

 Acoustic Localization and Voice User Interfaces ​
for Robotic Furniture Applications

John Finberg, Brown University

Abstract
Recent advances in Natural Language Processing (NLP)
have allowed Voice User Interfaces (VUI) to mature to the
point where their integration into everyday objects is
becoming inevitable. In the coming years, people will
increasingly talk to the things around us, and these
everyday objects will react. Furniture, in particular, and
the built environment in general, are likely to become
sites for inconspicuous, sound-based user interfaces. This
prospect offers an opportunity to imagine and consider
how sound might be integrated into a range of interfaces.
This project demonstrates that a single sensor modality,
microphones in this case, can be used across multiple
applications, both as VUIs and as a means for
localization. These kinds of sound-based interfaces have
been integrated into the TableBot prototype, which hides
in plain sight as a table until called upon to perform a
given task. The prototype validates a model for the
integration of voice command functionality that can also
perform acoustic localization with the same microphones.
When one speaks to this table, it can identify the location
of the speaker and can situate itself in relation to the
source of the sound command.

Introduction
It is becoming increasingly possible to imagine a world
where many of the visual and tactile interfaces with which
we are familiar will fade into the background in favor of
Voice User Interfaces (VUI). Already, many users are
quite comfortable using VUIs that are integrated into AI
assistants such as Siri, Alexa, and to a lesser degree, even
devices such as the Humane AI pin and the Rabbit r1. [1]
However, they have been a trope in science fiction for
much longer, including well known examples such as the
Star Trek communicator badge, which can be activated
with a touch of the finger or by a simple voice prompt. In
the years ahead, as this technology matures, we will likely
be talking to the objects around us with greater frequency,
as complements to, if not outright replacements for, more
traditional tactile and visual user interfaces. This possible
shift towards VUIs offers interesting opportunities to
imagine and consider how sound and voice might be
applied to human computer interactions, and the kinds of
relationships we might have with these kinds of objects.
Sound-based sensing and localization offers an alternative
to light-based methods, such as computer vision, LIDAR
and other vision-based systems. ​
​​For applications that require inconspicuous user
interfaces, VUIs and auditory localization allow for

designs that use only a microphone (or microphones) as a
single, simple input, avoiding the need for multiple
sensors (although our prototype uses an array of four
microphones, cardinally arranged). In this way, multiple
functions can be “piggybacked” onto each other by using
microphones in different ways. This system allows these
devices to become inconspicuous, with more abstract user
interfaces, fading into the background when not called
upon to perform a given function.

TableBot: The Robotic Future
Early prototypes of the TableBot design were packed with
sensors. LIDAR allowed the first iteration of TableBot to
perform Simultaneous Localization and Mapping
(SLAM) to localize the robot in a given space. Projectors
and cameras allowed for telepresence applications, [2][3]
but as the number of features increased, so did TableBot’s
size and complexity. These early prototypes, like the
current prototype, were designed to explore the ways
robots might hide in plain sight as part of the built
environment, as well as how unseen user interfaces could
be called upon when desired to initiate action. Early
versions of TableBot could perform a task such as
videoconferencing, and then move inconspicuously into
the background until needed again. This type of task
performance requires that the robot know where it is in
space, especially in relation to nearby walls onto which
the videoconferencing interface is projected. The current
prototype of TableBot builds upon these insights, but
simplifies how they are achieved and improves the speed
and accuracy with which they are performed.

Careful consideration was given to how these types of
objects function as pieces of furniture. TableBot has to
work as a practical and stylish piece of furniture before it
can take on other functionality. It must be designed to be
lightweight, yet robust enough to move about a space,
encountering obstacles and people. Not only does it need
to function as a robot, but also as a table – a nice table –
that meets traditions and conventions of furniture in terms
of both aesthetics and function, blending in with a home
or an office environment. Tablebot’s maple-veneered
body and cherry-accented top, as well as its underlying
structure, aim to satisfy these concerns. [Figure 1]

Integrating AI and other “smart” technologies into the
built environment offers an alternative to the dominant
paradigm of personal devices, such as phones, in favor of
a model that embraces these technologies as part of the
public infrastructure. Just as in years past, when anyone

with a dime could use a phone booth, we envision the
integration of telepresence and AI as a kind of public
service, available as a part of the built environment. Voice
User Interfaces offer promising directions for enhancing
this vision.

Figure 1. TableBot front profile

TableBot: The Hardware
TableBot moves using special wheels called Mecanum
wheels, which let it glide smoothly in any
direction—forward, sideways, or even
diagonally—without needing to turn. Its round shape
helps make this kind of movement easier and keeps it
from looking like it has a “front” or “back,” so it blends in
better with its surroundings. The robot is compact and
sleek, designed to fit just about anywhere.

It runs on a rechargeable battery and uses four small but
powerful motors, each connected to a wheel by a belt. The
belts help protect the motors from the robot’s weight.
Everything is held together with strong brackets and
smooth bearings to keep the movement steady. [Figure 1]

The robot's brain is a tiny microcontroller called the
ESP32, which keeps track of how fast and in what
direction each wheel is spinning. It talks wirelessly to a
laptop—either nearby or riding on top of the table—using
a system called micro-ROS. The laptop sends instructions
like “move forward” or “turn left,” and the ESP32 sends
back updates on how fast it’s going and how much battery
is left.

For hearing, TableBot has four microphones arranged
evenly around its top edge, allowing it to pick up sound
from any direction.

Figure 2. TableBot disassembled into its different parts

User Scenario
Consider the following scenario: TableBot is situated
within a domestic environment, inconspicuously amongst
other furniture. It hides in plain sight, perhaps against the
wall or next to a chair, until it is called upon. Perhaps it
has a common object or two on it, such as a computer or a
book. The user walks into the room and gives the
command, “TableBot, come here.” Just then, TableBot
comes to life, first orienting itself to the direction of the
sound and then moving towards that sound. After
TableBot arrives within a foot or two of the user, it waits
for its next voice command. The user puts down an object
on the table, perhaps their drink or another common
object, and gives further commands to TableBot. Perhaps
the user asks TableBot to do a web search or play a
favorite song. TableBot responds. The user then walks
over to their desk or to another area of the room,
reiterating the command, “TableBot, come to me.”
TableBot obliges and repeats the prior function, building a
map of the space it has traveled from its original position,
using only microphones as localization sensors. The user
puts down the coffee mug on TableBot, as TableBot
awaits the next command.

Evaluation
The design team did a preliminary evaluation of the
prototype to validate the functionality of the system and
determine the ease of the user experience. The above
scenario was repeated with a variety of different distances
between TableBot and its target. When the user provided
the command to TableBot, the command took between
0.5-3 seconds to process. Once processed, TableBot
rotated to the direction of the target, and then moved in
the direction of the user, adding another 0.5-1 second
delay. A successful run was defined by the table stopping
within 0.5 meters of the user. The distance of 0.5 meters
was chosen as the error range because it was the reported
error of the trained localization model. Thus, localization
results should be within that error range if the model has
successfully generalized. The system had a success rate of
80% in the 4 to 8 meter range over 10 trials. When tested

at a range of 1 to 3 meters for 35 trials, it had a reported
accuracy of 68%.

TableBot’s performance in localizing itself in relation to
the user performed best within a roughly 10-foot radius.
After the user passes beyond this boundary, however,
TableBot was unable to accurately predict an angle or
distance. This is due to limitations on the training model,
being constrained to a 10-meter by 10-meter grid. In
future iterations, this space can be expanded. TableBot
was most accurate in the 4- to 8-foot range.

In the 1- to 3-meter range, the decrease in accuracy is
caused by the choice of experimental microphones.
TableBot is equipped with omnidirectional pattern
microphones, which are not particularly sensitive to
direction. Thus, at a closer distance, the human voice
overlaps more with the near microphones. On the other
hand, long distances made it challenging for the
microphones to pick up. The larger radius also meant that
any minor miscalculations in the location angle of the
user’s voice commands in relation to TableBot began to
magnify into larger errors, affecting the accuracy.

With the aim of improving the shorter and longer distance
accuracies, some different training techniques were tested.
These included time and frequency masking, varying the
number of transformer layers in the model, and increasing
the training data in our model training. Frequency
masking and an increase in training data showed small
gains in localization acuarcies. These observations led to
considering possible hardware improvements.

Changing the microphone type to the supercardioid
pattern will improve the accuracy up close and farther out,
offering more directed sound of a greater magnitude. In
addition, improvements to the synthetic data generation
could be made by generating synthetic audio recordings
with more realistic environmental noise scenarios and
varied room geometries; these changes might enhance
model robustness. In training phases, incorporating audio
channel swapping as a data augmentation technique
adapted for stereo audio formats may further mitigate the
"cone of confusion" effect and enhance localization
accuracy. Finally, fine-tuning the model with existing
real-world recordings from TableBot will result in an even
more accurate localization model.

Objects on the surface of the robot stay mostly stationary
as TableBot travels due to its slow acceleration and low
center of mass. Items such as books, cups of liquid, and
laptops were used in our evaluation. The user can interact
successfully with the table, whether removing or adding
objects.

Throughout the trials, voice communication with
TableBot was noted to be an intuitive and easy means for
prompting the robot. In terms of instructions, the user was
merely prompted to employ the given command,

“TableBot, come here.” No confusion was reported by
users about how to execute commands. It was interesting
to observe the tone of the user when giving commands,
which often had an authoritative affect. The affect and
tone of the user, not just the actual commands themselves,
could be an area of further investigation and might help to
improve the usability of the prototype.

Interestingly, during the trials, some users spontaneously
issued the “come here” command in their native
languages – specifically “ven aquí” in Spanish and “过来
这里” in Mandarin. Despite the fact that TableBot was not
explicitly programmed to recognize commands in
multiple languages, it still responded correctly and
navigated towards the speaker. This emergent behavior
highlights the potential of this interaction model to lower
the barrier of entry, as users are able to engage with the
system using natural language without requiring technical
jargon or rigid syntax.

Evaluators mentioned that TableBot’s familiar form
factor, as well as the use of voice commands, contributed
to an extremely intuitive interface. Eschewing the need
for buried menus or hidden commands, common in most
GUIs, evaluators mentioned that they felt a greater sense
of immediate control. And while delays produced by
processing time, and the relatively slow movement were
noted, the overall ease and effectiveness were commented
on by the evaluators, and were determined to be
comparable to alternative user interfaces. In future work,
these features could be sped up or include other features
such as variable acceleration and deceleration, to further
cue users’ commands.

Prior Work
This work draws on research from embedded robotics,
voice-based interaction, acoustic localization, and spatial
mapping. Prior efforts in these areas have demonstrated
the potential for seamless human-robot interaction in
indoor environments; however, they often face limitations
related to hardware complexity, computational overhead,
or reliance on visual sensing. The following sections
review key contributions in each domain and highlight
opportunities for lightweight, audio-driven alternatives.

Embedded Robotics In Indoor Environments
Gonsher et al. (2020) investigated the integration of
robotic functionality into everyday furniture, illustrating
how human-computer interfaces can be embedded into
built environments with minimal visual intrusion [3]. This
laid the groundwork for inconspicuous robotic systems.
This concept parallels products such as the Travelmate
robotics suitcase, where autonomous behavior is
embedded into an otherwise ordinary travel item,
allowing users to benefit from robotic assistance without
perceiving the object as a robot [17]. Gonsher et al.
(2022) extended this vision by incorporating mixed reality
and large-screen displays into telepresence robots,

enhancing mediated communication within indoor
settings [2].

Complementary efforts in ubiquitous computing and
ambient intelligence have explored similar themes,
advocating for interfaces that “fade into the background”
and support natural interaction within the fabric of
everyday life [20]. These systems, however, often rely on
visual or tactile modalities, leaving acoustic-based
interaction underexplored in the context of embedded
robotic systems.

Voice-Driven Interaction And Acoustic Interfaces
Voice assistants such as Amazon Echo [18] or Google
Nest [19] have demonstrated the feasibility of natural
language interfaces in consumer environments. Despite
their accessibility, these systems are typically
fixed-location devices that assume a stationary user and
lack awareness of spatial context. Some recent approaches
aim to incorporate directional audio and user tracking, but
they generally require additional sensors or do not scale
well to embedded platforms.

In contrast to these efforts, acoustic interfaces based on
sound localization offer the potential for spatial awareness
without visual input. When integrated into passive or
furniture-like platforms, such systems enable more
ambient and privacy-preserving interactions.

Sound Source Localization: ​
Classic And Learned Methods
Sound source localization has traditionally relied on
digital signal processing techniques such as beamforming
or GCC-PHAT to estimate the direction-of-arrival (DOA)
of audio signals [8]. Passive sonar approaches [4], allow
for localization and tracking without the active emission
of signals, making it an appealing property for
inconspicuous systems in household settings. However,
classical methods often struggle in acoustically complex
environments due to reverberation and background noise
[16].

To address these challenges, recent studies have proposed
machine learning-based approaches, including
transformer-based audio encoders [7] and
ResNet-Conformer models [10]. These models
demonstrate improved robustness to environmental noise
but are limited by their reliance on first order ambisonics
(FOA) and tetrahedral microphone arrays. Their
computational demands also render them impractical for
real-time processing on embedded devices [9][11].

Alternate systems using stereo audio and efficient signal
processing may serve as a viable compromise, enabling
sound-based interaction on resource-constrained
hardware.

SLAM And The Constraints Of ​
Vision-Based Mapping

Simultaneous Localization and Mapping (SLAM) is a
core technique in mobile robotics, used to build spatial
maps and estimate a robot’s position within them.
Traditional SLAM implementations rely heavily on visual
sensors such as RGB-D or LIDAR [22], which provide
rich spatial information but introduce privacy concerns
and require direct line-of-sight. These systems also
demand significant computational resources and may be
unsuitable for integration into household furniture or
ambient systems.

Acoustic localization, by contrast, can offer spatial
awareness without the visual intrusion of cameras or the
complexity of 3D mapping pipelines. Systems that use
sound cues for positioning and interaction provide a more
discreet, lightweight alternative for embedded use in
personal environments.

Voice User Interfaces and Passive Auditory
Localization of TableBot
Passive Auditory Localization (PAL) is the process by
which a source sound can be localized by just its speech
or passive sound. The process can be broken down into
three steps. The first is the trigger, which is some vocal
cue. The next step is identifying the audio sections
relating to the cue. Finally, the audio is transformed for
processing and run through a pre-trained model to localize
the source.

Figure 3. Diagram of the execution flow for a move to
command

TableBot’s localization processes are organized in the
Brain Node. This node is in charge of all the computations
performed before passing the computed data off to
different nodes for execution of tasks, such as movement
[see Figure 3].

The first part of the system streams audio from TableBot’s
multiple microphones and saves the audio data for future
use, organized by timestamp. Before creating a stream, on
the robot’s device, an aggregate microphone is created

containing all the microphones used for localization.
Within the aggregate microphone, the no-drift
functionality is activated so that the microphones' clocks
do not desync and cause downstream errors with the
localization. Using Sounddevice, a Python module,
TableBot can stream audio from the aggregate device.
This allows TableBot to access each microphone as an
individual channel. Based on the microphones’
specifications, the streaming is done at 44100 KHz and
with a chunk size of 0.25 seconds.

A ring buffer is used to store the audio for later reference.
Each audio chunk is stored by its milliseconds from the
stream start time. This allows TableBot to retrieve audio
based on the audio’s recorded time. This functionality will
be used later to get only the audio containing the user’s
speech for localization purposes.

After the audio is collected and stored, the voice
command functionality is implemented. An OpenAI
real-time model handles the voice and language
processing system. Instead of transcribing the audio and
sending the text to a typical LLM, the streamed audio is
sent straight to the real-time model. The model is given a
prompt about its status as an autonomous table and a
series of possible actions it can take. It is asked to return
the name of the command it is being asked to perform if
there is a valid command, and if not, to do nothing. The
audio is sent every chunk via a WebSocket to the OpenAI
servers. A receiver thread is spun up to parse the
responses from OpenAI. This thread continues to pull
messages from the socket to keep track of any commands.
In addition to parsing commands, OpenAI gives messages
for the beginning and ending of speech, which include
when that event happened in terms of the time from the
start of the stream in milliseconds. The speech events are
stored in a queue, where an event has both a start and stop
event with respective time markings. The start event is
added, and then the end event is added to the last event
without an end event. When a command is received, it is
then attached to the first completed speech event in the
queue.

The next step is for TableBot to process the command.
First, it is determined what logic needs to be executed
based on the given command. Commands sit in a
conditional list where TableBot checks to see if the
received command exists and then executes the associated
logic. Adding a command is as simple as expanding this
conditional with the new command name, as well as
adding the new command name to the robot’s prompt of
possible actions. When a move command is received,
TableBot first grabs the audio data for the speech event
and then passes the audio to the localization system.
Finally, it sends the angle and distance to the movement
system.

Figure 4. Diagram of PAL model

The localization system is powered by a custom-trained
deep neural network consisting of approximately 1.7
million trainable parameters. The model takes in a sound
spectrogram from the microphones and then produces a
coordinate on the 3D Cartesian coordinate grid of where it
predicts the sound to have originated. The first step is
converting the audio data to a spectrogram. This is
handled by the spectrogram function in the scipy.signal
module. Next, the spectrograms are passed into the
network. The first three layers of the network are 2D
convolution layers. Each convolution block H employs a
3 x 3 kernel with a stride size of 1, followed by ReLU
activations and batch normalization. These layers apply a
series of filters to the input spectrograms, enabling the
network to detect and extract low-level features such as
edges, textures, and small-scale temporal and frequency
patterns. After each convolution block, a 2 x 2 max
pooling operation is applied, which downsamples the
feature maps by selecting the maximum value in each
non-overlapping region. By focusing on the local regions
of the spectrograms, these convolutional layers effectively
learn how to represent fine-grained details that are
essential for subsequent processing.

 𝐻 = 𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝑅𝑒𝐿𝑈(𝐵𝑎𝑡𝑐ℎ𝑁𝑜𝑟𝑚(𝐶𝑜𝑛𝑣2𝐷(𝑋))))

Following the convolutional layers, the architecture
incorporates two multi-headed self-attention transformer
layers. Each transformer layer contains 4 attention heads,
a hidden size of 64, and feed-forward network dimensions
of 64. Unlike convolutional layers, which have a fixed
receptive field, transformer layers leverage self-attention
mechanisms to evaluate relationships between all parts of
the input simultaneously. This ability allows the network
to capture global dependencies and context across the
entire spectrogram. Moreover, the inclusion of positional
encodings in these layers enables the model to understand
the order and relative positioning of features, thereby
embedding the spatial structure of the spectrogram into its
representations. This dual capability of capturing both

long-range interactions and positional information is vital
for tasks where the global context influences model
performance.

Experimental ablation studies further revealed that using a
small number of transformer layers, specifically two,
yielded better performance compared to architectures with
a greater number of layers. The results indicated that
beyond a certain point, additional transformer layers did
not translate into proportional improvements in model
performance. It is important to note that these ablations
were conducted under the constraints of training on a
single NVIDIA RTX3060 GPU, which limited the scope
of experimentation.

Previous studies have shown that integrating
convolutional operations with self-attention mechanisms
can enhance feature extraction beyond what is achievable
when these methods are used independently [14]. The
convolutional layers efficiently capture local patterns,
while transformer layers provide a complementary global
perspective. This combination ensures that the model
benefits from both detailed, localized information and an
understanding of the broader context within the
spectrogram.

The final part of the network consists of three linear
layers [see Figure 4]. These layers function as a mapping
mechanism, translating the high-dimensional feature
representations obtained from the preceding layers into a
coordinate space. A ReLU activation follows each linear
layer. To improve generalization and prevent overfitting,
dropout with a rate of 0.1 is also applied after each linear
layer. The linear layers essentially aggregate and refine
the features to produce the final output. This step is
critical for ensuring that the abstract features learned by
the network are transformed into actionable predictions.

The model was trained using synthetic data generated
with approximately the same microphone setup as the
robot. The recordings were generated using
Pyroomacoustics [12], and over 200,000 recordings were
collected for training. The simulation was set up to match
TableBot’s structure and microphones as best as possible.
Thus, a circular planar array of four microphones was
replicated with the microphones operating in a cardioid
pattern. The microphones were positioned 0.25 m apart
from each other, and the array was placed in the center of
simulated rooms. The microphones were also rotated to
their correct orientation. Thus, a microphone on the left
would be facing west and a microphone at the bottom
would be facing south. Each room was limited to a shoe
box-shaped 10 m x 10 m x 10 m.

A series of different AI voices were recorded saying
different phrases with differing tones. These voices were
sourced from ElevenLabs.

Finally, the following algorithm was run 200,000 times.

1.​ Create a room

2.​ Initialize the microphone array

3.​ Select a random AI voice and place it randomly
within the room

4.​ Create random environmental noise (1-3 times
per room)

a.​ Initialize a white noise source in the
magnitude of 0.001-0.01

b.​ Randomly place the noise source in the
room

5.​ Run the simulation and record the signals from
the microphone array

6.​ Create spectrograms from the microphones and
save them

The dataset was over 100 GB in size and thus required
creating a custom data loader to load only the active
training and testing data. The entire dataset was split into
80% training and 20% testing sets. The model was trained
for 50 epochs using a learning rate of 1e-4 and a batch
size of 32, with early stopping applied after five epochs of
no improvement. To enhance generalizability, time and
frequency masking augmentations were applied to the
training set [9]. Experimental ablation studies
demonstrate that incorporating time and frequency
masking enhances model performance. The model was
tested using mean squared error (MSE) loss, a standard
evaluation metric for predicting 3D Cartesian coordinates
in the sound source localization literature.

Finally, in the case of a move command, comes the
process of instructing the robot to move. Once the
coordinates have been localized, they can be passed to the
movement node for execution.

The movement node is a separate service that is fixed
inside TableBot. The node is a ROS2 service containing a
websocket, which enables the Brain Node to control the
robot’s ROS2 components. When TableBot receives
instructions, they come in the form of a distance (in
meters) and an angle (in degrees) through a WebSocket
connection. The system then converts these instructions
into timing, essentially calculating how long TableBot
needs to move at fixed speeds to achieve the desired
movement. TableBot always moves in two distinct
phases: first rotating, then moving forward. For rotation,
it uses a fixed speed of 0.5 radians per second, and for
forward movement, it moves at 0.3 meters per second.
The sequence includes built-in delays: a 2-second wait
before starting any rotation, and a 1-second buffer
between completing the rotation and starting the forward
movement. For example, if TableBot was asked to move
forward 1 meter after turning 90 degrees, it would first
wait 2 seconds, then spend about 3.2 seconds turning,

wait another second, and finally move forward for about
3.3 seconds before stopping. The entire movement is
controlled by precisely timing when to apply these fixed
speeds, rather than varying the speeds themselves.

Discussion
Practical evaluations indicated high localization accuracy,
correctly predicting the general direction of the speaker.
However, the precision of these predictions varied
significantly. Importantly, for usability and safety reasons,
accurate distance estimation emerged as a critical factor.
Inaccurate distance estimations, especially
overestimations, pose potential safety risks by causing the
robot to approach too closely or collide with the user.

Additionally, the use of stereo microphone configurations
significantly degrades localization accuracy due to the
psychoacoustic "cone of confusion" effect [1]. Although
this issue can potentially be ameliorated through data
augmentation techniques such as audio channel swapping
[1]. However, current methods for channel swapping are
primarily designed for FOA or tetrahedral audio formats
[9]. These methods would require adaptation to be
effectively applied to stereo audio setups.

In the TableBots current implementation of the voice and
command processing units, there is a list of commands
with static logic written for each command. As discussed
above in the technical implementation, adding to these
commands is easy. All that is required is modifying the
robot’s prompt with the new command and providing the
logic in the command's conditional. Commands have
access to the audio data and the returned text from
OpenAI.

While commands currently do not take in parameters
from the user’s speech, there are some scenarios where
this might be useful. Imagine that one has a full cup of
water on the TableBot, and would thus like the table to
move very slowly, so as not to knock it over. A user might
want to say, “Come over here, very slowly.” In the bot's
current form, it does not extract parameters for
commands. However, this would be achievable with
simple prompting and parsing of the OpenAI response.
For each command, a developer could specify optional
parameters for OpenAI to extract from a user’s request,
such as speed.

It may even be possible for these parameters to be
naturally inferred. Imagine a user asking, “Bring me my
cup of tea.” The chat model could assume that, if it is to
carry tea, it should automatically flag a slow parameter
for its movement.

Many other scenarios and user groups can be imagined
beyond our initial demonstration. For example, seniors
and other populations living with mobility issues,
especially those who use assistive mobility devices such
as canes, walkers, and wheelchairs, might find a

near-proximity attendant table surface helpful. Such a
table surface could follow the user through a space,
helping to carry objects from one place to another when
the user is unable to do so. These objects could also be
called upon as needed. TableBot’s potential as an assistive
technology device – one that allows seniors to “age in
place,” for example – could be supported in future work.

To handle more advanced workflows, the commands
could be altered to accommodate an agent structure,
where each command becomes a tool that the chat model
can invoke to achieve the user's request. Imagine a user
asks, “Can you follow me while I talk with someone
else?” The TableBot would have the tools Move and
Localize, where Move would move the robot to a specific
coordinate, and Localize would localize the current sound
and provide its coordinates. With these tools, the agent
would realize it needed to call Localize and Move
repeatedly to follow the user as they talk to their
companion. Another example where tooling flexibility
opens new possibilities is when a user says, “Remember
the coffee machine is here.” The robot could then localize
the audio using the Localize tool and note the position in
memory. By tooling an agent with the robot's physical
capabilities, there are new infinite combinations of tools
that can solve more advanced user requests.

This prototype validates a model for the integration of a
sound-based user interface with a sound-based
localization system, using the same microphones for both
tasks. The evaluation and testing have shown that VIL can
be a more natural and accessible interaction for users that
allows them to interact with a technical robot without
having to learn a specific language or pattern for
interaction.

In future work, the hope is to build upon these initial
innovations and develop more robust approaches to what
can be referred to as VIL systems or Voice Interface with
Localization. One can imagine at least three different
approaches to the further development of VILs.

The primary area of interest is in using VILs for more
robust mapping, more akin to SLAM mapping. This
involves storing data in memory and giving the user the
ability to command the robot to remember (or forget)
particular positions in space. In this way, the user and the
robot collaborate to create a map of the space, based on
the positional cues given by the user.

In addition to Passive Acoustic Localization, we are
interested in integrating Active Acoustic Localization to
the VIL system, adding a third microphone-based
application to the system. This will allow the robot to
send out a signal that can bounce off obstacles in the
space, adding object avoidance to Passive Acoustic
Localization, which currently only works in relation to
voice commands, but not physical obstacles.

Finally, where appropriate, one can envision VILs being
complemented by other sensor systems, including
vision-based systems, and more traditional systems such
as SLAM. The integration of these other approaches to
VILs can be developed to address a broader range of
applications.

Conclusion
Imagine a world where everyday things come to life when
spoken to. Like the Sorcerer’s Apprentice, who could give
life to quotidian objects simply by reciting a spell, Voice
Interfaces with Localization (VIL) validate a new model
for enhanced Voice User Interfaces (VUI) by integrating
verbal commands with acoustic localization [21]. This is
accomplished with the economy of a single sensor: a
microphone. One can imagine near-future scenarios where
furniture equipped with these VIL systems hides in plain
sight until they are called upon to perform a task,
contributing to a paradigm where robotics, AI, and other
emerging technologies are integrated into the built
environment, both as public infrastructure and as
domestic furniture.

As the potential for these technologies grows, it is worth
considering the kinds of relationships they foster between
humans and technology. One can imagine a cooperative,
collaborative relationship emerging, akin to an attendant
service animal, for instance. Or, one can also imagine a
non-reciprocal relationship emerge, setting up a
Master-Slave dialectic, where machine and human
become unequal, yet interdependent upon each other.
Speech has almost mystical power when projected onto
objects. Speaking to objects is much closer to a
human-to-human interaction than a keyboard or mouse
can provide, for example. So, it is worth considering how
interfaces such as VILs might foster healthier
relationships between humans and technology in the
coming years. As the Sorcerer’s Apprentice learned,
speech is powerful, especially when commanding
everyday things.

Acknowledgements
Many people have made significant contributions to this
project. Professor Gonsher's guidance, insights, feedback
throughout this past year have been invaluable. Professor
Huang provided very useful comments on the paper
drafts. Collaborating with Nicolas Perez on the
localization was very helpful. The prior work of Jennifer
Tran and Jipuwapt Mokkamakkul helped me clarify my
approach to this project. Joshua Phelps and Siddharth
Diwan laid the groundwork for the physical robot. Thank
you to my mom, Melanie Piech, and Olivia Suomi for
their edits and support.

Refrences
[1]​ Shreyas Sen and Arunashish Datta. 2024. Invited:

Human-Inspired Distributed Wearable AI. In
Proceedings of the 61st ACM/IEEE Design
Automation Conference (DAC '24). Association for
Computing Machinery, New York, NY, USA, Article
364, 1–4. https://doi.org/10.1145/3649329.3663513

[2]​ Gonsher, I., Han, Y., Desingh, K., & Gokaslan, A.
(2022). Prototyping mixed reality large screen mobile
telepresence robots. In 5th International Workshop on
Virtual, Augmented, and Mixed Reality for HRI.

[3]​ Gonsher, I., & Kim, J. Y. (2020, March). Robots as
furniture, integrating human-computer interfaces into
the built environment. In Companion of the 2020
ACM/IEEE International Conference on
Human-Robot Interaction (pp. 215-217).
https://doi.org/10.1145/3371382.3378235

[4]​ L. Mattos and E. Grant, "Passive sonar applications:
target tracking and navigation of an autonomous
robot," IEEE International Conference on Robotics
and Automation, 2004. Proceedings. ICRA '04. 2004,
New Orleans, LA, USA, 2004, pp. 4265-4270 Vol.5,
doi: 10.1109/ROBOT.2004.1302388.

[5]​ S. Macenski, A. Soragna, M. Carroll, Z. Ge, “Impact
of ROS 2 Node Composition in Robotic Systems”,
IEEE Robotics and Autonomous Letters (RA-L),
2023.

[6]​ S. Macenski, T. Foote, B. Gerkey, C. Lalancette, W.
Woodall, “Robot Operating System 2: Design,
architecture, and uses in the wild,” Science Robotics
vol. 7, May 2022.
https://docs.ros.org/en/iron/Citations.html

[7]​ Zheng, Z., Peng, P., Ma, Z., Chen, X., Choi, E., &
Harwath, D. (2024). Bat: Learning to reason about
spatial sounds with large language models. arXiv
preprint arXiv:2402.01591.

[8]​ Valin, J. M., Michaud, F., Hadjou, B., & Rouat, J.
(2004, April). Localization of simultaneous moving
sound sources for mobile robot using a
frequency-domain steered beamformer approach. In
IEEE International Conference on Robotics and
Automation, 2004. Proceedings. ICRA'04. 2004 (Vol.
1, pp. 1033-1038). IEEE.

[9]​ Wang, Q., Du, J., Wu, H. X., Pan, J., Ma, F., & Lee,
C. H. (2023). A four-stage data augmentation
approach to resnet-conformer based acoustic
modeling for sound event localization and detection.
IEEE/ACM Transactions on Audio, Speech, and
Language Processing, 31, 1251-1264.

[10]​Wang, Q., Dong, Y., Hong, H., Wei, R., Hu, M.,
Cheng, S., Jiang, Y., Cai, M., Fang, X., & Du, J.

(2024). THE NERC-SLIP SYSTEM FOR SOUND
EVENT LOCALIZATION AND DETECTION WITH

SOURCE DISTANCE ESTIMATION OF DCASE

2024 CHALLENGE [White paper]. DCASE2024
Challenge.

[11]​Wilkins, J., Fuentes, M., Bondi, L., Ghaffarzadegan,
S., Abavisani, A., & Bello, J. P. (2023). Two vs.
four-channel sound event localization and detection.
arXiv preprint arXiv:2309.13343.

[12]​Scheibler, R., Bezzam, E., & Dokmanić, I. (2018,
April). Pyroomacoustics: A python package for audio
room simulation and array processing algorithms. In
2018 IEEE international conference on acoustics,
speech and signal processing (ICASSP) (pp.
351-355). IEEE.

[13]​Prerak Srivastava. Realism in virtually supervised
learning for acoustic room characterization and sound
source localization. Machine Learning [cs.LG].
Université de Lorraine, 2023. English. ⟨NNT :
2023LORR0184⟩. ⟨tel-04313405⟩

[14]​Bello, I., Zoph, B., Vaswani, A., Shlens, J., & Le, Q.
V. (2019). Attention augmented convolutional
networks. In Proceedings of the IEEE/CVF
international conference on computer vision (pp.
3286-3295).

[15]​Goethe, J. W. von. (1797). The Sorcerer’s Apprentice
(E. Zeydel, Trans.). Beezone Library. Retrieved from
https://beezone.com/the-sorcerers-apprentice

[16]​H. Lim, I. -C. Yoo, Y. Cho and D. Yook, "Speaker
localization in noisy environments using steered
response voice power," in IEEE Transactions on
Consumer Electronics, vol. 61, no. 1, pp. 112-118,
February 2015, doi: 10.1109/TCE.2015.7064118.

[17]​Travelmate Robotics. (2019). Travelmate: Fully
autonomous suitcase and robot companion.
https://wefunder.com/travelmaterobotics

[18]​Amazon (2015). Amazon Echo Dot.
https://www.amazon.com/Amazon-vibrant-helpful-rou
tines-Charcoal/dp/B09B8V1LZ3?th=1

[19]​Google (2019). Google Nest Mini.
https://store.google.com/us/product/nest_audio?hl=e
n-US

[20]​Weiser, M. (1994). Creating the invisible interface
[Invited talk]. Proceedings of the 7th Annual ACM
Symposium on User Interface Software and
Technology (pp. 1). Association for Computing
Machinery. https://doi.org/10.1145/192426.192428

[21]​“The Sorcerer’s Apprentice By Goethe – Beezone
Library,” beezone.com.
https://beezone.com/the-sorcerers-apprentice

[22]​D. Watkins-Valls, J. Xu, N. Waytowich and P. Allen,
"Learning Your Way Without Map or Compass:
Panoramic Target Driven Visual Navigation," 2020
IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Las Vegas, NV, USA,
2020, pp. 5816-5823, doi:
10.1109/IROS45743.2020.9341511.

https://beezone.com/the-sorcerers-apprentice

	 Acoustic Localization and Voice User Interfaces ​for Robotic Furniture Applications
	Abstract
	Introduction
	TableBot: The Robotic Future
	TableBot: The Hardware
	User Scenario
	Evaluation
	Prior Work
	Embedded Robotics In Indoor Environments
	Voice-Driven Interaction And Acoustic Interfaces
	Sound Source Localization: ​Classic And Learned Methods
	SLAM And The Constraints Of ​Vision-Based Mapping

	Voice User Interfaces and Passive Auditory Localization of TableBot
	Discussion
	Conclusion
	Acknowledgements
	
	Refrences

