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Abstract 
Recent advances in Natural Language Processing (NLP) 
have allowed Voice User Interfaces (VUI) to mature to the 
point where their integration into everyday objects is 
becoming inevitable. In the coming years, people will 
increasingly talk to the things around us, and these 
everyday objects will react. Furniture, in particular, and 
the built environment in general, are likely to become 
sites for inconspicuous, sound-based user interfaces. This 
prospect offers an opportunity to imagine and consider 
how sound might be integrated into a range of interfaces.  
This project demonstrates that a single sensor modality, 
microphones in this case, can be used across multiple 
applications, both as VUIs and as a means for 
localization. These kinds of sound-based interfaces have 
been integrated into the TableBot prototype, which hides 
in plain sight as a table until called upon to perform a 
given task. The prototype validates a model for the 
integration of voice command functionality that can also 
perform acoustic localization with the same microphones. 
When one speaks to this table, it can identify the location 
of the speaker and can situate itself in relation to the 
source of the sound command. 

Introduction 
It is becoming increasingly possible to imagine a world 
where many of the visual and tactile interfaces with which 
we are familiar will fade into the background in favor of 
Voice User Interfaces (VUI). Already, many users are 
quite comfortable using VUIs that are integrated into AI 
assistants such as Siri, Alexa, and to a lesser degree, even 
devices such as the Humane AI pin and the Rabbit r1. [1] 
However, they have been a trope in science fiction for 
much longer, including well known examples such as the 
Star Trek communicator badge, which can be activated 
with a touch of the finger or by a simple voice prompt. In 
the years ahead, as this technology matures, we will likely 
be talking to the objects around us with greater frequency, 
as complements to, if not outright replacements for, more 
traditional tactile and visual user interfaces. This possible 
shift towards VUIs offers interesting opportunities to 
imagine and consider how sound and voice might be 
applied to human computer interactions, and the kinds of 
relationships we might have with these kinds of objects. 
Sound-based sensing and localization offers an alternative 
to light-based methods, such as computer vision, LIDAR 
and other vision-based systems. ​
​​For applications that require inconspicuous user 
interfaces, VUIs and auditory localization allow for 

designs that use only a microphone (or microphones) as a 
single, simple input, avoiding the need for multiple 
sensors (although our prototype uses an array of four 
microphones, cardinally arranged).  In this way, multiple 
functions can be “piggybacked” onto each other by using 
microphones in different ways. This system allows these 
devices to become inconspicuous, with more abstract user 
interfaces, fading into the background when not called 
upon to perform a given function.  

TableBot: The Robotic Future 
Early prototypes of the TableBot design were packed with 
sensors. LIDAR allowed the first iteration of TableBot to 
perform Simultaneous Localization and Mapping 
(SLAM) to localize the robot in a given space. Projectors 
and cameras allowed for telepresence applications, [2][3] 
but as the number of features increased, so did TableBot’s  
size and complexity. These early prototypes, like the 
current prototype, were designed to explore the ways 
robots might hide in plain sight as part of the built 
environment, as well as how unseen user interfaces could 
be called upon when desired to initiate action. Early 
versions of TableBot could perform a task such as 
videoconferencing, and then move inconspicuously into 
the background until needed again. This type of task 
performance requires that the robot know where it is in 
space, especially in relation to nearby walls onto which 
the videoconferencing interface is projected. The current 
prototype of TableBot builds upon these insights, but 
simplifies how they are achieved and improves the speed 
and accuracy with which they are performed. 

Careful consideration was given to how these types of  
objects function as pieces of furniture. TableBot has to 
work as a practical and stylish piece of furniture before it 
can take on other functionality. It must be designed to be 
lightweight, yet robust enough to move about a space,  
encountering obstacles and people. Not only does it need 
to function as a robot, but also as a table – a nice table – 
that meets traditions and conventions of furniture in terms 
of both aesthetics and function, blending in with a home 
or an office environment. Tablebot’s maple-veneered 
body and cherry-accented top, as well as its underlying 
structure, aim to satisfy these concerns. [Figure 1] 

Integrating AI and other “smart” technologies into the 
built environment offers an alternative to the dominant 
paradigm of personal devices, such as phones, in favor of 
a model that embraces these technologies as part of  the 
public infrastructure. Just as in years past, when anyone 



 

with a dime could use a phone booth, we envision the 
integration of telepresence and AI  as a kind of public 
service, available as a part of the built environment. Voice 
User Interfaces offer promising directions for enhancing 
this vision.  

 

Figure 1. TableBot front profile 

TableBot: The Hardware 
TableBot moves using special wheels called Mecanum 
wheels, which let it glide smoothly in any 
direction—forward, sideways, or even 
diagonally—without needing to turn. Its round shape 
helps make this kind of movement easier and keeps it 
from looking like it has a “front” or “back,” so it blends in 
better with its surroundings. The robot is compact and 
sleek, designed to fit just about anywhere. 

It runs on a rechargeable battery and uses four small but 
powerful motors, each connected to a wheel by a belt. The 
belts help protect the motors from the robot’s weight. 
Everything is held together with strong brackets and 
smooth bearings to keep the movement steady. [Figure 1] 

The robot's brain is a tiny microcontroller called the 
ESP32, which keeps track of how fast and in what 
direction each wheel is spinning. It talks wirelessly to a 
laptop—either nearby or riding on top of the table—using 
a system called micro-ROS. The laptop sends instructions 
like “move forward” or “turn left,” and the ESP32 sends 
back updates on how fast it’s going and how much battery 
is left. 

For hearing, TableBot has four microphones arranged 
evenly around its top edge, allowing it to pick up sound 
from any direction. 

 

Figure 2. TableBot disassembled into its different parts 

User Scenario 
Consider the following scenario: TableBot is situated 
within a domestic environment, inconspicuously amongst 
other furniture. It hides in plain sight, perhaps against the 
wall or next to a chair, until it is called upon. Perhaps it 
has a common object or two on it, such as a computer or a 
book. The user walks into the room and gives the 
command, “TableBot, come here.” Just then, TableBot 
comes to life, first orienting itself to the direction of the 
sound and then moving towards that sound. After 
TableBot arrives within a foot or two of the user, it waits 
for its next voice command. The user puts down an object 
on the table, perhaps their drink or another common 
object, and gives further commands to TableBot. Perhaps 
the user asks TableBot to do a web search or play a 
favorite song. TableBot responds. The user then walks 
over to their desk or to another area of the room, 
reiterating the command, “TableBot, come to me.” 
TableBot obliges and repeats the prior function, building a 
map of the space it has traveled from its original position, 
using only microphones as localization sensors. The user 
puts down the coffee mug on TableBot, as TableBot 
awaits the next command.  

Evaluation 
The design team did a preliminary evaluation of the 
prototype to validate the functionality of the system and 
determine the ease of the user experience.  The above 
scenario was repeated with a variety of different distances 
between TableBot and its target. When the user provided 
the command to TableBot, the command took between 
0.5-3 seconds to process. Once processed, TableBot 
rotated to the direction of the target, and then moved in 
the direction of the user, adding another 0.5-1 second 
delay. A successful run was defined by the table stopping 
within 0.5 meters of the user. The distance of 0.5 meters 
was chosen as the error range because it was the reported 
error of the trained localization model. Thus, localization 
results should be within that error range if the model has 
successfully generalized. The system had a success rate of 
80% in the 4 to 8 meter range over 10 trials. When tested 



 

at a range of 1 to 3 meters for 35 trials, it had a reported 
accuracy of 68%.  

TableBot’s performance in localizing itself in relation to 
the user performed best within a roughly 10-foot radius. 
After the user passes beyond this boundary,  however, 
TableBot was unable to accurately predict an angle or 
distance. This is due to limitations on the training model,  
being constrained to a 10-meter by 10-meter grid. In 
future iterations, this space can be expanded. TableBot 
was most accurate in the 4- to 8-foot range. 

In the 1- to 3-meter range, the decrease in accuracy is 
caused by the choice of experimental microphones. 
TableBot is equipped with omnidirectional pattern 
microphones, which are not particularly sensitive to 
direction.  Thus, at a closer distance, the human voice 
overlaps more with the near microphones. On the other 
hand, long distances made it challenging for the 
microphones to pick up. The larger radius also meant that 
any minor miscalculations in the location angle of the 
user’s voice commands in relation to TableBot began to 
magnify into larger errors, affecting the accuracy. 

With the aim of improving the shorter and longer distance 
accuracies, some different training techniques were tested. 
These included time and frequency masking, varying the 
number of transformer layers in the model, and increasing 
the training data in our model training. Frequency 
masking and an increase in training data showed small 
gains in localization acuarcies. These observations led to 
considering possible hardware improvements. 

Changing the microphone type to the supercardioid 
pattern will improve the accuracy up close and farther out, 
offering more directed sound of a greater magnitude. In 
addition, improvements to the synthetic data generation 
could be made by generating synthetic audio recordings 
with more realistic environmental noise scenarios and 
varied room geometries; these changes might enhance 
model robustness. In training phases, incorporating audio 
channel swapping as a data augmentation technique 
adapted for stereo audio formats may further mitigate the 
"cone of confusion" effect and enhance localization 
accuracy. Finally, fine-tuning the model with existing 
real-world recordings from TableBot will result in an even 
more accurate localization model. 

Objects on the surface of the robot stay mostly stationary 
as TableBot travels due to its slow acceleration and low 
center of mass. Items such as books, cups of liquid, and 
laptops were used in our evaluation. The user can interact 
successfully with the table, whether removing or adding 
objects. 

Throughout the trials, voice communication with 
TableBot was noted to be an intuitive and easy means for 
prompting the robot. In terms of instructions, the user was 
merely prompted to employ the given command, 

“TableBot, come here.” No confusion was reported by 
users about how to execute commands. It was interesting 
to observe the tone of the user when giving commands, 
which often had an authoritative affect. The affect and 
tone of the user, not just the actual commands themselves, 
could be an area of further investigation and might help to 
improve the usability of the prototype.  

Interestingly, during the trials, some users spontaneously 
issued the “come here” command in their native 
languages – specifically “ven aquí” in Spanish and “过来
这里” in Mandarin. Despite the fact that TableBot was not 
explicitly programmed to recognize commands in 
multiple languages, it still responded correctly and 
navigated towards the speaker. This emergent behavior 
highlights the potential of this interaction model to lower 
the barrier of entry, as users are able to engage with the 
system using natural language without requiring technical 
jargon or rigid syntax. 

Evaluators mentioned that TableBot’s familiar form 
factor, as well as the use of voice commands,  contributed 
to an extremely intuitive interface.  Eschewing the need 
for buried menus or hidden commands, common in most 
GUIs, evaluators mentioned that they felt a greater sense 
of immediate control. And while delays produced by 
processing time, and the relatively slow movement were 
noted, the overall ease and effectiveness were commented 
on by the evaluators, and were determined to be 
comparable to alternative user interfaces. In future work, 
these features could be sped up or include other features 
such as variable acceleration and deceleration, to further 
cue users’ commands.  

Prior Work 
This work draws on research from embedded robotics, 
voice-based interaction, acoustic localization, and spatial 
mapping. Prior efforts in these areas have demonstrated 
the potential for seamless human-robot interaction in 
indoor environments; however, they often face limitations 
related to hardware complexity, computational overhead, 
or reliance on visual sensing. The following sections 
review key contributions in each domain and highlight 
opportunities for lightweight, audio-driven alternatives. 

Embedded Robotics In Indoor Environments 
Gonsher et al. (2020) investigated the integration of 
robotic functionality into everyday furniture, illustrating 
how human-computer interfaces can be embedded into 
built environments with minimal visual intrusion [3]. This 
laid the groundwork for inconspicuous robotic systems. 
This concept parallels products such as the Travelmate 
robotics suitcase, where autonomous behavior is 
embedded into an otherwise ordinary travel item, 
allowing users to benefit from robotic assistance without 
perceiving the object as a robot [17]. Gonsher et al. 
(2022) extended this vision by incorporating mixed reality 
and large-screen displays into telepresence robots, 



 

enhancing mediated communication within indoor 
settings [2]. 

Complementary efforts in ubiquitous computing and 
ambient intelligence have explored similar themes, 
advocating for interfaces that “fade into the background” 
and support natural interaction within the fabric of 
everyday life [20]. These systems, however, often rely on 
visual or tactile modalities, leaving acoustic-based 
interaction underexplored in the context of embedded 
robotic systems. 

Voice-Driven Interaction And Acoustic Interfaces 
Voice assistants such as Amazon Echo [18] or Google 
Nest [19] have demonstrated the feasibility of natural 
language interfaces in consumer environments. Despite 
their accessibility, these systems are typically 
fixed-location devices that assume a stationary user and 
lack awareness of spatial context. Some recent approaches 
aim to incorporate directional audio and user tracking, but 
they generally require additional sensors or do not scale 
well to embedded platforms. 

In contrast to these efforts, acoustic interfaces based on 
sound localization offer the potential for spatial awareness 
without visual input. When integrated into passive or 
furniture-like platforms, such systems enable more 
ambient and privacy-preserving interactions.  

Sound Source Localization: ​
Classic And Learned Methods 
Sound source localization has traditionally relied on 
digital signal processing techniques such as beamforming 
or GCC-PHAT to estimate the direction-of-arrival (DOA) 
of audio signals [8]. Passive sonar approaches [4], allow 
for localization and tracking without the active emission 
of signals, making it an appealing property for 
inconspicuous systems in household settings. However, 
classical methods often struggle in acoustically complex 
environments due to reverberation and background noise 
[16]. 

To address these challenges, recent studies have proposed 
machine learning-based approaches, including 
transformer-based audio encoders [7] and 
ResNet-Conformer models [10]. These models 
demonstrate improved robustness to environmental noise 
but are limited by their reliance on first order ambisonics 
(FOA) and tetrahedral microphone arrays. Their 
computational demands also render them impractical for 
real-time processing on embedded devices [9][11]. 

Alternate systems using stereo audio and efficient signal 
processing may serve as a viable compromise, enabling 
sound-based interaction on resource-constrained 
hardware. 

SLAM And The Constraints Of ​
Vision-Based Mapping 

Simultaneous Localization and Mapping (SLAM) is a 
core technique in mobile robotics, used to build spatial 
maps and estimate a robot’s position within them. 
Traditional SLAM implementations rely heavily on visual 
sensors such as RGB-D or LIDAR [22], which provide 
rich spatial information but introduce privacy concerns 
and require direct line-of-sight. These systems also 
demand significant computational resources and may be 
unsuitable for integration into household furniture or 
ambient systems. 

Acoustic localization, by contrast, can offer spatial 
awareness without the visual intrusion of cameras or the 
complexity of 3D mapping pipelines. Systems that use 
sound cues for positioning and interaction provide a more 
discreet, lightweight alternative for embedded use in 
personal environments.  

Voice User Interfaces and Passive Auditory 
Localization of TableBot 
Passive Auditory Localization (PAL) is the process by 
which a source sound can be localized by just its speech 
or passive sound. The process can be broken down into 
three steps. The first is the trigger, which is some vocal 
cue. The next step is identifying the audio sections 
relating to the cue. Finally, the audio is transformed for 
processing and run through a pre-trained model to localize 
the source. 

 

 

Figure 3. Diagram of the execution flow for a move to 
command 

TableBot’s localization processes are organized in the 
Brain Node. This node is in charge of all the computations 
performed before passing the computed data off to 
different nodes for execution of tasks, such as movement 
[see Figure 3]. 

The first part of the system streams audio from TableBot’s 
multiple microphones and saves the audio data for future 
use, organized by timestamp. Before creating a stream, on 
the robot’s device, an aggregate microphone is created 



 

containing all the microphones used for localization. 
Within the aggregate microphone, the no-drift 
functionality is activated so that the microphones' clocks 
do not desync and cause downstream errors with the 
localization. Using Sounddevice, a Python module, 
TableBot can stream audio from the aggregate device. 
This allows TableBot to access each microphone as an 
individual channel. Based on the microphones’ 
specifications, the streaming is done at 44100 KHz and 
with a chunk size of 0.25 seconds. 

A ring buffer is used to store the audio for later reference. 
Each audio chunk is stored by its milliseconds from the 
stream start time. This allows TableBot to retrieve audio 
based on the audio’s recorded time. This functionality will 
be used later to get only the audio containing the user’s 
speech for localization purposes. 

After the audio is collected and stored, the voice 
command functionality is implemented. An OpenAI 
real-time model handles the voice and language 
processing system. Instead of transcribing the audio and 
sending the text to a typical LLM, the streamed audio is 
sent straight to the real-time model. The model is given a 
prompt about its status as an autonomous table and a 
series of possible actions it can take. It is asked to return 
the name of the command it is being asked to perform if 
there is a valid command, and if not, to do nothing. The 
audio is sent every chunk via a WebSocket to the OpenAI 
servers. A receiver thread is spun up to parse the 
responses from OpenAI. This thread continues to pull 
messages from the socket to keep track of any commands. 
In addition to parsing commands, OpenAI gives messages 
for the beginning and ending of speech, which include 
when that event happened in terms of the time from the 
start of the stream in milliseconds. The speech events are 
stored in a queue, where an event has both a start and stop 
event with respective time markings. The start event is 
added, and then the end event is added to the last event 
without an end event. When a command is received, it is 
then attached to the first completed speech event in the 
queue. 

The next step is for TableBot to process the command. 
First, it is determined what logic needs to be executed 
based on the given command. Commands sit in a 
conditional list where TableBot checks to see if the 
received command exists and then executes the associated 
logic. Adding a command is as simple as expanding this 
conditional with the new command name, as well as 
adding the new command name to the robot’s prompt of 
possible actions. When a move command is received, 
TableBot first grabs the audio data for the speech event 
and then passes the audio to the localization system. 
Finally, it sends the angle and distance to the movement 
system. 

 

Figure 4. Diagram of PAL model 

The localization system is powered by a custom-trained 
deep neural network consisting of approximately 1.7 
million trainable parameters. The model takes in a sound 
spectrogram from the microphones and then produces a 
coordinate on the 3D Cartesian coordinate grid of where it 
predicts the sound to have originated. The first step is 
converting the audio data to a spectrogram. This is 
handled by the spectrogram function in the scipy.signal 
module. Next, the spectrograms are passed into the 
network. The first three layers of the network are 2D 
convolution layers. Each convolution block H employs a 
3 x 3 kernel with a stride size of 1, followed by ReLU 
activations and batch normalization. These layers apply a 
series of filters to the input spectrograms, enabling the 
network to detect and extract low-level features such as 
edges, textures, and small-scale temporal and frequency 
patterns. After each convolution block, a 2 x 2 max 
pooling operation is applied, which downsamples the 
feature maps by selecting the maximum value in each 
non-overlapping region.  By focusing on the local regions 
of the spectrograms, these convolutional layers effectively 
learn how to represent fine-grained details that are 
essential for subsequent processing. 

 𝐻 = 𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝑅𝑒𝐿𝑈(𝐵𝑎𝑡𝑐ℎ𝑁𝑜𝑟𝑚(𝐶𝑜𝑛𝑣2𝐷(𝑋))))

Following the convolutional layers, the architecture 
incorporates two multi-headed self-attention transformer 
layers. Each transformer layer contains 4 attention heads, 
a hidden size of 64, and feed-forward network dimensions 
of 64. Unlike convolutional layers, which have a fixed 
receptive field, transformer layers leverage self-attention 
mechanisms to evaluate relationships between all parts of 
the input simultaneously. This ability allows the network 
to capture global dependencies and context across the 
entire spectrogram. Moreover, the inclusion of positional 
encodings in these layers enables the model to understand 
the order and relative positioning of features, thereby 
embedding the spatial structure of the spectrogram into its 
representations. This dual capability of capturing both 



 

long-range interactions and positional information is vital 
for tasks where the global context influences model 
performance.  

Experimental ablation studies further revealed that using a 
small number of transformer layers, specifically two, 
yielded better performance compared to architectures with 
a greater number of layers. The results indicated that 
beyond a certain point, additional transformer layers did 
not translate into proportional improvements in model 
performance. It is important to note that these ablations 
were conducted under the constraints of training on a 
single NVIDIA RTX3060 GPU, which limited the scope 
of experimentation.    

Previous studies have shown that integrating 
convolutional operations with self-attention mechanisms 
can enhance feature extraction beyond what is achievable 
when these methods are used independently [14]. The 
convolutional layers efficiently capture local patterns, 
while transformer layers provide a complementary global 
perspective. This combination ensures that the model 
benefits from both detailed, localized information and an 
understanding of the broader context within the 
spectrogram. 

The final part of the network consists of three linear 
layers [see Figure 4]. These layers function as a mapping 
mechanism, translating the high-dimensional feature 
representations obtained from the preceding layers into a 
coordinate space. A ReLU activation follows each linear 
layer. To improve generalization and prevent overfitting, 
dropout with a rate of 0.1 is also applied after each linear 
layer. The linear layers essentially aggregate and refine 
the features to produce the final output. This step is 
critical for ensuring that the abstract features learned by 
the network are transformed into actionable predictions. 

The model was trained using synthetic data generated 
with approximately the same microphone setup as the 
robot. The recordings were generated using 
Pyroomacoustics [12], and over 200,000 recordings were 
collected for training. The simulation was set up to match 
TableBot’s structure and microphones as best as possible. 
Thus, a circular planar array of four microphones was 
replicated with the microphones operating in a cardioid 
pattern. The microphones were positioned 0.25 m apart 
from each other, and the array was placed in the center of 
simulated rooms. The microphones were also rotated to 
their correct orientation. Thus, a microphone on the left 
would be facing west and a microphone at the bottom 
would be facing south. Each room was limited to a shoe 
box-shaped 10 m x 10 m x 10 m. 

A series of different AI voices were recorded saying 
different phrases with differing tones. These voices were 
sourced from ElevenLabs.  

Finally, the following algorithm was run 200,000 times. 

1.​ Create a room 

2.​ Initialize the microphone array 

3.​ Select a random AI voice and place it randomly 
within the room 

4.​ Create random environmental noise (1-3 times 
per room) 

a.​ Initialize a white noise source in the 
magnitude of 0.001-0.01 

b.​ Randomly place the noise source in the 
room 

5.​ Run the simulation and record the signals from 
the microphone array 

6.​ Create spectrograms from the microphones and 
save them 

The dataset was over 100 GB in size and thus required 
creating a custom data loader to load only the active 
training and testing data. The entire dataset was split into 
80% training and 20% testing sets. The model was trained 
for 50 epochs using a learning rate of 1e-4 and a batch 
size of 32, with early stopping applied after five epochs of 
no improvement. To enhance generalizability, time and 
frequency masking augmentations were applied to the 
training set [9]. Experimental ablation studies 
demonstrate that incorporating time and frequency 
masking enhances model performance. The model was 
tested using mean squared error (MSE) loss, a standard 
evaluation metric for predicting 3D Cartesian coordinates 
in the sound source localization literature. 

Finally, in the case of a move command, comes the 
process of instructing the robot to move. Once the 
coordinates have been localized, they can be passed to the 
movement node for execution. 

The movement node is a separate service that is fixed 
inside TableBot. The node is a ROS2 service containing a 
websocket, which enables the Brain Node to control the 
robot’s ROS2 components. When TableBot receives 
instructions, they come in the form of a distance (in 
meters) and an angle (in degrees) through a WebSocket 
connection. The system then converts these instructions 
into timing, essentially calculating how long TableBot 
needs to move at fixed speeds to achieve the desired 
movement. TableBot always moves in two distinct 
phases: first rotating, then moving forward. For rotation, 
it uses a fixed speed of 0.5 radians per second, and for 
forward movement, it moves at 0.3 meters per second. 
The sequence includes built-in delays: a 2-second wait 
before starting any rotation, and a 1-second buffer 
between completing the rotation and starting the forward 
movement. For example, if TableBot was asked to move 
forward 1 meter after turning 90 degrees, it would first 
wait 2 seconds, then spend about 3.2 seconds turning, 



 

wait another second, and finally move forward for about 
3.3 seconds before stopping. The entire movement is 
controlled by precisely timing when to apply these fixed 
speeds, rather than varying the speeds themselves. 

Discussion 
Practical evaluations indicated high localization accuracy, 
correctly predicting the general direction of the speaker. 
However, the precision of these predictions varied 
significantly. Importantly, for usability and safety reasons, 
accurate distance estimation emerged as a critical factor. 
Inaccurate distance estimations, especially 
overestimations, pose potential safety risks by causing the 
robot to approach too closely or collide with the user. 

Additionally, the use of stereo microphone configurations 
significantly degrades localization accuracy due to the 
psychoacoustic "cone of confusion" effect [1]. Although 
this issue can potentially be ameliorated through data 
augmentation techniques such as audio channel swapping 
[1]. However, current methods for channel swapping are 
primarily designed for FOA or tetrahedral audio formats 
[9]. These methods would require adaptation to be 
effectively applied to stereo audio setups. 

In the TableBots current implementation of the voice and 
command processing units, there is a list of commands 
with static logic written for each command. As discussed 
above in the technical implementation, adding to these 
commands is easy. All that is required is modifying the 
robot’s prompt with the new command and providing the 
logic in the command's conditional. Commands have 
access to the audio data and the returned text from 
OpenAI. 

While commands currently do not take in parameters 
from the user’s speech, there are some scenarios where 
this might be useful. Imagine that one has a full cup of 
water on the TableBot, and would thus like the table to 
move very slowly, so as not to knock it over. A user might 
want to say, “Come over here, very slowly.” In the bot's 
current form, it does not extract parameters for 
commands. However, this would be achievable with 
simple prompting and parsing of the OpenAI response. 
For each command, a developer could specify optional 
parameters for OpenAI to extract from a user’s request, 
such as speed. 

It may even be possible for these parameters to be 
naturally inferred. Imagine a user asking, “Bring me my 
cup of tea.” The chat model could assume that, if it is to 
carry tea, it should automatically flag a slow parameter 
for its movement. 

Many other scenarios and user groups can be imagined 
beyond our initial demonstration. For example, seniors 
and other populations living with mobility issues, 
especially those who use assistive mobility devices such 
as canes, walkers, and wheelchairs, might find a 

near-proximity attendant table surface helpful. Such a 
table surface could follow the user through a space, 
helping to carry objects from one place to another when 
the user is unable to do so. These objects could also be 
called upon as needed. TableBot’s potential as an assistive 
technology device – one that allows seniors to “age in 
place,” for example – could be supported in future work.  

To handle more advanced workflows, the commands 
could be altered to accommodate an agent structure, 
where each command becomes a tool that the chat model 
can invoke to achieve the user's request. Imagine a user 
asks, “Can you follow me while I talk with someone 
else?” The TableBot would have the tools Move and 
Localize, where Move would move the robot to a specific 
coordinate, and Localize would localize the current sound 
and provide its coordinates. With these tools, the agent 
would realize it needed to call Localize and Move 
repeatedly to follow the user as they talk to their 
companion. Another example where tooling flexibility 
opens new possibilities is when a user says, “Remember 
the coffee machine is here.” The robot could then localize 
the audio using the Localize tool and note the position in 
memory. By tooling an agent with the robot's physical 
capabilities, there are new infinite combinations of tools 
that can solve more advanced user requests. 

This prototype validates a model for the integration of a 
sound-based user interface with a sound-based 
localization system, using the same microphones for both 
tasks. The evaluation and testing have shown that VIL can 
be a more natural and accessible interaction for users that 
allows them to interact with a technical robot without 
having to learn a specific language or pattern for 
interaction. 

In future work, the hope is to build upon these initial 
innovations and develop more robust approaches to what 
can be referred to as VIL systems or Voice Interface with 
Localization. One can imagine at least three different 
approaches to the further development of VILs.  

The primary area of interest is in using VILs for more 
robust mapping, more akin to SLAM mapping. This 
involves storing data in memory and giving the user the 
ability to command the robot to remember (or forget) 
particular positions in space. In this way, the user and the 
robot collaborate to create a map of the space, based on 
the positional cues given by the user.  

In addition to Passive Acoustic Localization, we are 
interested in integrating Active Acoustic Localization to 
the VIL system, adding a third microphone-based 
application to the system. This will allow the robot to 
send out a signal that can bounce off obstacles in the 
space, adding object avoidance to Passive Acoustic 
Localization, which currently only works in relation to 
voice commands, but not physical obstacles.  



 

Finally, where appropriate, one can envision VILs being 
complemented by other sensor systems, including 
vision-based systems, and more traditional systems such 
as SLAM. The integration of these other approaches to 
VILs can be developed to address a broader range of 
applications.  

Conclusion 
Imagine a world where everyday things come to life when 
spoken to. Like the Sorcerer’s Apprentice, who could give 
life to quotidian objects simply by reciting a spell, Voice 
Interfaces with Localization (VIL) validate a new model 
for enhanced Voice User Interfaces (VUI) by integrating 
verbal commands with acoustic localization [21]. This is 
accomplished with the economy of a single sensor: a 
microphone. One can imagine near-future scenarios where 
furniture equipped with these VIL systems hides in plain 
sight until they are called upon to perform a task, 
contributing to a paradigm where robotics, AI, and other 
emerging technologies are integrated into the built 
environment, both as public infrastructure and as 
domestic furniture. 

As the potential for these technologies grows, it is worth 
considering the kinds of relationships they foster between 
humans and technology. One can imagine a cooperative, 
collaborative relationship emerging, akin to an attendant 
service animal, for instance. Or, one can also imagine a 
non-reciprocal relationship emerge, setting up a 
Master-Slave dialectic, where machine and human 
become unequal, yet interdependent upon each other. 
Speech has almost mystical power when projected onto 
objects. Speaking to objects is much closer to a 
human-to-human interaction than a keyboard or mouse 
can provide, for example. So, it is worth considering how 
interfaces such as VILs might foster healthier 
relationships between humans and technology in the 
coming years. As the Sorcerer’s Apprentice learned, 
speech is powerful, especially when commanding 
everyday things. 
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