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Abstract 

For the final project of CSCI 1290, we rendered 360° 
panoramic images into artistic stylizations using three 
methods: a patch-based texture patching algorithm and two 
different neural network style transfer models. Our neural 
network methods separate the content and style of images, 
allowing us to recombine the content of globe panoramas 
with the style of any given artwork patch. We derived neural 
representations of content and style from a pre-trained con- 
volutional neural network and optimized novel images to 
match these representations. To address challenges of work- 
ing with wide-field images, we introduced masking tech- 
niques to focus stylization on regions of interest (i.e., the 
sky) while preserving details elsewhere. Our project also 
provides two different methods of masking: one involving 
OpenCV libraries and the other involving manually sculpt- 
ing out the mask using Adobe Photoshop. We compared 
results from our methods and found that deep convolutional 
neural networks best capture artistic styles across the full 
panoramic field. The ability to render immersive scenes 
in distinct visual styles opens new possibilities for study- 
ing perception and the generation of virtual artistic experi- 
ences. 
KEYWORDS: Neural Style Transfer, Texture Transfer, 
Convolutional Neural Networks, Patch-Based Algorithm, 
TF-Hub, Panoramic Images, Immersive Scenes, Image 
Masking, Globe Panoramas, Insta360 Photos 

 
1. Introduction 
Our objective was to convert complete 360º images into 
artistic renditions inspired by renowned painting styles. We 
applied stylizations to distinct areas of interest, such as the 
sky, while maintaining the authenticity of other segments 
within the original image. Beyond the stylized transfor- 
mations, we introduced an interactive dimension, akin to 
Google Street View, enabling users to rotate the image a 
full 360 degrees for immersive exploration. 

To capture our 360º images, we utilized the Insta360 One 
camera—an invaluable tool enabling us to encapsulate im- 

mersive scenes. Our goal wasn’t solely to create static paint- 
ings; rather, we aimed to provide an interactive viewing ex- 
perience, enriching user engagement with the dynamically 
transformed panoramas. 

This project is built on influential works in neural style 
transfer, drawing inspiration from ”A Neural Algorithm 
of Artistic Style” by Gatys et al. [2], Efros et al.’s ”Im- 
age Quilting for Texture Synthesis and Transfer” [1] and 
”Exploring the Structure of a Real-Time, Arbitrary Neural 
Artistic Stylization Network” by Ghiasi et al. [3]. Our 
project delves into both style and texture transfer meth- 
ods. This involved implementing neural networks, includ- 
ing Convolutional Neural Networks (CNNs) and the Ten- 
sorFlow model TF-Hub, and employing a patch-based tex- 
ture transfer algorithm. 

The choice of methodologies was driven by the need to 
address challenges inherent in working with wide-field im- 
ages. Furthermore, our exploration includes the introduc- 
tion of masking techniques to focus stylization on specific 
regions of interest, a crucial step in preserving intricate de- 
tails, such as the sky, while enhancing overall visual appeal. 

In this paper, we will present our findings, comparing re- 
sults obtained through different methods. Additionally, we 
will discuss the specific techniques we used and challenges 
encountered, and the valuable outcomes derived from our 
exploration. We aim to showcase the artistic transforma- 

tions achieved and begin to analyze the efficacy of various 
approaches for rendering immersive scenes in distinct vi- 

sual styles. 
 
2. Methodology 

2.1. Patch-Based Texture Transfer Algorithm 

Our methodology involves applying the Image Quilting for 
Texture Synthesis and Transfer method introduced in the 
SIGGRAPH 2001 paper by Alexei A. Efros and William T. 
Freeman [1]. This technique enables both texture synthe- 
sis—creating images of various sizes from small samples 
like grass—and texture transfer—rendering images in the 
style of others, such as re-rendering an image like Abraham 
Lincoln in a different artistic style. 
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In our patch-based algorithm, we re-render the input 
image using texture samples from the style image. Each 
integrated sample patch in our synthesized result consid- 
ers two key constraints: coherence with existing segments 
(used in texture synthesis) and alignment with the desired 
re-rendered image. We adjust parameters, including α, in 
Equation 1, computing patch correspondence via grayscale 
intensity-based sum of squared differences (SSD). Through 
iterative refinement involving reduced tile sizes and ad- 
justed α, we improve the texture transfer quality, optimizing 
the algorithm’s performance. 

We run through 2 iterations of this while decreasing 
the tile size and adjusting α each time to get the best re- 
sults. The error term in each iteration is Equation 1, where 
prev error is the error calculated in the previous itera- 
tion and corr error is the value calculated by SSD. 

error = α ∗ (overlap error + prev error) 
+ (1 − α) ∗ corr error  (1) 

2.2. Neural Network Style Transfer Algorithms 
a CNN Model 

 

 
Figure 1. Diagram of the CNN model [2] 

 
 

In Gatys paper[2], the input image is reconstructed 
from layers ‘conv1 1’ (a), ‘conv2 1’ (b), ‘conv3 1’(c), 
‘conv4 1’ (d) and ‘conv5 1’(e). The style of the input 
image is reconstructed from style representations built on 
different subsets of CNN layers: ‘conv1 1’ (a), ‘conv1 1’ 
and ‘conv2 1’ (b), ‘conv1 1’, ‘conv2 1’ and ‘conv3 1’ 
(c), ‘conv1 1’, ‘conv2 1’, ‘conv3 1’ and ‘conv4 1’ (d), 
‘conv1 1’, ‘conv2 1’, ‘conv3 1’, ‘conv4 1’ and ‘conv5 1’ 
(e). 

In our CNN model, we do content and style reconstruc- 
tions. For content reconstructions, we reconstruct the input 
image from layer ‘conv5 2’ of the pretrained VGG-model. 
For style reconstructions we build a new feature space that 

captures the style of an input image on top of the original 
CNN representations in order to make correlations between 
the different features in different layers of the CNN. We 
reconstruct the style of the input image from style repre- 
sentations using this subset of the CNN layers: ‘conv1 1’, 
‘conv2 1’, ‘conv3 1’, ‘conv4 1’ and ‘conv5 1’. For a visu- 
alization of this description, look at Figure 1. 

After this reconstruction, we optimize the model using 
an Adam optimizer. We also use the total variation to adjust 
the loss of the image at each training epoch in order to re- 
duce the noise in the output image. We then train the image 
for 7 epochs, 100 steps per epoch to get the final stylized 
image. 

 
b TF-Hub Model 

 
 

Figure 2. Diagram of the TF-Hub model architecture [3]. 

 
The underlying way the TF-Hub model works is the style 

prediction network P predicts an embedding vector S⃗ from 
an input style image and sends S⃗ to the style transfer net- 
work T . T then transforms the photograph into a stylized 
image based on the style image. Then, the content and style 
losses are calculated and are minimized during backpropa- 
gation [3]. All of this work is done for us by Google when 
we call TF-Hub in our code. Please see Figure 2 to see more 
about the structure of the TF-Hub model. 

2.3. Masking 
a OpenCV Based Masking Method 

For masking the images, we created a binary mask based 
on the intensity threshold of the source image in grayscale 
using OpenCV, an open-source computer vision library, to 
efficiently process and manipulate the image data accord- 
ing to the established intensity threshold. This mask was 
generated by employing the following equation: 

 
new img = source img ∗ mask 

+ stylized img ∗ (1 − mask)  (2) 
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Figure 3. Mask generated using OpenCV Python Script 

 
 

b Manual Masking Method 

The method involving Adobe Photoshop entailed manually 
sculpting the mask by meticulously selecting and delineat- 
ing specific regions within the image. This process allowed 
for detailed customization and precision, enabling the cre- 
ation of the desired mask through intricate manual adjust- 
ments. However, it required substantial human intervention 
and proved time-intensive due to the meticulous nature of 
manual selection and editing within Adobe Photoshop. 

 

 
Figure 4. Mask generated using Adobe Photoshop 

 

 
3. Results 
The VGG model exhibits outputs that closely resemble the 
artistic portrayal of skies found in paintings. Its ability to 
capture and replicate the essence of the sky within the art- 
work stands out prominently. On the other hand, the TF- 
Hub model successfully incorporates the style of the image 
into the sky region, skillfully blending it with the original 
image’s aesthetics. However, the TF-Hub model encoun- 
ters challenges when extending its styling capacity to the 
entirety of the image, resulting in less impressive outcomes 
beyond the sky. 

The Patch-based method is good at copying the brush- 
strokes from the original style image, creating a similar 
artistic texture in the final picture. Yet a problem arises 
where you can notice the edges of the patches when look- 
ing at the entire image. This makes it hard for the patches 

to blend well together, affecting how the artwork looks as a 
whole. Figure 5 shows the sample input pictures captured 

 

Figure 5. Sample Input Insta360 Images 
 
 

Figure 6. Sample Input Texture Images 
 
 

Figure 7. Tiny Planet Effect Stylized Outputs 
 

using the Insta360 Photos. As the photos taken with this 
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specific camera equipment are in the .insp format, we con- 
verted them to .jpg format to apply our code. These images 
are in the .jpg flattened format. 

Figure 6 illustrates the various stylistic patches that we 
experimented with for our painterly rendering tasks. 

Figure 7 displays the results of our stylized painterly ren- 
dering code applied to our .insp photos. To enhance the 
visual appeal, we utilized these photos to generate a tiny 
planet effect on the output panorama, contributing to the 
creation of these stunning outputs. 

Figure 8 represents the output of the texture based patch- 
ing method on our mask-added input images. 

Figure 9 represents the flattened .jpg outputs of the two 
style transfer methods mentioned in Efros paper [1]. 

 

 
Figure 8. Texture Based Patch Outputs 

 
 
4. Challenges 
1. One challenge we faced was making the 360º images 

look seamless in the immersive videos. We could not 
find software that could turn the 2-dimensional images 
into 3-dimensional interactive images seamlessly. The 
Insta360 One app™ had the best results, but there are 
still black spots and seams in the interactive images. 

2. Additionally, we found that working with entire images 
was challenging. Style transfers gave poor results on 
foreground objects and texture transfer was time con- 
suming. As a result, we attempted to mask out areas 
of interest. 

3. One of the other issues we had was developing masks by 
code. We did better when making them manually, but 
the generated masks still look similar. 

4. Another challenge was applying style transfer with little 
noise in the VGG model. We were able to reduce this by 
factoring in the total variation of the image when calcu- 
lating the loss in the neural network. 

 
5. Contributions and Extra Credit 

5.1. Contributions 

a All Team Members: 

We collectively sourced various styles and textures for all 
the methods, and each of us executed the code files. Fur- 
thermore, we collaborated on creating content for both the 
presentation slides and this report. 

 
b Allen Dufort: 

I developed the neural network and masking code in 
style transfer final.ipynb, including the CNN 
and TF-Hub models. Additionally, I conducted research on 
Gatys’ paper and Ghiasi’s paper [2, 3]. I contributed to the 
documentation in the README.md file and played a part 
in crafting sections of this final report. 

 
c Gabby Litterio: 

I developed the texture transfer code in main.py and 
student.py, experimenting with various tile and overlap 
sizes to optimize performance. Additionally, I conducted 
research on Efros’ paper titled ”Image Quilting for Texture 
Synthesis and Transfer” [1]. For comparison purposes, I 
manually crafted a mask using Adobe Photoshop as part of 
the experimentation process. I also presented our presenta- 
tion to the class. 

 
d Muskaan Patel: 

I utilized the Insta360 One Camera to capture 
360º photos and applied outcomes from both the 
style transfer final.ipynb notebook and 
main.py to generate interactive 360º stylized photo 
videos within the Insta360 One app™. Throughout this 
process, I conducted extensive experimentation involving 
over 20 distinct styles and more than 30 different 360 
images. This comprehensive approach allowed me to 
implement and evaluate both style transfer and texture 
transfer methods, aiming to select the most optimal results. 
Moreover, I conducted essential pre-processing on the 
Insta360 images to enhance the quality of the final outputs. 
Lastly, I also created the videos of the interactive 360º 
stylized photos on the Insta360 One app™. 
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Figure 9. Insta360 Style Transferred Outputs 
 
 
5.2. Commensurate Extra Credit 
In this project, we made commensurately extra efforts that 
surpassed the standard expectations of the course. The 
project comprises three distinct style transfer implementa- 
tions, showcasing a patch-based algorithm covered in class, 
a convolutional neural network (CNN) style transfer that 
goes beyond the course content, and the integration of Ten- 
sorFlow Hub with a pretrained CNN. This represents a com- 
mensurately extra effort as it involved self-directed learn- 
ing, model training, and applying advanced deep learning 
concepts not explicitly covered in our coursework. Addi- 
tionally, we transformed the style-transferred images into 
interactive 360-degree visuals on the Insta360 One app™, 
integrating our classwork with a real-world application. 
Overall, the project’s extra credit is the diversity of tech- 
niques, the integration of machine learning principles and 
real-world applications. 
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