was

used to generate new names for each variable. The uniquify optimization itself was similar to the constant

propagation implementation in that I looped through each args of definitions and bodies of both

definitions and the program to recursively traverse through each expression, such as Plus and Ifs, then

find and add each variable to symtab to keep track of their new names. I then replaced the original defns

and body with a new defns and bodies at the end.

For the actual inlining, the compiler identifies functions that are suitable for inlining by looping

through each and checking that it is both a leaf and fits the heuristics that we have set. For my

implementation, the function size multiplied by the number of static calls had to be less than 28, which

passed all tests as intended. Once we have identified such a function call, the compiler replaces the call

with the entire body of the called function. This includes substituting the actual arguments at the call site.

This is also done by recursively traversing through the expressions of both the definition bodies and the

program body.

Peephole:

I implemented four different types of peephole optimizations in my code. Two of them

implemented the suggestions given by the homework handout. I used pattern matching to identify when

the assembly started with a Mov R, V1 and Mov R, V2. Then, I checked that V2 is not dependent on R (it

is not a memory offset of R). If it is, I simply return the original directions. If not, I combine the two Mov

directions into a single Mov R, V2. Similarly, I also had a pattern matching case for Mov R, S and Mov S,

R, which would simply return Mov R, S instead. My third optimization is very similar to the first two,

except that instead of Mov, I am now using Add and Sub directives. If a number is moved into a register,



which is then used for an Add or a Sub operation, I combine the two and directly use the number to

perform the addition or subtraction instead of using the register. My last optimization also simplifies two

Mov directions into one and is a combination of my other optimizations. In this optimization, if an

immutable value is moved into a register and the register is moved to a memory offset (ie. QWORD [-16

+ rsp]), the value is directly moved to the memory offset instead of the register. None of these changes

modify the functionality of the code but only reduce the number of operations for efficiency.

The peephole function is also recursive to continue the peephole optimization down the assembly

code after a peephole optimization has occurred (or not).

Below is an example test that I added whose assembly output changes depending on whether we use the

peephole optimization or not.

Example: examples/peephole.lisp - (print (+ 1 (+ 1 (read-num))))

Before adding peephole:

After adding peephole:

The assembly output is produced with inlining and constant propagation, and the second output has all

optimizations. Because one of our peephole optimizations combines consecutive Mov directions into a

single one if a value is moved into a register, and that register is moved into a MemOffset, we have two

fewer assembly directives than before, making it more efficient.

Optimization:

After implementing the above three optimizations, I was able to run all benchmark cases and

observe the effect of adding each optimization on the time. For example, the test cases below exemplify a

visible decrease in time taken as optimizations are added to the pass. The improvement is more drastic in

some than others depending on the operations involved. For example, my implementation of peephole



may not be as effective on an expression like (+ 1 (+ 1 (+ 3 5))) due to there not being enough redundant

movements between registers, though constant propagation would certainly help downsize the operation.

However, adding many read-nums in between the expression would make peephole a much more efficient

optimization than a constant propagation. This is one of the reasons why for some of the tests below, the

decrease in time from just inlining to constant propagation and inlining was significantly larger than the

decrease from const prop and inlining to all opimizations (including peephole).

Because there is not a single “correct” way of optimization for all cases, the time did slightly increase as

optimizations were added for a few test cases, especially with inlining. For example, the time actually

increased from no optimizations to inlining in the example below. This could be because our inlining

increased the amount of computation more than it optimized by inlining. Changing the heuristics of our

inlining optimizations could help mitigate this.


