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Abstract

Classifier-free Guidance (CFG) lets practitioners trade-off fidelity against diver-
sity in Diffusion Models (DMs). The practicality of CFG is however hindered
by DMs sampling cost. On the other hand, Consistency Models (CMs) generate
images in one or a few steps, but existing guidance methods require knowledge
distillation from a separate DM teacher, limiting CFG to Consistency Distillation
(CD) methods. We propose Joint Flow Distribution Learning (JFDL), a lightweight
alignment method enabling guidance in a pre-trained CM. With a pre-trained CM
as an ordinary differential equation (ODE) solver, we verify with normality tests
that the variance-exploding noise implied by the velocity fields from unconditional
and conditional distributions is Gaussian. In practice, JFDL equips CMs with the
familiar adjustable guidance knob, yielding guided images with similar characteris-
tics to CFG. Applied to an original Consistency Trained (CT) CM that could only
do conditional sampling, JFDL unlocks guided generation and reduces FID on both
CIFAR-10 and ImageNet-64!64 datasets. This is the first time that CMs are able
to receive effective guidance post-hoc without a DM teacher, thus, bridging a key
gap in current methods for CMs.

1 Introduction

Diffusion models (DMs) have emerged as a powerful class of generative models, achieving remarkable
success in various domains of artificial intelligence [15, 54, 55, 43, 51, 46, 45, 32, 49, 23]. Their
ability to generate high-fidelity samples has been demonstrated in tasks such as text-to-image
synthesis, speech synthesis, and video generation [62, 17, 58, 19]. These models operate through an
iterative denoising process, where they gradually transform a noisy input into a structured data sample
[15, 39]. The field of DMs has seen extensive research in areas like denoising schedulers, network
architectures, controllability, and distillation techniques aimed at improving their performance and
efficiency [21, 23, 37, 38, 48, 42, 44, 20, 57].

Classifier-Free Guidance (CFG) [16] is a widely adopted technique that allows for controlling the
generation process in DMs. CFG involves jointly training a conditional score and an unconditional
score, by often using a “null” label for the unconditional case [16, 2]. A key advantage of CFG
is its simplicity and post-hoc nature, as the guidance effect is realized during inference without
particularly learning a guided path for generation [16, 47]. By interpolating between the conditional
and unconditional predictions using a guidance scale, CFG enables a trade-off between the fidelity
of the generated samples and their diversity [22]. Due to its effectiveness in controllability, CFG
has become a standard technique in DM applications, with guidance often preferred over unguided
generation [47, 61, 18, 22, 42, 5, 40].

Consistency Models (CMs) are a new family of generative models designed for fast sampling, often
generating high-quality images in just one or a few steps [53, 52, 26, 25, 63, 56, 29, 13, 30, 6, 36,
59, 14, 56]. They achieve this speed by learning to directly map noisy inputs to clean data samples
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through two main approaches [53]: Consistency Distillation (CD) [30, 40, 63, 31, 10], which involves
distilling knowledge from a pre-trained DM, and Consistency Training (CT), where the training
procedure is totally data-driven [52, 30, 13, 7, 18]. Existing guidance methods for CMs typically
rely on knowledge distillation of CFG from a teacher DM, which inherently binds guidance to the
CD approach for CMs [40, 3]. In DMs, the benefits of CFG can be directly evaluated at inference
time using the same model [22]. For distilled CMs, however, guidance effects are inherently tied to
training, making the learning task more complex than simply fitting an unguided ordinary differential
equation (ODE) trajectory [40, 63]. This makes it challenging to directly evaluate the benefits of
guidance since it would require training a separate unguided version for a fair comparison. To
conclude, current guidance approaches for CMs are largely dependent on the existence of a DM
teacher, and the isolated impact of guidance on CMs remains unclear without a direct comparison to
another CM that only does unguided generation.

In this paper, we introduce a novel post-hoc guidance method for CMs that operates independently of
DMs. Starting with a pre-trained unguided CM as an ODE solver of the diffusion path, our method
enables guidance learning by interpolating the directions of synthesized unconditional and conditional
distributions. We call this Joint Flow Distribution Learning (JFDL) and provide insights of why it
works based on the connection to Flow-based generative models (FMs) [27, 33, 59, 12, 35, 34, 11, 24].
Furthermore, we discovered that our algorithm can be adapted to work effectively without an
unconditional ODE solver. This broadens the generality of our method for pre-trained CMs as training
them can be a complex endeavor. Our algorithm offers a post-hoc way to equip an unguided CM
with guidance capabilities, effectively bridging the gap for CT models. We access the effectiveness
of guidance by showing significant FID improvements on both CIFAR-10 [28] and ImageNet 64x64
datasets [9] compared to the initial unguided CM. In summary, our contributions are:

• We propose JFDL, a novel post-hoc guidance method for CMs that does not rely on DMs.

• We provide insights to JFDL’s effectiveness from a FM’s perspective.

• We demonstrate that a pre-trained CM without explicit design for unconditional sampling,
remain effective for JFDL and guidance tuning for CMs.

• We demonstrate FID improvements on CIFAR-10 and ImageNet 64x64 by applying our
method to CT models.

2 Preliminaries

This section introduces the prelimiaries for the connection between Diffusion models (DMs) and
Flow-based models (FMs), Consistency Models (CMs), and Classifier-free Guidance (CFG). We also
reuse the established notations for the rest of the paper.

Diffusion Models and Flow-based Models, Two Sides of the Same Coin. DMs are probabilistic
generative models that define a forward process which gradually adds noise to a data sample x0 →
pdata(x) over time t ↑ [0, 1]. For the rest of our paper, we focus on the Variance Exploding (VE)
scheme [55, 21] that has the stochastic differential equation (SDE), dxt =

↓
2ωtdwt, where wt is a

standard Wiener process, and ωt = ωmaxt is the noise exploding term with ωmax ↔ 1. The reverse
process–generating data from noise–can also be described by an SDE [55]. Notably, there exists a
Probability Flow ODE (PF-ODE), that shares the same marginal probability densities as the reverse
process, dxt/dωt = ↗ωt↘xt log pt(xt) = 1/ωt · (xt ↗ Ex0 [x0|xt]), where ↘xt log pt(xt) is called
the score function [26, 53]. A common loss function for predicting the expected value of x0 has the
form:

LDM (ε) = Et,x0,xt

[
w(t)≃Dω(xt, t)↗ x0≃22

]
, (1)

where w(t) is a weighting function dependent on time, and ε parametrizes the model Dω [21].
Other training objectives, such as predicting score, noise, or even a mixture of noise and x0, can be
formulated similarly by reparameterizating the loss term [39, 12, 36].

FMs learn a map between an untractable distribution p0(x), e.g., pdata(x), and a simple distribution
p1(x) , e.g., the standard normal [27, 33, 34]. We define an ODE with the time dependent vector
field ut, and the flow ϑt by: dϑt(x)/dt = ut(ϑt(x)), ϑ0(x) = x0. Since we do not have access to
ut that satisfies the marginal densities pt, a per sample aggregation of conditional vector fields (CVF)
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ut(xt|x0) can be used to construct the conditional flow matching (CFM) objective [33] as follows:

LCFM (ε) = Et,x0,xt

[
≃Fω(xt, t)↗ ut(xt|x0)≃22

]
, (2)

where xt → pt(x|x0), and ε parametrizes the model Fω. If we consider the VE scheme from diffusion,
we can construct a probability path pt(x|x0) = N (x;µt(x0),ω2

t I), where µt(x) = x,ωt = ωmaxt,
and the CVF has the analytical form [33]:

ut(xt|x0) =
ω→
t

ωt
(xt ↗ µt(x0)) + µ→

t(x0). (3)

With adjustments in parametrization and weighting, previous works have shown that the training
target of DMs and FMs are translatable [12, 36]. We will explicitly show the connection of ut(xt|x0)
and CMs in Section 3.1.

Consistency Models. CMs are a class of generative models designed for one or few-step sampling
by learning to directly map any point on the PF-ODE trajectory to its endpoint (the data sample)
[53, 26]. In our study, we focus on a family of continuous-time CT models introduced in ECT [13]
due to its significantly reduced GPU resources at training. Based on the VE diffusion scheme, the
ECT objective is as follows:

LECT (ε) = Et,r,x0,z [ d(Gω(x0 + ωtz, t), Gω→(x0 + ωrz, r)) ] , (4)

where x0 → pdata is a data sample, z → N (0, I) is a sampled noise, t, r are consecutive time steps,
and d(·, ·) is a distance function. Gω is the online CM, where ε↑ denotes the stop gradient of the
same CM being the target. The distance ! := |ωt ↗ωr| is approximately ωt/qn, where n is an integer
denoting the training stage. With q = 2 and q = 4 at the start of CIFAR-10 and ImageNet 64x64
experiments respectively, ! progressively decreases by a factor of q at training, and the factor at the
final stage for both is qn = 256.

Classifier-Free Guidance in DMs and CMs. CFG is a technique used to controlling the guidance
of the generation process [16, 40]. In DMs, this is done nearly training-free by extrapolating the
conditional and unconditional updates at sampling DCFG

ω (xt, t, c,ϖ) = ϖ · [xt↑Dω(xt,t,c)]
εt

+ (1↗ϖ) ·
[xt↑Dω(xt,t,↓)]

εt
, with ϖ ⇐ 1, and c, ⇒ are the conditional and unconditional classes respectively [16].

To achieve CFG in CMs, previous works rely on knowledge distillation of a CFG teacher DM, DCFG
ω ,

at training, limiting CFG to CD models [63, 40]. We will demonstrate a DM-free CFG method for
CMs which uses the pre-trained CM itself as an ODE solver. As a result, we can access the benefits
of CFG post-hoc compared to the original CM and equip CT models with guidance.

3 Guidance via Joint-Flow Distribution Learning

We begin by discussing the connection of FMs with CMs. Following, we introduce the naive JFDL
for post-hoc guidance tuning, which has a prerequisite of a pre-trained class-conditioned CM that
learns the unconditional PF-ODE (with the ⇒ class). We will provide a theoretical analysis of the
pseudo-noise in JFDL, supported by experimental verification. In the end, we find out that an adjusted
JFDL algorithm works surprisingly well without the need of the ⇒ solver from CM.

3.1 Routine Correspondence between FMs and CMs

Following the VE scheme, let p0(x) = pdata(x) be the data distribution, where x ↑ Rd, and
let p0(x|c) = pdata(x|c) be the class-conditioned data distribution, where c ↑ C, s.t. p0(x) =∫
p0(x|c)p(c) dc.

To train a FM, we begin by sampling xc
0 → pdata(x|c) and z → N (0, I). We can con-

struct a class probability path pt(x|c) with pt(x|xc
0, c) = N (x;xc

0,ω
2
t I), satisfying pt(x|c) =∫

pt(x|xc
0, c)p0(x

c
0|c) dxc

0. Observe that p1(x|xc
0, c) ⇑ N (x;0,ω2

maxI) is Gaussian, and p0(x|xc
0, c)

is the class-conditioned data distribution conditioned on xc
0, we can analytically derive the CVF,

ut(xt|xc
0, c), as the target of the CFM objective. To train a CM, we choose a t, and noisify the

sampled data, xc
t = xc

0 +ωtz. Then, we can compute the denoising direction as u := 1/t · (xc
t ↗xc

0),
and derive the target for the consistency loss as Gω→(xt + u · (ωr ↗ ωt), r, c).
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Algorithm 1 Naive JFDL for Post-Hoc Guidance

1: Input: dataset D, pre-trained CM ϱ, weighting function w(t), timesteps sampling density p(t, r),
total iterations totalIters, max guidance scale ϖmax, gradnorm layer εgn, gradnorm function
f(LECT, LJFDL | εgn).

2: Init: ε ⇓ ϱ, Iters ⇓ 0.
3: while Iters < totalIters do
4: Sample (xc

0, c) → D, t, r → p(t, r), z → N (0, I), ϖ = 1;
5: xc

t ⇓ xc
0 + ωtz; xc

r ⇓ xc
0 + ωrz;

6: LECT(ε) ⇓ w(t) d
(
Gω(xc

t , t, c,ϖ), Gω→(xc
r, r, c,ϖ)

)
; ς ECT loss

7: Sample yc
0 ⇓ Gϑ→(xc

t , t, c), y
↓,t
0 ⇓ Gϑ→(xc

t , t, ⇒), z→ → N (0, I), ϖ → U(1,ϖmax);

8: yc
t ⇓ yc

0 + ωtz→; yr ⇓ yc
t + {ϖ

[
yc
t↑yc

0
εt

]
+ (1↗ ϖ)

[
yc
t↑y↑,t

0
εt

]
} · (ωr ↗ ωt);

9: LJFDL(ε) ⇓ w(t) d
(
Gω(yc

t , t, c,ϖ), Gω→(yr, r, c,ϖ)
)
; ς JFDL loss

10: φgn = f(LECT, LJFDL | εgn);
11: L(ε) = LECT(ε) + φgnLJFDL(ε);
12: ε ⇓ ε ↗ ↼↘ωL(ε);
13: Iters ⇓ Iters + 1;
14: end while
15: return ε

We highlight the correspondence of the routines between FMs and CMs. Under the VE scheme, both
CM and FM learns a mapping between the data distribution p0 and Gaussian p1. The probability
path in FM is equivalent to the noisifying step in CM. Also, we can derive that the CVF is ωmax · z
following (3), which equates to the denoising direction in CM. Hence, even without a DM teacher,
the ECT objective recovers an accurate approximation of the PF-ODE vector field, just as the CFM
objective lets FM estimate the data-marginal velocity field. As we introduce JFDL, we will provide
insights from these correspondences into how it effectively captures the mapping associated with the
unconditional class distribution.

Joint-Flow Distribution Learning In the variance–exploding (VE) setting, we assume the existence
of a perfect ODE solver,

Solver : Rd ⇔ [0, 1]2 ⇔ C ↗↖ Rd, (x, t, s, c) ↙↗↖ Solverct↔s(x), (5)

where the shorthand Solverct↔s(x) := Solver(x, t, s, c) will be used throughout. For class c ↑ C,
time indices t, s ↑ [0, 1], Solver satisfies the push-forward condition

(
Solver ct↔s

)
#
pt(x | c) = ps(x | c), (6)

so that it deterministically transports the class-conditioned distribution from noise level t to level s.
Similar to CFG, we introduce a special “null” label ⇒ ↑ C. Choosing c = ⇒ collapses the conditional
path to the unconditional path: pt(x|⇒) := pt(x) =∝ (Solver↓t↔s)#pt(x) = ps(x), Thus, the same
solver acts as a one-step denoiser (when s = 0) for both the class-conditioned and ⇒ trajectories.
With access to an ideal Solver, we introduce Joint-Flow Distribution Learning (JFDL) that constructs
a pair of denoising directions, ucls and u↓, to embody CFG for the consistency loss. The routine is:

(i) Draw sample. Draw a class image xc
0 → p0(x|c) and choose a source noise index t.

(ii) Compute unconditional anchor. Define y↓,t
0 := Solver↓t↔0

(
Solverc0↔t(x

c
0)
)
.

(iii) Noisify. Add noise by xc
t = xc

0 + ωtz with z → N (0, I).

(iv) Compute denoising vectors. Define ucls :=
xc
t ↗ xc

0

ωt
and u↓ :=

xc
t ↗ y↓,t

0

ωt
.

(v) Extrapolate guidance. Extrapolate with ϖ, define uϖ := ϖ ucls + (1↗ ϖ)u↓.
(vi) Project to lighter noise for consistency loss. Pick r < t and let xr = xc

t + (ωr ↗ ωt)uϖ.
Compute loss as d

(
Gω(xc

t , t, c,ϖ), Gω→(xr, r, c,ϖ)
)
.
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Figure 1: Comparison of conditional vs. unconditional ODE solutions. Each row corresponds
to a different 2-D toy dataset, spiral, circle, Gaussian blob. Three time steps from left to right,
t = 0.002, 0.207, 23.771, we show the marginal distribution of a hybrid flow p(y↓,t

0 ) compared to
the marginal distribution of p(xc

0).

When ϖ = 1, the extrapolated direction uϖ = ucls is no different than the denoising direction for
unguided CMs. One one hand, for small noise index t, the hybrid ODE solution y↓,t

0 ⇑ xc
0, while

for large t, the difference is increased, suggesting the distribution deviates more. On the other hand,
for any chosen t, the distribution of the hybrid ODE solution integrated over C is always the data
distribution p0(x). See illustration of Fig.1. Formally, we state that:
Proposition 1 (Hybrid flow preserves the marginal data distribution). Fix any noise index t ↑ [0, 1].
Draw a class label c → p(c) and a clean sample xc

0 → p0(x | c). Define the hybrid ODE solution

y↓,t
0 := Solver↓t↔0

(
Solverc0↔t(x

c
0)
)
. We denote the density of y↓,t

0 as p(y|c), which we define as:

p(y | c) :=
(
Solver↓t↔0

)
#

(
Solverc0↔t

)
#
p0(x | c). (7)

Then the marginal law of y↓,t
0 over the class prior p(c) coincides with the unconditional-class data

distribution: ∫

C
p(c) p(y | c) dc = p0(x). (8)

We provide the proof of Prop. 1 in Appendix A. To match JFDL with the FM routine, the denoising
direction u↓ points to the data distribution p0(x), for any t ↑ [0, 1]. We can further establish its
probability path pϱ (x|y↓,t

0 ) to be,

N (x;µϱ (y
↓,t
0 ),ω2

ϱ I), where µϱ (y
↓,t
0 ) = y↓,t

0 +
xc
0 ↗ y↓,t

0

t
· ↽, ωϱ = ωmax · ↽, (9)

such that when ↽ = t, it coincides with N (x;xc
0,ω

2
t I), i.e., joining the denoising direction from

p0(x|xc
0, c) at xc

t . So far, we are left with matching the p1 distribution. If we can show that
p1(x|y↓,t

0 ) ⇑ N (0,ω2
maxI) following the probability path pϱ (x|y↓,t

0 ) in (9), then with Prop. 1, we
can imply that the denoising direction u↓ in JFDL is the CVF from Gaussian to the ⇒-class data
distribution. Consequently, JFDL achieves CFG like guidance.

3.2 Pseudo-Noise Analysis and Experimental Verification

In this section, our goal is to show that p1(x|y↓,t
0 ) approximates N (0,ω2

maxI). In other words, for
any t, we sample xc

0 → pdata(x|c) and compute y↓,t
0 to be the solution of its hybrid ODE following
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Figure 2: Normality of pseudo-noise across timesteps. Heat-maps show pass (green) or fail (red) at
⇀ = 0.05 for (top) Shapiro–Wilk, (middle) Anderson–Darling, and (bottom) Kolmogorov–Smirnov
tests. Rows correspond to the four datasets, spiral, circle, Gaussian blob, CIFAR-10. With only a
handful of isolated rejections, as well as extremely low SNR ratio, the pseudo-noise is effectively
Gaussian at almost every t, supporting the normality assumption.

the JFDL routine. Evaluating the probability path in (9) at ↽ = 1 gives the random variable,
pseudo-noise︷ ︸︸ ︷

y↓,t
0 +

xc
0 ↗ y↓,t

0

t︸ ︷︷ ︸
mixed-signals

+ ωmax z, z → N (0, I). (10)

which we will show how ωmaxz dominates analytically. Then, we will verify the Gaussianity of (10)
experimentally on 2D toy datasets and CIFAR-10 with the signal-to-noise ratio and Gaussianity tests.

Theoretical analysis. Without loss of generality, the clean variables y↓,t
0 and xc

0 are centered at zero
and confined to the hyper-cube [↗1, 1]d. With a VE schedule, we can make ωmax arbitrarily large, so
for any fixed t ↔ 0 the Gaussian term ωmaxz in (10) already dominates, forcing the conditional law
at ↽ = 1 to be close to N (0,ω2

maxI).

The non-trivial regime emerges in the limit t ↖ 0, where the deterministic drift term µ1(t) :=

y↓,t
0 + [xc

0 ↗ y↓,t
0 ]/t becomes comparable in magnitude. To analyze its contribution, we introduce a

function f(t) := y↓,t
0 representing the time-dependent evolution of the hybrid flow, and express the

mixed-signals as follows:

Proposition 2 (Mixed-signals as a function of t). Let f(t) := y↓,t
0 = Solver↓t↔0

(
Solverc0↔t(x

c
0)
)

denote the hybrid flow, we can define the mixed-signals g(t) as:

g(t) := f(0) +
f(0)↗ f(t)

t
. (11)

then, from Taylor expansion to the 2nd order, we have:

g(t) ⇑ f(0) +
t

2
f →→(0) = xc

0 ↗
t

2
(↘xc

0
log p(c|xc

0)). (12)

The resulting Taylor expansion of the mixed-signal is surprisingly interpretable near t = 0+. As
xc
0 genuinely belongs to class c, we expect the p(c|xc

0) ⇑ 1. The gradient represents how quickly
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Figure 3: Preliminary results tuning LJFDL only. CIFAR-10 samples from Naive JFDL (top left)
v.s. Random JFDL (bottom left). FID w.r.t. ϖ plot (right) reflects the stronger guidance effect from
Random JFDL compared to Naive, causing the FID to diverge faster.

the probability would change if the data were perturbed slightly, which would be small if p(c|xc
0) is

close to the local maximum. We provide the proof of Prop. 2 in Appendix A. Our theoretical support
concludes that for any t, p1(x|y↓,t

0 ) approximates a Gaussian.

Experiment Verification In this section, we verify experimentally that for any t, the mixed-signal
in (10) will be dominated by the noise term ωmaxz. To evaluate this claim, we trained a DM and CM
as an ODE solver on the 2D toy datasets and CIFAR-10 respectively. Notably, a typical DM/CM is
used to solving the ODE backward from t ↖ 0, not forward. To construct a class c sample and its
unconditional anchor pair, we adjust the steps of JFDL as follows:

(i) Draw and noisify. Draw xc
0 → p0(x|c), z → N (0, I), choose a source noise index t, then

noisify xc
t = xc

0 + ωtz.

(ii) Compute class anchor. Define yc
0 := Solverct↔0

(
xc
t

)
.

(iii) Compute unconditional anchor. Define y↓,t
0 := Solver↓t↔0

(
xc
t

)
.

With a pre-trained DM/CM as an ODE solver, the routine aligns with the naive JFDL in Alg. 1.
Moreover, yc

0 replaces xc
0 in the pseudo-noise term. To assess the normality of the pseudo-noise for

varying t, we employed standard statistical tests [8, 60], including the Shapiro-Wilk [50], Anderson-
Darling [1], and Kolmogorov-Smirnov tests [41], each conducted at a significance level of ⇀ = 0.05.
We also show the log signal-to-noise ratio (SNR), 10⇔ log10

↗mixed-signals↗2

↗pseudo-noise↑mixed-signals↗2 . Our results
(Fig. 2) indicate that we can successfully show Gaussianity of the pseudo-noise constructed by the
probability path in (9). We will provide the training and testing details of the toy datasets in Appendix
C.

3.3 Preliminary Results

To practice Naive JFDL, we first require a CM that is properly trained to solve for the ⇒–class ODE.
We therefore train an ECT baseline that converged with one-step FID of 3.40. Starting from these
ECT weights, we appended lightweight guidance embedding layers and fine-tuned exclusively on the
JFDL loss. Our preliminary results show this simple adaptation equips CFG style control post-hoc to
the model (Fig. 3).

However, since most CMs do not explicitly learn the ⇒–class ODE, Naive JFDL’s applicability
is limited. Inspired by recent results that dispense with the need of a ⇒-class for guidance [? ],
we propose Random JFDL, which replaces the ⇒ label with a random class drawn from the data
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Table 1: Results on CIFAR-10 and ImageNet 64x64. We train ECT first on a budget of 25.6M
images, then tune it with Naive/Random JFDL on a budget of 1.92M images. The table shows the
gains of FID posthoc compared to an unguided CM, with ϖ denoting the lowest recorded FID.

Method CIFAR-10 ImageNet 64!64
1-step FID 2-step FID 1-step FID 2-step FID

ECT (baseline) 3.40 1.92 5.84 3.72
ECT + Naive JFDL 3.29 (ϖ=1.05) 2.18 (ϖ=1.55) 4.38 (ϖ=1.80) 3.17 (ϖ=1.40)
ECT + Random JFDL 3.24 (ϖ=1.15) 2.06 (ϖ=1.05) 4.68 (ϖ=1.80) 3.32 (ϖ=1.20)

(a) CIFAR-10 1-step (b) CIFAR-10 2-step (c) ImageNet 64x64 1-step (d) ImageNet 64x64 2-step

Figure 4: FID to guidance strength progression.

distribution. Surprisingly, this variant generates higher contrast images that aligns even closer with
CFG. We provide the full Random JFDL in Appendix B.

4 Experiments

We first discuss our experimental setup. Then, we report quantitative FID results demonstrating that
JFDL consistently outperforms the unguided ECT baseline. Finally, we visualize the guidance effect
in the qualitative evaluation section.

Setup. Our preliminary results show that guidance yields FID improvements primarily when the
guidance scale ϖ < 2, a trend consistent with CFG in DMs. Therefore, our main experiments sample
ϖ ↑ [1, 2] and ϖ ↑ [1, 4] on CIFAR-10 and ImageNet 64x64 respectively. We also observed that
optimizing JFDL alongside the ECT objective leads to better FID scores. As shown in Alg. 1, we
optimize a multi-task loss combining LECT and LJFDL with adaptive weighting via GradNorm [4].
For both experiments, we use the last out_conv layer to compute the gradient norm of the two losses.
Inspired by recent work on truncated CMs [29], we further shift the time sampling distribution to
a higher log-normal mean, with -0.5 for CIFAR-10 and -0.4 for ImageNet 64!64. Following ECT,
we adopt the EDM architecture for CIFAR-10, and zero-initialize the guidance embedding weights
following ControlNet [62]. In ImageNet 64x64, we adopt the EDM2-S architecture and set the
magnitude preserving coefficient to 1e-3 for the attached guidance layers to stablize fine-tuning. Both
experiments use a batch size of 64 and converge after processing roughly 1.92 million images (30
k iterations). Compared to the lightweight ECT baseline, JFDL’s fine-tuning consumes only about
7.5% of ECT’s training data and around 30% of its GPU hours. We present detailed ablation studies
of our design choices in Appendix. C.4.

Quantitative Results. We evaluate generation quality using the standard FID-50k metric w.r.t.
different ϖ scales. For each guidance weight ϖ, we conducted three FID runs and report the mean
in Tab. 1. Our post-hoc tuning framework enables a direct comparison between guided models and
the unguided ECT baseline. Compared to the preliminary results in Fig. 3, jointly optimizing LECT
and LJFDL significantly reduces the FID compared to the baseline. Under one-step sampling, both
Naive JFDL and Random JFDL consistently lower FID on CIFAR-10 and ImageNet 64!64. The
resulting FID curve over ϖ closely mirrors CFG’s behavior in DMs, exhibiting improvements for
small scales before degrading. For two-step sampling, JFDL worsened FID on CIFAR-10, where
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Figure 5: ImageNet 64x64 sample results. The classes shown are "jay" and "hotdog", generated by
ECT + Naive JFDL. Rows are guidance strength. Columns are sampling steps.

the strong baseline meant any contrast gains were outweighed by diversity loss. However, JFDL
improved FID on ImageNet 64!64, where there was more room for perceptual enhancement with
few-step sampling under guidance. Notably, our experiments shows that the ϖ=1 case deviates from
the ECT baseline, even though in the case of CFG it is expected to be exactly the same as unguided
generation. This can be explained by the fact that fine-tuning the original model (e.g., via JFDL)
alters its behavior, whereas CFG is a training-free method for guiding DMs.

Qualitative Results. Fig. 5 presents ImageNet 64!64 samples generated by JFDL under varying
guidance scales and number of sampling steps. As the guidance scale ϖ increases (e.g. ϖ = 4),
perceptual quality improves as the mustard appears crisper and the bun is more well-defined. We can
also observe the diminishing sample diversity, as seen in the loss of certain hotdog toppings. This
same fidelity-diversity trade-off persists when using two-step sampling with high guidance on both
steps. To conclude, JFDL reproduces the effects of CFG, higher contrast and enhanced perceptual
fidelity, demonstrating its promise as a post-hoc guidance method for CMs.

5 Discussion and Future Work

We introduced JFDL, a fully post-hoc guidance framework for CMs that requires no DM teacher.
By unifying perspectives from DMs, FMs and CMs, we derived theoretical guarantees for JFDL
and validated them empirically. We further demonstrated that JFDL can equip an unguided ECT
model with adjustable, CFG style guidance, yielding significant FID improvements on CIFAR-10
and ImageNet 64!64.

In our work, we intentionally obscured the theoretical groundings for applying guidance under the
multi-step sampling settings, but still applied it following previous works as in [40]. In the context of
CMs, one direction for future work is to explore the interaction between multi-step sampling and
guidance, and develop adaptive guidance schemes tailored to multi-step solvers.
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• The assumptions made should be given (e.g., Normally distributed errors).
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puter resources (type of compute workers, memory, time of execution) needed to reproduce
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didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: [Yes]
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
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eration due to laws or regulations in their jurisdiction).
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Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Appendix D.
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• The answer NA means that there is no societal impact of the work performed.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
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to point out that an improvement in the quality of generative models could be used to
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being used as intended and functioning correctly, harms that could arise when the
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11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
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such risk.
Guidelines:
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• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
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faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Section 1.
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• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of
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• If assets are released, the license, copyright information, and terms of use in the
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the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: No new assets yet.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Does not include crowdsourcing.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Does not involve any of these.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: Not required.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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