
Hsin-Lei Charlene Wang
Artificial Intelligence Capstone
Fall 2019

Tron Capstone

Overview
I will explain the motivations behind the overall architecture design, model design and
architecture , and performance gains in the Research/Implementation section. The motivations
behind how the bot works will be addressed in the README section.

Research/Implementation process
The problem is framed in two different approaches: reinforcement learning and supervised
learning.

1. Reinforcement Learning: DQN
2. Model architecture and Performance
3. Competitive Analysis of All Supplied Bots
4. Supervised Learning: Policy Network
5. Final Model & Learned Weights

Image 1

Reinforcement Learning: DQN
Recent successes such as AlphaGo and AlphaGo Zero spike a trend of training deep neural
networks on large amount of self-play data to learn better representations [1]. As I designed the
strategy for Tron, I began to look at how reinforcement learning trains agents to play single,
adversarial and multi-agent games effectively.

2

https://deepmind.com/research/case-studies/alphago-the-story-so-far
https://deepmind.com/blog/article/alphago-zero-starting-scratch

In the reinforcement learning homework, we implemented the SARSA and SARSA-lambda
algorithms to store state-action values in the Q table. Those Q-learning algorithms work best
when there are a few states. However, in the case of Tron, the problem space is too large for
Tabular Q-learning algorithms because each game cell can have many cell_types and
powerup_types. The combinations of all possible states are too big to store in the Q table.
Therefore, I started to look for deep learning solutions that use neural networks to predict
q-values without storing all the state-action pairs. Instead of looking up q-values in a Q table, the
neural network would develop an estimation function that can predict the q-value of any
state-action pair. Now the question is which framework to use.

After reading many popular papers on deep neural networks, I decided to go with a simple,
elegant model called Deep Q-learning or DQN . DQN “connects a reinforcement learning
algorithm to a deep neural network which operates directly on RGB images and efficiently
process training data by using stochastic gradient updates” [2]. DQN stores the agent’s
experience in an N-size buffer, called experience replay , at each time-step [3]. Then, Q-learning
is applied to some samples of experience from the replay buffer. Afterward, the agent selects an
action that would maximize the reward. DQN trains samples from the replay buffer to fulfill the
i.i.d. (independent and identically distributed) requirement.

With DQN, I built a large and a small neural network to predict q-value. Since the nature of the
game board is similar to an image, I decided to go with the convolution neural network used by
AlphaGo.

Model architecture and Performance
AlphaGo uses 192 filters for each conv2d layer, which would be extremely slow to train. Hence,
I reduced it to 64 filters in each conv2d layer. Here is the large model architecture similar to
AlphaGo’s CNN:

3

Cont.

4

Image 2

However, this giant architecture is slow to train and doesn’t reduce the loss function efficiently.
Therefore, I reduced the large model into a smaller one . Specifically, I took out 7 residual
blocks, simplified 14 convolution layers into 2, and excluded skipped connections. Here is a
summary of the small CNN:

5

Image 3

My bot performances trained on each CNN are shown below.

Image 4

When trained on the small network , my bot struggles on joust and divider when competed with
the random bot. When competed with the wall bot, my bot only struggles at the empty_room.

When trained on the large network , my bot consistently beats the random bot and consistently
loses to the wall bot . While the performance versus wall bot is worse than the small network,
the large network has more consistency across. Therefore, I decided to let the bot trained on a
large network compete with ta bots.

6

Image 5

Sadly, my bot not only loses to beat wall bot but also loses to ta1 and ta2 entirely.

Given the superior performance of the supplied bots, I first experimented with different reward
structures. For example, I compared only rewarding the last step versus rewarding every step.
While rewarding the last step is the most common approach in reinforcement learning games, I
want to know if there are any merits in keeping the bot on the Tron game for long. This novel
approach did not improve the performance much either.

Therefore, I began to analyze their performances and research other ways to learn from the bots.

Competitive Analysis of Supplied Bots
I conducted the following study to see which bot has the best move. From the table below, ta2
outperforms ta1, random, and wall bots in most cases. There is one scenario (divider) where the
wall bot slightly outperforms ta2 , so I plan to learn from ta2 bot and pick up some strategy from
the wall bot.

7

Image 6

Supervised Learning: Policy Network
AlphaGo trains a “supervised learning policy network directly from expert human moves in the
Go game” [4].

Input features to AlphaGo’s Policy Network [4]

8

In a similar spirit, I am going to learn from the best player (ta2) in the Tron game with the feature
described below. To mimic the behavior from all supplied bots, I started to train the policy π ,
which predicts an action for each state (π: s → a). The goal is to let π learn from the master
moves and best players, so it can become the best player too.

Preprocessing

● Data generation : I created selfplay.py which would generate the following training
datasets:

○ ta2 vs (rand, wall, ta1, ta2) on all maps as well as the reverse order
○ ta1 vs (rand, wall, ta1, ta2) on all maps as well as the reverse order

● Training labels :
○ X=19 planes (see below)
○ Y=numpy array((4,)) with one-hot encoding for the 4 classes

● Training/Validation/Testing Split: 70/20/10
● Augmentation : I augmented the training data by apply coordinate transformations, i.e.

"flipping" the board along various axes. The final augmented list of (state, action) is
flipped in 8 different ways.

● Data size: 200 (times) x 4 (maps) x 8 (augmentation) x 60 (moves/game) = ~400k
training samples for each round.

Model Training

1. Feature Selection : 19 planes (number of channels in the convolutional layers). The
planes represent the following information:
1.1. walls = 1
1.2. barriers = 1
1.3. current_player_position = 1 (only one)
1.4. opponent_position = 1 (only one)
1.5. speed_locations = 1
1.6. bomb_locations = 1
1.7. trap_loc = 1
1.8. armor_loc = 1
1.9. current_player_has_armor = ones

1.10. opponent_has_armor = ones
1.11. current_player_has_speed_with_four_steps
1.12. current_player_has_speed_with_three_steps
1.13. current_player_has_speed_with_second_steps
1.14. current_player_has_speed_with_one_steps
1.15. opp_player_remaining_speed == 4

9

1.16. opp_player_remaining_speed == 3
1.17. opp_player_remaining_speed == 2
1.18. opp_player_remaining_speed == 1
1.19. is_current_player_one

2. Learning rate: Use the default setting of the Keras.Adam optimizer, which would be
automatically adapted as epoch number increases.

3. Optimizer: I chose Adam optimizer because of its popularity and ability to adapt the
learning rate on its own.

4. To optimize the weights in the most efficient manner, I trained many versions of the
models on each bot and map while varying the epoch (5, 50, 100, 500) and batch_size
(32, 64, 128). The sweet spot happens when epoch=50 and batch_size = 64 .

5. To combat overfitting, I started with strong regularization (L2(1e-4) for
kernel_regularizer and two Dropout layers), data augmentation, and simple, small
architecture.

The small CNN’s model architecture is the same as the small CNN (image 3) used by DQN; the
only difference is that the final layer is replaced with softmax for multiclass classification (four
actions).

The following performance (Image 7) is a result of three training stages: ta2 self-play, ta2 x ta1
battle, and a different ta2 self-play.

Image 7

After training for a few hours, the training and validation loss converged to 0.7 and the
performance (Image 8) improved:

Image 8

Given that the loss score has converged to about 0.7, I decided to create a larger CNN to utilize
the power of the model.

10

The model architecture is the same as the large CNN (image 2) used by DQN; the only
difference is that the final layer is replaced with softmax for multiclass classification (four
actions). Due to architectural differences, I trained the large CNN with ta2 self-play from scratch.
While the large CNN takes longer to train, the performance (Image 9) after a few epochs is
promising:

Image 9

Policy Network with large CNN achieves the best performance so far, so I continue running it for
hours. Here is a snapshot with 12 hours of training:

Image 10

Final Model & Learned Weights
With the outstanding performance of Policy Network trained on large CNN, I chose it (stored in
largenetwork_policy) to be the final strategy. The large CNN architecture (Image 11) is
quite similar to DQN’s large CNN architecture (Image 2). The only difference is the final layer.
DQN uses linear for regression while Policy Network uses softmax for multiclass
classification . The multiclass classification shows the probability for all four directions, and the
agent will select the one with the highest probability .

11

Cont.

12

Image 11

13

README for Tron Bot

Running Unit Tests

run_tests.py runs tests on all combinations of bots and maps
python run_tests.py

Training Policy Network
● Collect moves for replay by running the games with specified bot pairs with python

selfplay.py
● Once the raw training data is created, run python trainingdatageneration.py

to take in the data from the replay history, augment it and convert it into training data
(numpy arrays).

● Largenetwork.py trains the CNN and stores the best weights in checkpoint files.
● In bots.py , you can see how the trained Policy Network works. I first load the

previously trained weights. Then, I use the trained policy network to decide the best
action and conduct a safety check on the selected action. The safety check rules out
suicidal actions.

Past Attempt
Note that this approach is not used in the final submission. The DQN training model can be
found in trainingdqn.py with the following hyperparameters:

● EPOCHS=100

● BATCH_SIZE = 32,

● REPLAY_BUFFER_SIZE = 20000,

● GAMMA = 0.999,

● EPSILON_DECAY = 0.99,

● EPSILON_MIN = 0.1,

● EPISODES = 500,

● TARGET_NETWORK_UPDATE_INTERVAL = 10,

● CHECK_PERFORMANCE_INTERVAL = 50

Furthermore, I used an epsilon-greedy approach, starting with a high epsilon (1.0), which
anneals to 0.01 over the episodes. This is to encourage exploration at the beginning and
exploitation in the later stage.

14

Shortcomings
1. The model achieved a decent performance: validation loss=0.6547 and validation

accuracy=0.6174. Therefore, it can’t perfectly mimic TA2 bot’s moves yet.
2. The current approach blindly mimics TA2 bot’s moves, so at best it would beat TA2 bot

for 50% of the time.

Potential areas of improvement
If I had more time, I would do the following:

● Decrease the training time with Episodic Backward Updates for DQN [5].
● Augment deep learning-based approach with searches and heuristics (e.g. A*) when there

are limited steps.
● Monte Carlo Tree Search
● Ensemble several successful approaches I tried.
● Boost the model performance with feature engineering

If I had access to GPU, I would do the following:

● Train the large CNN from both approaches on more data
● Further increase the model power via architecture
● Try different sets of hyperparameter tuning to reach the sweet spot.
● Try strategies for adversarial and multi-agent DQN games, such as Opponent Modeling

in Deep Reinforcement Learning [6].

15

References
[1] Alex Krizhevsky, Ilya Sutskever, and Geoff Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in Neural Information Processing Systems 25, pages
1106–1114, 2012.

[2] Mnih, Volodymyr et al. “Playing Atari with Deep Reinforcement Learning.” ArXiv
abs/1312.5602 (2013): n. Pag.

[3] Long-Ji Lin. Reinforcement learning for robots using neural networks. Technical report,
DTIC Document, 1993.

[4] Silver, David & Huang, Aja & Maddison, Christopher & Guez, Arthur & Sifre, Laurent &
Driessche, George & Schrittwieser, Julian & Antonoglou, Ioannis & Panneershelvam, Veda &
Lanctot, Marc & Dieleman, Sander & Grewe, Dominik & Nham, John & Kalchbrenner, Nal &
Sutskever, Ilya & Lillicrap, Timothy & Leach, Madeleine & Kavukcuoglu, Koray & Graepel,
Thore & Hassabis, Demis. (2016). Mastering the game of Go with deep neural networks and tree
search. Nature. 529. 484-489. 10.1038/nature16961.

[5] Lee, Su & Sungik, Choi & Chung, Sae-Young. (2018). Sample-Efficient Deep Reinforcement
Learning via Episodic Backward Update.

[6] He, He & Boyd-Graber, Jordan & Kwok, Kevin & Daumé, III. (2016). Opponent Modeling
in Deep Reinforcement Learning.

16

