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Abstract

Single-cell measurement technologies have enabled the simultaneous assessment of diverse cellular modalities
such as DNA accessibility, RNA, and proteins within a single cell. This advancement offers a direct view into
the intricate layers of gene regulation governing biological diversity and disease. The interconnection between
these modalities presents challenges; DNA accessibility is fundamental for mRNA production, which, in turn,
influences protein synthesis and phenotype. Understanding these intertwined regulatory processes is pivotal for
advancements in synthetic biology and drug target discovery. Addressing the demand for predicting one
modality from another requires accounting for these complex regulatory interactions, highlighting the crucial
need for innovative approaches in analyzing cellular modalities. Our model Multi-modality prediction NET
(mmpNET) can represent these modalities into a shared latent space using an autoencoder architecture. We
obtained similar results to the baseline and winning models for each task from the OpenProblems 2021

competition using this approach.
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1 Introduction

Empowered by deep learning, more innovative models are emerging that
enable the measurement of multiple modalities within the same single
cell. Gaining insights into the flow of information in the cell holds
immense significance for the field of synthetic biology and drug
development. It is crucial to recognize that these cellular traits are not
independent but intricately connected. Specifically, the production of
mRNA, a critical step in gene expression, relies on the accessibility of
chromatin DNA (captured by ATAC data). Moreover, this intricate
process of genetic expression is often subject to regulation by the
molecules it generates. For instance, certain proteins may exert control
by binding to DNA, thus obstructing the generation of additional mRNA.
The growing demand for comprehensive multi-modal data (Athayaet et
al., 2023, Efremova et al., 2020, Gossi et al., 2023) underscores the
critical importance of addressing these regulatory complexities to
advance our understanding of cellular processes.

In biology, most measurements of cellular systems deal with populations
of cells. For example, a tumor sample may contain cancerous cells as
well as skin cells, blood cells, benign cells, and so forth. Although each
of these cells provides different bodily functions, they all contain the
same genome consisting of billions of nucleotides. The turning on and
off of the genes coming from the genome is what differentiates the cells.
Single-cell measurements examine specific individual cells rather than
that of a culture consisting of many different cells, providing valuable
information on the modalities of each cell. Traditional sequencing
methods average the gene expression across multiple cells in a
population, which can mask the traits of individual cells. Some
modalities commonly measured are chromatin interactions, transcription
of RNA, promoter-enhancer receptor binding, and 3D spatial dimension
of DNA/RNA/proteins. However, because collecting single-cell
measurements is a resource-intensive task, single-cell datasets tend to be
more sparse compared to their counterparts, leading to large amounts of
noise that interfere with analyses. In addition, these datasets are
represented differently from each other, meaning it is difficult to relate
the datasets together directly. The importance of single-cell
measurements comes from gene expression of individual cells and
understanding how the concentration of DNA/RNA/proteins affects
health and the onset of disease. Understanding the flow of information
between different cells that controls gene and protein production from
the DNA sequence is vital to answering questions about genetic diseases.

Measuring modalities accurately means accounting for the effects of the
gene regulatory process, where genes can be turned on or off from a
protein coming from a faraway region of the chromosome, or even on
the same sequence. There are even more factors that affect gene
expression, such as transcription activity, chromatin accessibility and
interactions, and spatial structure of DNA. At the single-cell level,
researchers can obtain insights into individual cells rather than
generalizing the data for entire cell populations.

Therefore, the paper’s objective is to design a comprehensive model that
predicts the flow of information from DNA to RNA and from RNA to
protein by combining different datasets. The dataset has three types of
input data: GEX, ATAC-seq, and ADT, which were acquired from
samples of bone marrow mononuclear cells of donors of diverse
backgrounds and genetic histories. The 2021 NeurIPS challenge (Lance
et al., 2021) provides an updated comprehensive dataset for our task.

GEX data provides information about the gene expression levels in a
particular cell or tissue at a specific time, which is crucial for
understanding which genes are actively being transcribed into RNA
molecules. ATAC-seq data provides information about the accessibility
of chromatin, which is the complex of DNA and proteins that make up
chromosomes, helping to identify regions of the genome that are open
and accessible to transcription factors and other regulatory proteins.
Finally, ADT data provides information about the abundance of specific
proteins or protein modifications within a cell, which is crucial for
understanding the protein products that are translated from RNA and for
studying post-translational modifications that can affect protein function.
With the combination of these datasets, researchers can better understand
and be able to predict the process by which genotypes become
phenotypes.

Specifically, we expect to optimize prediction from GEX to ATAC,
ATAC to GEX, GEX to ADT, and ADT to GEX, in addition to
maintaining performance on average across different modalities. The
flow of information can be analogized to the task of machine translation,
which requires translating information between different layers of gene
regulation. The complex processes of transcription and translation in
molecular biology are governed by specific rules, which, comparable to
the rules of grammar and syntax, govern language translation in the
machine translation task. For example, RNA translation to protein is
comparable to translating a text from one language to another, where the
sequence of codons (triplets of nucleotide bases) on the mRNA strand
determines the sequence of amino acids in a protein. Similarly, in the
translation task, the conversion of words from one language to another
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must convey the intended meaning accurately. Therefore, we intend to
apply the encoder-decoder architecture to predict the flow of information
from DNA to RNA and then from RNA to protein, adapting the
principles of sequence-to-sequence learning commonly used in machine
translation tasks.

2 Related work

In this section, we will delve into the examination of different
approaches for modality prediction. Our focus will be on scrutinizing the
architectural aspects of these models and exploring potential
enhancements for their effectiveness.

2.1 Graph Structure

The overall winning solution for predicting across all multimodal tasks
in the competition uses a graph neural network (Scarselli et al., 2008).
The method ran their bipartite graph constructed between modalities
(ATAC, GEX, ADT) and the cells through neural networks that were
implemented for single-cell modality prediction (ScMoGCN, SCMM,
CMAE) (Wen et al., 2022). The graph is created so that each node can be
either a cell or a gene and only gene-cell edges exist since the edge
weights are determined by the gene counts. After graph creation and
convolution, the embeddings of the nodes for each convolutional layer
were concatenated and transformed linearly to represent the connections
between modalities. DANCE (Python package pydance) (Ding et al.,
2020) is a modality prediction pipeline that has many built-in deep
learning models and performed the best overall at all subtasks in the
competition. In our methods, we implement their model using DANCE,
which predicts between scATAC-seq and GEX at the single cell level,
(Wu et al., 2021).

2.2 Autoencoder Neural Network

BABEL (Wu et al., 2020) is made up of two autoencoder networks that
project ATAC or RNA modalities onto a 16-dimensional latent space and
infer the corresponding modality. The purpose of creating latent
representations of modalities is to obtain as much significant cellular
variation among single cells, better capturing the phenotypes that arise
from certain patterns. After training on multiple human cell types
combined, BABEL was found to have higher Pearson and Spearman
correlation values than existing tools in addition to KNN clustering for
both pairings of modalities. In addition, BABEL was evaluated on a
withheld nonhuman cell line and a nonhuman single cell line. The model
obtained an auROC score of 0.80 for RNA to ATAC and a Pearson
correlation of 0.55 for ATAC to RNA, which are similar to the scores for
the human datasets. In addition, BABEL identified the expression of
biologically relevant gene markers present in specific cell types and used
them for modality prediction for different cell types. In the reverse
direction going from RNA gene expression to scATAC-seq, BABEL
highlighted several DNA element regions important to the gene
regulatory process.

The winning model for the ADT to GEX modality prediction was from
team Novel which implemented an autoencoder architecture that
transformed the input modalities ATAC and GEX using latent semantic
indexing (LSI) while keeping ADT data as is for training. The Optuna
framework was used for hyperparameter tuning search for each of the
four tasks (GEX to ATAC, ATAC to GEX, ADT to GEX, GEX to ADT).

2.3 Residual Neural Network

ResNet (He et al ., 2016) is another commonly used architecture for cell
line cross-modality prediction and many other biomedical tasks. ResNet
is used as a backbone in many winning solutions in the competition and
it achieved the best performance results with the modality prediction of
GEX to ATAC. It usually consists of multiple fully connected layers with
Relu activation and batch normalization at each layer. At each layer, the
model has residual connections by applying the fully connected layers
interleaved with ReLU activation and batch normalization. The model

employs a residual architecture, incorporating skip connections to help
with the flow of gradients during training, and also includes a batch
classifier for batch-wise classification.

3  Methods

mmpNet aims to employ a multi-modal prediction architecture to handle
multiple inputs and output types. It has a single solid architecture that
can predict ATAC, GEX, and ADT from one to the other (Figure 1 and
Figure 7 in supplement) .

mmpNet consists of two parts: dimension reduction and model training
and testing. In the preprocessing part, the model includes normalization,
low-dimensional project, batch effect correction in a transductive setting,
and autoencoder. The training part is a fully connected-layers neural
network. The evaluation method for our model is the Root Mean Square
Error (RMSE) function.

3.1 Data Dimension Reduction

The first component in the data preprocessing section is the LSI
Transformer (Deerwester et al., 1990) with the TF-IDF matrix. Term
Frequency-Inverse Document Frequency (TF-IDF) is a statistical
measure widely employed in information retrieval and natural language
processing to capture the significance of a term within a document in
relation to a corpus of documents. The relationship of TF-IDF with
modality prediction is explained in the supplementary part.

Upon obtaining the TF-IDF matrix, mmpNet integrates the TF-IDF
methodology with Latent Semantic Indexing (LSI) to enable the
extraction of underlying relationships and patterns from diverse gene
data, particularly in instances where the gene data is both
high-dimensional and sparse. Singular Value Decomposition (SVD) can
be applied to the TF-IDF matrix to deconstruct it into three distinct
matrices, with the middle matrix capable of capturing the latent
connections between terms and documents. Retaining the most crucial
dimensions can reduce data dimensionality while preserving the most
noteworthy patterns and relationships, thereby mitigating challenges
associated with high dimensionality and sparsity in the data. By
leveraging semantic analysis and interpretation, hidden patterns
associated with gene regulatory networks and chromatin accessibility
can be unearthed. Consequently, the grouping of genes or samples based
on their semantic similarities can facilitate a more comprehensive
comprehension of the underlying biological mechanisms and
relationships.

The second component in the data processing section is batch correction
with Harmony (Korsunsky et al, 2019). Batch effects can happen in
many cases like changes in experimental conditions, equipment
variations, or other non-biological factors. Batch effects can significantly
impact the accuracy and interpretability of downstream analyses of
genomics data. In the absence of batch correction, batch effects can lead
to misleading results, particularly in the identification of differentially
expressed genes, clustering of samples, and other analyses.

Harmony is an established batch correction method designed specifically
for single-cell RNA sequencing (GEX) data. The test data batches are
independent of the training data batches, correcting the bath effects in a
transductive setting minimizes the impact of the distribution shifts that
may arise due to technical variations across different batches or
acquisitions.

mmpNet uses an autoencoder neural network following with a fully
connected layer to learn the relationship between modalities. The
autoencoder layer’s objective is to learn a compact and efficient
representation of input data by comprising an encoder and a decoder.
The encoder transforms the input through two linear layers, employing
rectified linear unit (ReLU) activations and dropout for non-linearity and
regularization, respectively. The first linear layer maps the input data to a
hidden layer with 512 units. The second linear layer maps the hidden
layer to the encoding layer with the specified dimensionality. The
encoded representation is then decoded by a symmetrical structure, with
the decoder aiming to reconstruct the original input. The first linear layer
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maps the encoding layer back to a hidden layer with 512 units. The
second linear layer maps the hidden layer to the output layer with the
specified dimensionality. The entire network is trained to minimize the
reconstruction error, encouraging the autoencoder to capture essential
features of the input data in the reduced-dimensional encoding.

Following the preprocessing of the entire dataset, the training, validation,
and testing data have been transformed into binary format, incorporating
extracted features. While alternative models, like Cajal, employ the
binarize package from Sklearn for this conversion, our experimental
findings indicate that our unique preprocessing approach yields superior
results.

3.2 Model Training

mmpNet learns the output features from the autoencoder layer with a
three-layered fully connected neural network. The architecture consists
of linear layers with GELU activations and dropout layers, providing
non-linearity and regularization. The overall architecture is the same
across all modality predictions but with different layer unit sizes and
different dropout probabilities. Take GEX to ATAC as an example, the
first linear layer maps the input data to a hidden layer with 1024 units;
followed by a second linear layer which maps the 1024 units to 256
units; the third layer maps the 256 units to 2048 units. Dropout layers
with specified dropout probabilities of 0.3, 0.15, and 0.15, respectively.

Feature Extraction Model Training & Testing

Fig.1 mmpNet Model Structure

3.3 Evaluation

To align with other models’ evaluation method from the Open Problem
in Single-Cell Analysis 2021 competition, the Root Mean Squared Error
(RMSE) is applied to evaluate mmpNet. RMSE (Equation 1) measures
the average magnitude of the errors between predicted and actual values,
providing a comprehensive understanding of the model’s performance.
RMSE provides a unified evaluation metric for all four modality
predictions in the same scale.

RMSE = .,U.fggn:] %

Equation 1: Root Mean Square Error

4 Experiments

The model input is the pre-processed dataset from the benchmarking
dataset for the Open Problem in Single-Cell Analysis 2021 competition;
the original dataset is available from NCBI GEO under accession
GSE194122. The training data is in an AnnData hS5ad file. The
competition is organized in two phases. In the first phase, participants
develop methods and submit their solutions. The challenge organizer
then re-trains the submitted solutions via Docker, using a separate phase
2 dataset. We use the phase 2 private dataset to develop and tune our
models for simplicity and comparison purposes. Therefore, it is unfair to
directly compare them with the official solutions.

For each method, 5-fold cross-validation is used to reduce data splitting
variance, assess and tune the model's parameters. By iteratively rotating
the validation set through the folds, we get a comprehensive evaluation

of our model's generalization capabilities. However, there isn’t any major
change during this process which indicates the data is evenly distributed.

In Figures 2 and 3, the visualization samples of the ATAC and GEX
datasets respectively with UMAP after normalization and loglp
transformation. The ATAC and GEX datasets both had 42492 total
observations and 116490 and 13431 features, respectively.
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Figure 2: UMAP of a representative subset of the open chromatin
(ATAC-seq) dataset clustered by cell type
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Figure 3: UMAP of a representative subset of the gene expression
(GEX) dataset clustered by cell type

UMAPS are latent representations of the data where features are reduced
to a lower dimension for clustering, where each point is a cell and the
distance between two points indicates their similarity.e.g In Figures 2
and 3, it is difficult to distinguish between cell types from chromatin and
RNA alone. This indicates that the models in the competition needed to
employ a novel approach to predicting modalities without memorizing
patterns among cell types.

The analysis part uses data grouped in batches, or donor sites where the
DNA, RNA, and protein abundance is measured across the same cells.
UMAPS can visualize the clusters in the training and testing datasets for
RNA and protein. But, the GEX dataset is normalized in addition to
performing loglp transformation.
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Figure 4: UMAP of full GEX training dataset clustered by batch/donor
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Figure 5: UMAP of full ADT training dataset clustered by batch/donor

In Figures 4 and 5, notice that most of the cells in each batch are
somewhat similar to each other, which is what is expected since each
batch comes from the same sample of cells. However, the batches are not
equally represented in each cluster and each cluster is not clearly
defined, meaning the training data may contain biases and cause the
model to overgeneralize and make incorrect predictions.

5 Results

In this study, we employed two baseline methods that were also used in
the 2021 competition. The first method returns the mean of modality 2
training data for all cells in the test set of modality 1. In this case, the
prediction for each cell is identical and is solely based on the average
behavior observed in the training data of modality 2. However, this
method neglects any specific information provided by modality 1, as the
prediction is the same for all cells in the test set. It serves as a
straightforward baseline that does not take into account the individual
characteristics of cells in modality 1. The second method employs linear
regression on Principal Component Analysis (PCA)-transformed data
from modality 1. In this approach, the input data from modality 1 is
concatenated for both training and test sets. PCA is then applied to
reduce the dimensionality of the data. The resulting PCA-transformed
data is used to train a linear regression model, and predictions are made
for the test set. The final step involves projecting these predictions back
into the original feature space of modality 2. This method leverages the
relationship between modality 1 and modality 2 through linear regression
on the PCA-transformed space.

In addition to the competition baselines, we also compared mmpNet to
simplified KAUST (ResNet) and vanilla GNN approaches, which were
backbones of two winning solutions from the competitions that we found
most related to our course materials. This comparison was conducted for
each of the modality prediction tasks using the default hyperparameters.
As shown in Figure 6 and Table 1 (sup. info.), our model performed
similarly to the others in terms of RMSE loss across 3 of the 4 prediction
tasks (GEX2ATAC, ATAC2GEX, ADT2GEX) and slightly
underperformed in the GEX2ADT task compared to the winning models.
RMSE loss was calculated by the equation shown in Equation 1.

The competition measured predictive performance by calculating the
difference between the truth and predicted values for each modality task
respectively. These values differed between each task due to the varying
dimensionality of the DNA, RNA, and protein datasets. Each model’s
goal was to minimize the RMSE loss to zero.

RMSE for Modality Prediction
B Mean [l Linear Regression GNN [ ResNet [ mmpNet(ours)
0.8

0.6

0.4

RMSE

0.2

0.0

GEX2ATAC ATAC2GEX GEX2ADT ADT2GEX

Tasks

Figure 6: RMSE for the models across each modality prediction task

6 Discussion and Conclusion

Single-cell technology has led to immense breakthroughs in biology and
furthered our understanding of cellular systems. Using deep learning
techniques, we can align different modalities and help researchers find
relationships between the transition between the transition of DNA to
RNA and to protein. Although biologists understand some of the
connections between these layers of the regulatory process, we use an
encoder model to develop insights on the underlying characteristics of
each modality to predict a different one.

mmpNet combines batch correction with an autoencoder architecture to
predict one single cell modality from another by reducing the
dimensionality of DNA, RNA, and protein datasets into a shared latent
space. mmpNet not only performs as well as the winning models for
some of the tasks, but also contains an interpretable latent space that can
be used for further analysis on the biological importance of the elements
of the gene regulatory process.

However, the results are lower than our initial expectations. We attribute
this outcome to several factors. Firstly, the dataset from the competition
appears to have inherent flaws. Additionally, the cell line data exhibits
high dimensionality, and the signal strength or feature is notably weak.
Consequently, dimension reduction becomes a necessary step for all
methods employed. This circumstance partially explains why even
traditional machine learning methods establish a robust baseline in this
scenario. The inherent limitations exist in transferring information
between certain modalities, such as the natural difficulty in transferring
GEX data to ADT data. When we performed data exploration, we
noticed that ATAC data is highly sparse and binarized and the scales of
gene expression data differ by sites, which may limit our model’s
generalizability of predictions to unseen test data. In addition, further
investigation revealed that some batches were not represented in the
testing datasets, which could mean our model needed to be trained on
more varied labels.

We are also aware of the limitations of deep learning methods in
studying single cells. When the data is highly sparse and noisy, a
nonparametric machine learning approach would provide more robust
results. We realize the difficulty of creating a universal end-to-end
method for all cross-modality predictions.
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Contributions

All team members contributed equally to this final project. We updated
our work distribution before each checkpoint. In the first stage, Chris
implemented the DANCE workflow for multimodality prediction and
created functions to obtain RMSE results from the BABEL model.
Zhangyi created a subsampled dataset, explored the baseline linear
regression model, and experimented with TF-IDF and SVD using linear
regression and autoencoder structures. Anna attempted to reimplement
the Novel architecture and tested the methods with different
hyperparameters to observe their effects. Taishi assisted with initial
experiments and baseline selection, while Yiyang focused on data
preprocessing and exploring data analysis. In the second stage, Chris
implemented DANCE for full datasets and collaborated with Taishi on
data visualization. Taishi implemented the ResNet-based model for full
datasets. Zhangyi constructed the LSI-autoencoder architecture with full
datasets and experimented with different feature identification
approaches on our model. Yiyang made modifications and improvements
to both baselines and our models, running them on the GPU to obtain
results. Anna introduced the Harmony approach to our model and
generated graphs for the model architecture. Finally, we summarized all
the feedback from peer reviewers and collaboratively made
improvements to the final draft.
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Model | ATAC2GEX | GEX2ATAC | GEX2ADT | ADT2GEX
Mean 0.2031 0.2394 0.6175 0.3430
Linear Regression 0.2406 0.3130 0.5213 0.3585
BABEL 0.1817 0.2409 0 0.4489 0.3654
KAUST 0.1793 0.2516 0.4613 0.3268
mmpNet 0.1850 0.2343 0.6204 0.3731

Table 1: RMSE results from testing
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Figure 7: mmpNet Architecture

TF-IDF and Modality Prediction

In the realm of modality prediction, such as the prediction of ATAC data
from gene expression (GEX), TF-IDF can serve as a feature engineering
tool to capture the interplay between gene expression data and ATAC
data. It helps in the identification of relevant genes likely to be
associated with specific ATAC data patterns. Each sample or data point
can be regarded as a 'document,’ and the gene expression data can be
considered as 'terms' within these 'documents.' The frequency of each
gene in the gene expression data for a specific sample can be calculated
to represent the degree to which a gene is expressed in that particular
instance, thereby encapsulating the gene's importance within the sample.
Subsequently, the inverse document frequency for each gene across the
entire dataset can be computed to capture the uniqueness of a gene
across all samples. Genes that exhibit lower prevalence across all
samples but are highly expressed in specific samples are assigned higher
importance. By multiplying the TF and IDF, a TF-IDF score for each
gene in each sample can be derived, signifying the gene's significance
for that specific sample while accounting for its relevance across the
entire dataset. The TF-IDF methodology can yield valuable insights into
the association between gene expression and ATAC data.



