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Abstract—Within the imitation learning paradigm, training
generalist robots requires large-scale datasets obtainable only
through diverse curation. Due to the relative ease to collect,
human demonstrations constitute a valuable addition when
incorporated appropriately. However, existing methods utilizing
human demonstrations face challenges in inferring precise ac-
tions, ameliorating embodiment gaps, and fusing with frontier
generalist robot training pipelines. In this work, building on prior
studies that demonstrate the viability of using hand-held grippers
for efficient data collection, we leverage the user’s control over the
gripper’s appearance—specifically by assigning it a unique, easily
segmentable color—to enable simple and reliable application
of the RANSAC and ICP registration method for precise end-
effector pose estimation. We show in simulation that precisely
labeled human demonstrations on their own allow policies to
reach on average 88.1% of the performance of using robot
demonstrations, and boost policy performance when combined
with robot demonstrations, despite the inherent embodiment gap.

I. INTRODUCTION

Eyeing the success of large language models (LLMs), we
are increasingly interested in exploring end-to-end vision-
language-action (VLA) models as a path to generalist robots. If
the LLM’s success can be attributed to two factors: expressive
architectures and diverse high quality datasets, the VLA’s cur-
rent obstacle lies in obtaining the latter. Robot demonstrations,
the most straightforward and proven form of training data, are
expensive to collect; Brohan et al. [2022], for instance, used
17 months to collect 130K trajectories, but still fell short in
matching the data quantity LLMs use to achieve generality.
Methods for collecting and using alternative categories of data
are thus explored out of necessity.

Among these alternative categories, human demonstrations
are of special importance due to its direct relevance to robot
tasks. One category of prior work that seeks to leverage
internet-scale human videos pretrains with a self-supervised
objective a model that learns a discrete latent action repre-
sentation from unstructured videos, then maps latent actions
to true actions with small amounts of labeled video [Schmidt
and Jiang, 2024, Ye et al., 2024]. This class of methods, which
we call latent-action methods, is advantageous in its easy setup
(involving no hardware usage), wide applicability (to almost
any video), scalability (which is the result of the former two
properties), and effectiveness in learning representations of
motions [Bjorck et al., 2025], but as the tradeoff struggles
with higher dimensional continuous action spaces and fine-
grained motion planning, and also suffers from shortages of
actual large-scale high-quality training data despite inherent
scalability [Ye et al., 2024]. Another category of work finds
a middle ground between teleoperated robot data and latent-
action data in terms of scalability, control over video content,
and label precision by proposing data collection methods that
circumvent robot usage [Song et al., 2020, Young et al., 2020,

Shafiullah et al., 2023, Chi et al., 2024a, Lepert et al., 2025].
Our work falls within this category.

All methods utilizing human demonstrations need to address
two issues: the lack of action labels, and the presence of an
embodiment gap. Our work relies on the observation that,
when granting two assumptions: first the appearance of the
end-effector stays constant between training and testing (i.e.
the same gripper is used hand-held and mounted on the robot),
and second an embodiment invariant wrist camera view is
provided, a visuomotor policy model trained on precisely la-
beled human demonstrations generalizes zero-shot to the robot
embodiment with respectable performance. On this basis, we

1) devise a method for reliable, precise action labeling, and
2) conduct experiments in simulation quantifying policy

performance when trained both solely on precisely la-
beled human demonstrations and a mixture of human
demonstrations and a small number of robot demonstra-
tions,

which can be considered our two contributions. Specifically,
balancing cost of implementation and the requirement for
precision, we leverage our control over the gripper’s appear-
ance by assigning it a unique, easily segmentable color to
facilitate robust application of Random Sample Consensus
(RANSAC) and Iterative Closest Point (ICP) registration for
precise labeling via pose estimation. We show that policies
trained on human demonstrations reach on average 88.1%
of the performance of the same architecture trained on the
same number of robot demonstrations, while the addition of
precisely labeled human demonstrations to a training set of
robot demonstrations significantly boosts policy performance.

II. RELATED WORK

A. Learning from Human Demonstrations

As previously mentioned, the purpose of this category of
work is to expand the robotics training set, and the two inher-
ent obstacles every work in this category must in some way
address are (1) the lack of action labels, and (2) the presence
of an embodiment gap. It is interesting to observe how the
two issues are addressed by different existing approaches.

One class of approaches, which we call latent action meth-
ods, uses a self-supervised objective to pretrain a model that
learns a latent action representation from videos [Schmidt and
Jiang, 2024, Ye et al., 2024]. This approach addresses problem
(1) by supplying motion-encoded pseudo-labels to human
videos, and relies on separate mechanisms to establish corre-
spondences between latent actions and real actions [Ye et al.,
2024], and similar motions on different embodiments [Bjorck
et al., 2025], thus does not address problem (2) directly. This
approach is both highly scalable and effective in learning



Fig. 1: Going from left to right: 1) The triangle mesh of the recolored panda gripper used in simulation; 2) the corresponding
point cloud sampled uniformly from the mesh, which we use for pose estimation; 3) a point cloud of the robot (cropped from
the scene for clarity) in a simulated demonstration; 4) Random Sample Consensus (RANSAC) and Iterative Closest Point (ICP)
are applied to estimate a rigid body transformation that aligns the end-effector point cloud obtained from the mesh and the
robot point cloud (i.e. the pose), resulting in precise and reliable end-effector pose estimation without the need to train a deep
learning model.

embodiment-insensitive motion representations [Bjorck et al.,
2025], but as the tradeoff does not provide precise guidance
for learning fine-grained motion planning. Although also in-
volving representation learning, self-supervised objectives, and
internet-scale videos, vision encoders tailored for robotics are
pretrained to capture visual semantic priors and sometimes
state representations instead of just action representations
[Radosavovic et al., 2022, Nair et al., 2022, Ma et al., 2023]. A
related and also in principle highly scalable class of methods
is reward-learning methods, which involves training reward
functions that measure the progress or success of a trajectory,
sometimes with respect to a language instruction [Shao et al.,
2020, Chen et al., 2021, Ma et al., 2023]. All three categories
share the properties of not explicitly providing action labels
or aligning embodiments, but rather assist other modules of
the system in these respects implicitly. Our work is similar to
them in that we also do not explicitly align embodiments—
although we do focus on providing fine-grained, precise, true
action labels—and can be easily integrated with large scale
imitation learning pipelines.

Less scalable methods that use structured, often locally-
collected human manipulation videos, on the other hand, tend
to attempt addressing both issues simultaneously.

Flow-based methods learn to predict the flows of points
across the frame sequence, then use the predicted flow to guide
a downstream policy [Xiong et al., 2021, Xu et al., 2024, Wen
et al., 2023, Ren et al., 2025, Georgios Papagiannis and Johns,
2025]. Since flows both describe movements and abstract away
the appearance of agents and objects, they address problem
(1) and (2) simultaneously—but not completely, since as long
as points on the agent is tracked, a morphology gap remains
as humans and robots move in different ways. Compared
to flow-based methods, our method contains fewer modules,
no off-the-shelf components, can capture 3D motion more
precisely, and can integrate with large-scale imitation learning
frameworks easier.

Object-centric methods [Hsu et al., 2024, Heppert et al.,
2024, Bahety et al., 2024, Zhu et al., 2024] circumvent
problem (2) and provide at least post-grasp solution to problem

(1) by tracking objects instead of embodiments, but compared
to our method are more constrained in terms of the range
of tasks and types of objects they can effectively handle,
and cannot easily integrate with large-scale imitation learning
systems.

Another prominent class of methods, which we call
behavior-prior learning methods, learns motion or planning
priors, then uses these priors to improve policy performance
and generalization [Bahl et al., 2022, Wang et al., 2023, Xu
et al., 2023, Bharadhwaj et al., 2024, Jain et al., 2024]. These
methods provide either implicit (latent) guidance [Wang et al.,
2023, Xu et al., 2023, Bharadhwaj et al., 2024, Jain et al.,
2024] or sparse labels via waypoints [Bahl et al., 2022], while
our work focuses on providing precise labels at reasonable
cost. Methods in this category address the embodiment gap
problem in various ways: Wang et al. [2023] do so by de-
coupling high-level latent planning (learned from human play
data) from low-level control (trained on robot demonstrations);
Jain et al. [2024] by leveraging paired human-robot trajectory
data; Xu et al. [2023] by learning a shared cross-embodiment
skill representation through self-supervised clustering. These
methods require either extra training [Wang et al., 2023, Xu
et al., 2023] or extra idiosyncratic data collection [Jain et al.,
2024]; in contrast, our work closes the embodiment gap simply
with a common end-effector and does not require the end-to-
end policy learning pipeline to be modified.

Lastly, video prediction methods train or fine-tune video
generators that predict subsequent frames conditioned on the
first frame, and use the predicted frame sequence at inference
time as temporally dense motion guidance for the robot
[Du et al., 2023, Ko et al., 2023, Liang et al., 2024]. If
the human at training time and robot at test time use end-
effectors with shared appearances, which is the key insight
leveraged by Liang et al. [2024], the action trajectory can be
precisely extracted via end-effector pose estimation, bypassing
the embodiment difference, solving both problem (1) and (2)
simultaneously. Video prediction methods have many advan-
tages, but also three flaws. First is the computational cost of
video generation models, which hinders closed-loop control.



Second is that the video generation models hallucinate. Third
is the prohibitively large extra expense required to enable
end-effector pose estimation with precision matching that of
our method. Our work uses 3D scene reconstruction to maxi-
mize pose estimation precision, while 3D video generation or
multi-camera 2D video generation are very computationally
involved. Our work is inspired by the use of shared end-
effectors in Liang et al. [2024], but involves no expensive
video prediction.

B. Human Demonstration Collection Methods
Human demonstrations are labeled or unlabeled videos

of human agents performing robotics tasks without robots.
Compared to robot demonstrations, human demonstrations
avoid two expensive factors: robot hardware and teleoperation.
Therefore, although data still scales linearly with human labor,
the cost of collecting human demonstrations is significantly
lower than collecting robot demonstrations. Lepert et al. [2025]
propose collecting videos of humans completing manipulation
tasks with their hands, track the hands’ poses, then overlay
virtual renderings of the target embodiment accordingly, thus
addressing both the label and the embodiment problems. Our
method in contrast uses a hand-held end-effector, which trades
off the convenience of using less hardware for simple and more
precise pose estimation. Different from Lepert et al. [2025],
Song et al. [2020], Young et al. [2020], Shafiullah et al. [2023],
Chi et al. [2024a] proposed the more portable solution of using
hand-held hardware with ego-centric camera angles, which is
advantageous for in-the-wild data collection. On the basis of
prior work, Chi et al. [2024a] expanded the set of operable
tasks by ameliorating occlusion with fisheye lenses and side
mirrors, and achieved sub-centimeter action precision with a
visual-inertial SLAM pipeline incorporating video and IMU
data, which slightly increases cost and decreases portability
[Chi et al., 2024a]. Chi et al. [2024a] constitute a thoroughly
reasoned and well-tested real-world data collection solution,
while our work, with its smaller scope, loosens the “no
external camera” constraint and focus on devising and testing
a minimalist precise labeling strategy in simulation.

III. METHOD

We follow a simple paradigm: given unlabeled human
demonstrations, we label the human demonstrations via
end-effector pose estimation, and use the labeled human
demonstrations—either on their own or in concatenation with
robot demonstrations—to train a visuomotor policy. To retain
portability and cost-effectiveness, we devise a method that
requires only accessible hardware, namely a 3D printed hand-
held gripper and one or more RGB-D cameras, while main-
taining precision.

A. Point Cloud Reconstruction
To most accurately capture 3D geometries in the scene,

particularly that of the end effector, we deploy external depth
cameras with known matrices and perform point-cloud recon-
struction to obtain 3D scenes corresponding to each frame.
The reconstruction method is standard.

We start with an unlabeled dataset D = {demoi}Ni=1

of human demonstrations. With Ti denoting the number of
timesteps, each demonstration demoi = (Ii,1, Ii,2, . . . , Ii,Ti

),
where observation Ii,t ∈ RV×4×H×W represents V RGBD
images from V camera angles with height H and width W ,
is an ordered sequence of observations. For each camera c ∈
{1, . . . , V } in each observation Ii,t, denoted Ic,i,t, every pixel
with coordinates (u, v) in Ic,i,t with depth value dc,i,t(u, v)
corresponds to a homogeneous 3D point Xc,i,t = [x, y, z, 1]T

in the global frame via:

Xc,i,t = Tc h

dc,i,t(u, v)K
−1
c

uv
1

 ,

where Kc and Tc are respectively the intrinsic and extrinsic
matrix of camera c, and h is the homogenization operator (i.e.
h(X) =

[
XT , 1

]T
). We apply this to each view at each time

step to obtain a series of partial point clouds, and merge partial
point clouds to obtain fuller point clouds.

B. End-Effector Pose Estimation
Inspired by Liang et al. [2024], Chi et al. [2024a], we use a

custom end-effector that work both hand-held and mounted on
a robot. The design process naturally produces CAD models of
the used end-effectors, which, along with the aforementioned
point clouds, allows us to apply a simple and reliable model-
based pose estimation algorithm that involves no training and
minimal tuning.

Concretely, given the point clouds and a CAD model of
the end-effector, we first segment out points belonging to
the end-effector, then align the CAD model of the end-
effector onto the points by estimating the best rigid-body
transformation, i.e., the pose. To enable easy segmentation,
we simply customize the end-effector to have a distinct color,
e.g. green, and segmentation can be performed reliably by
simply filtering out points with the color, and taking the largest
cluster. To estimate the best rigid-body transformation, we
first obtain a coarse alignment using the Random Sample
Consensus (RANSAC) algorithm, and then refine this estimate
with the Iterative Closest Point (ICP) algorithm. Since videos
are temporally dense and adjacent frames capture fine motions,
this “RANSAC plus ICP” combination needs only be applied
for the first frame, and the estimated pose of the previous frame
can be used as the initial coarse alignment for each subsequent
frame to both increase efficiency and easily enforce rotational
consistency for symmetric end-effectors. See Figure 1 for a
visualization of this process.

This algorithm labels each frame with the corresponding
absolute end-effector pose. To obtain an action-labeled dataset,
we simply shift the series of poses forward by one time step
so that the estimated pose at frame t + 1 becomes the goal
pose at frame t.

IV. EXPERIMENTS

We evaluate our approach in robosuite simulated environ-
ments, with diffusion policy [Chi et al., 2024b] as the down-
stream behavorial cloning architecture of choice. Specifically,



TABLE I: Downstream Policy Performance. We report the success rates of the visual diffusion policy on different data
mixtures, averaged across 50 different environment initial conditions. Each cell contains (best single test success rate)/(average
success rate of best consecutive 10 checkpoints)/(starting epoch of the best consecutive 10 checkpoints). The best results in
each column are in bold; the second best is underlined.

Square D0 Coffee D1 Stack D0 Threading D0 Three Piece Assembly D0

50TD + 0HD 0.70/0.63/0650 0.20/0.12/0050 0.74/0.48/0050 0.66/0.57/0200 0.38/0.30/0050
200TD + 0HD 0.98/0.94/2550 0.76/0.63/0050 1.00/0.98/0050 0.96/0.89/0650 0.78/0.71/1400

0TD + 200HD 0.86/0.82/1250 0.70/0.65/0100 0.76/0.69/2550 0.02/0.00/0050 0.74/0.65/0150

50TD + 50HD 0.74/0.69/1250 0.46/0.26/0050 0.72/0.61/0050 0.84/0.70/0200 0.58/0.48/0050
50TD + 100HD 0.80/0.71/0100 0.54/0.41/0100 0.84/0.79/0050 0.86/0.79/0650 0.68/0.59/0600
50TD + 200HD 0.88/0.83/0050 0.68/0.63/0050 0.96/0.91/0750 0.94/0.85/0550 0.74/0.68/0550
50TD + 400HD 0.94/0.88/0350 0.88/0.81/0100 0.94/0.88/1350 0.96/0.93/1000 0.82/0.74/0150

we choose MimicGen [Mandlekar et al., 2023] tasks due to
the larger datasets MimicGen provides (1000 demonstrations
each task that can be downloaded directly and the flexibility to
generate more demonstrations across multiple embodiments).
MimicGen datasets are each generated from 10 source human
teleoperated demonstrations by segmenting object-centric sub-
tasks and leveraging trajectory equivariance in relations to new
object poses, thus are different from fully human collected
datasets. But since Mandlekar et al. [2023] demonstrated for
the exact tasks experimented in this work that policy perfor-
mance on MimicGen data “can be comparable to performance
on an equal amount of human demonstrations,” and that
increasing the number of MimicGen generated demonstrations
in the training set has a diminishing return on performance,
we conclude that the use of MimicGen datasets does not
significantly impact trends observed in our results, at least not
to our advantage, and that the usage is reasonable. MimicGen
datasets are arranged into categories D0, D1, D2 indicating
different reset distribution variabilities in the object poses, with
D0 being the baseline reset distribution, and D1 and D2 having
increasing variability. We choose to use the standard D0 reset
distribution for all tasks except Coffee, because for Coffee D0

the diffusion policies reach a test success rate of 1 across all
data mixtures quickly, and does not reveal useful information
regarding our objective.

To simulate the embodiment gap, we use the KUKA iiwa
manipulator to simulate human demonstrations (i.e., demon-
strations carried out by a different embodiment) by relabeling
the dataset with our pose estimation pipeline, and the Franka
Panda for robot demonstrations and the embodiment at test
time. As previously mentioned, we use the same colorized
gripper, i.e., the Panda gripper on both embodiments. We
train diffusion policies implemented by Chi et al. [2024b]
out-of-the-box (U-Net with visual observations) for 3000
epochs, which we empirically observe to be sufficient to
allow for convergence, following the input arrangement of
the diffusion policy out-of-the-box, which include one external
view (agentview, with dimension 84 × 84), one wrist camera
view (84 × 84), and the end-effector pose, and report the
results of training on different mixtures of precisely labeled
demonstrations with an embodiment gap and demonstrations
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Fig. 2: Downstream Policy Performance on Task Square D0

During Training on Different Data Mixtures. We visualize
the task success rate of a visual diffusion policy averaged
across 50 different environment initial conditions on different
mixtures of teleoperated demonstrations (TD) and simulated
human demonstrations (HD) during training.

with original labels without an embodiment gap. The results
are summarized in Table I, which we discuss in the next
paragraph, while Figure 2 visualizes the training curves for
different data mixtures on the Square D0 task. In Table I
we choose to display the average of the best consecutive 10
checkpoints instead of the last 10 because the models reach
convergence and overfit at different rates when trained on
different data mixtures.

Quantitatively, results in Table I indicate that the success
rate of the mixture 0TD + 200HD on average reach 88.1%
of the success rate of the mixture 200TD + 0HD in terms
of maximum test score, and 87.7% in terms of the aver-
age of 10 best checkpoints, excluding the extreme outlier
task Threading. We hypothesize that the results observed for
Threading are due to the fact that the point of insertion,
which is vital for the success of Threading, lies outside the
view of the wrist camera when the insertion is initiated. The
wrist camera is embodiment invariant, but the policy has to
rely on the agentview camera for Threading. On the other
hand, with 50 robot/same-embodiment demonstrations added,



the policy’s performance on Threading does scale as we add
more human/cross-embodiment demonstrations. This indicates
1) the presence of embodiment invariant views is important
for zero-shot cross-embodiment generalization, and therefore
the amelioration of occlusion in these views is vital for wide-
range task applicability (as explored by Chi et al. [2024a])
and 2) when same-embodiment demonstrations, even a small
number, are provided, the addition of precisely labeled cross-
embodiment demonstrations increases policy performance de-
spite occlusion in the embodiment-invariant view. All other
tasks exhibit the same increased success rate as we increase
the number of added cross-embodiment demonstrations on top
of 50 same-embodiment demonstrations. On average across
all tasks, policy performance of the best 50 TD data mixture
on average reach 102.6% of the success rate of the mixture
200TD + 0HD in terms of maximum test success rate, and
104.1% in terms of the average of 10 best checkpoints.
Moreover, from the starting epoch of the best consecutive 10
checkpoints we do not observe a definitive trend of slower
convergence as the size of the datasets increases, at least for
the dataset scale we have tested.

V. CONCLUSIONS, LIMITATIONS, FUTURE WORK

In this work we propose a simple and reliable method for
extending policy learning data with precisely labeled human
demonstrations, and demonstrate its effectiveness in simulated
environments. Our results are limited on two fronts: first,
the lack of real-world experiments, and second, the lack of
an ablation study on larger scale datasets containing more
demonstrations or categories of visuomotor data used for
training frontier VLA models. The first limitation, caused
by our lack of access to equipment, is admittedly nontrivial
since our method relies to an extent on precise point cloud
reconstruction, which may be subject to harsher hardware
limitations in the real world. The second limitation is more
appropriately addressed in a larger scale project seeking to
propose data strategies for frontier VLA models. We leave
both for future work to ameliorate. Otherwise, a topic of future
work we suggest is the automated generation of precisely
labeled human demonstrations with generative models.
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