
1

Rendering 360º Images into Paintings

Allen Dufort, Gabby Litterio, Muskaan Patel

Brown University, CSCI 1290, Fall 2023

Abstract

For the final project of CSCI 1290, we rendered 360°
panoramic images into artistic stylizations using three
methods: a patch-based texture patching algorithm and two
different neural network style transfer models. Our neural
network methods separate the content and style of images,
allowing us to recombine the content of globe panoramas
with the style of any given artwork patch. We derived neural
representations of content and style from a pre-trained con-
volutional neural network and optimized novel images to
match these representations. To address challenges of work-
ing with wide-field images, we introduced masking tech-
niques to focus stylization on regions of interest (i.e., the
sky) while preserving details elsewhere. Our project also
provides two different methods of masking: one involving
OpenCV libraries and the other involving manually sculpt-
ing out the mask using Adobe Photoshop. We compared
results from our methods and found that deep convolutional
neural networks best capture artistic styles across the full
panoramic field. The ability to render immersive scenes
in distinct visual styles opens new possibilities for study-
ing perception and the generation of virtual artistic experi-
ences.
KEYWORDS: Neural Style Transfer, Texture Transfer,
Convolutional Neural Networks, Patch-Based Algorithm,
TF-Hub, Panoramic Images, Immersive Scenes, Image
Masking, Globe Panoramas, Insta360 Photos

1. Introduction
Our objective was to convert complete 360º images into
artistic renditions inspired by renowned painting styles. We
applied stylizations to distinct areas of interest, such as the
sky, while maintaining the authenticity of other segments
within the original image. Beyond the stylized transfor-
mations, we introduced an interactive dimension, akin to
Google Street View, enabling users to rotate the image a
full 360 degrees for immersive exploration.

To capture our 360º images, we utilized the Insta360 One
camera—an invaluable tool enabling us to encapsulate im-

mersive scenes. Our goal wasn’t solely to create static paint-
ings; rather, we aimed to provide an interactive viewing ex-
perience, enriching user engagement with the dynamically
transformed panoramas.

This project is built on influential works in neural style
transfer, drawing inspiration from ”A Neural Algorithm
of Artistic Style” by Gatys et al. [2], Efros et al.’s ”Im-
age Quilting for Texture Synthesis and Transfer” [1] and
”Exploring the Structure of a Real-Time, Arbitrary Neural
Artistic Stylization Network” by Ghiasi et al. [3]. Our
project delves into both style and texture transfer meth-
ods. This involved implementing neural networks, includ-
ing Convolutional Neural Networks (CNNs) and the Ten-
sorFlow model TF-Hub, and employing a patch-based tex-
ture transfer algorithm.

The choice of methodologies was driven by the need to
address challenges inherent in working with wide-field im-
ages. Furthermore, our exploration includes the introduc-
tion of masking techniques to focus stylization on specific
regions of interest, a crucial step in preserving intricate de-
tails, such as the sky, while enhancing overall visual appeal.

In this paper, we will present our findings, comparing re-
sults obtained through different methods. Additionally, we
will discuss the specific techniques we used and challenges
encountered, and the valuable outcomes derived from our
exploration. We aim to showcase the artistic transforma-

tions achieved and begin to analyze the efficacy of various
approaches for rendering immersive scenes in distinct vi-

sual styles.

2. Methodology

2.1. Patch-Based Texture Transfer Algorithm

Our methodology involves applying the Image Quilting for
Texture Synthesis and Transfer method introduced in the
SIGGRAPH 2001 paper by Alexei A. Efros and William T.
Freeman [1]. This technique enables both texture synthe-
sis—creating images of various sizes from small samples
like grass—and texture transfer—rendering images in the
style of others, such as re-rendering an image like Abraham
Lincoln in a different artistic style.

2

In our patch-based algorithm, we re-render the input
image using texture samples from the style image. Each
integrated sample patch in our synthesized result consid-
ers two key constraints: coherence with existing segments
(used in texture synthesis) and alignment with the desired
re-rendered image. We adjust parameters, including α, in
Equation 1, computing patch correspondence via grayscale
intensity-based sum of squared differences (SSD). Through
iterative refinement involving reduced tile sizes and ad-
justed α, we improve the texture transfer quality, optimizing
the algorithm’s performance.

We run through 2 iterations of this while decreasing
the tile size and adjusting α each time to get the best re-
sults. The error term in each iteration is Equation 1, where
prev error is the error calculated in the previous itera-
tion and corr error is the value calculated by SSD.

error = α ∗ (overlap error + prev error)
+ (1 − α) ∗ corr error (1)

2.2. Neural Network Style Transfer Algorithms
a CNN Model

Figure 1. Diagram of the CNN model [2]

In Gatys paper[2], the input image is reconstructed
from layers ‘conv1 1’ (a), ‘conv2 1’ (b), ‘conv3 1’(c),
‘conv4 1’ (d) and ‘conv5 1’(e). The style of the input
image is reconstructed from style representations built on
different subsets of CNN layers: ‘conv1 1’ (a), ‘conv1 1’
and ‘conv2 1’ (b), ‘conv1 1’, ‘conv2 1’ and ‘conv3 1’
(c), ‘conv1 1’, ‘conv2 1’, ‘conv3 1’ and ‘conv4 1’ (d),
‘conv1 1’, ‘conv2 1’, ‘conv3 1’, ‘conv4 1’ and ‘conv5 1’
(e).

In our CNN model, we do content and style reconstruc-
tions. For content reconstructions, we reconstruct the input
image from layer ‘conv5 2’ of the pretrained VGG-model.
For style reconstructions we build a new feature space that

captures the style of an input image on top of the original
CNN representations in order to make correlations between
the different features in different layers of the CNN. We
reconstruct the style of the input image from style repre-
sentations using this subset of the CNN layers: ‘conv1 1’,
‘conv2 1’, ‘conv3 1’, ‘conv4 1’ and ‘conv5 1’. For a visu-
alization of this description, look at Figure 1.

After this reconstruction, we optimize the model using
an Adam optimizer. We also use the total variation to adjust
the loss of the image at each training epoch in order to re-
duce the noise in the output image. We then train the image
for 7 epochs, 100 steps per epoch to get the final stylized
image.

b TF-Hub Model

Figure 2. Diagram of the TF-Hub model architecture [3].

The underlying way the TF-Hub model works is the style

prediction network P predicts an embedding vector S⃗ from
an input style image and sends S⃗ to the style transfer net-
work T . T then transforms the photograph into a stylized
image based on the style image. Then, the content and style
losses are calculated and are minimized during backpropa-
gation [3]. All of this work is done for us by Google when
we call TF-Hub in our code. Please see Figure 2 to see more
about the structure of the TF-Hub model.

2.3. Masking
a OpenCV Based Masking Method

For masking the images, we created a binary mask based
on the intensity threshold of the source image in grayscale
using OpenCV, an open-source computer vision library, to
efficiently process and manipulate the image data accord-
ing to the established intensity threshold. This mask was
generated by employing the following equation:

new img = source img ∗ mask

+ stylized img ∗ (1 − mask) (2)

3

Figure 3. Mask generated using OpenCV Python Script

b Manual Masking Method

The method involving Adobe Photoshop entailed manually
sculpting the mask by meticulously selecting and delineat-
ing specific regions within the image. This process allowed
for detailed customization and precision, enabling the cre-
ation of the desired mask through intricate manual adjust-
ments. However, it required substantial human intervention
and proved time-intensive due to the meticulous nature of
manual selection and editing within Adobe Photoshop.

Figure 4. Mask generated using Adobe Photoshop

3. Results
The VGG model exhibits outputs that closely resemble the
artistic portrayal of skies found in paintings. Its ability to
capture and replicate the essence of the sky within the art-
work stands out prominently. On the other hand, the TF-
Hub model successfully incorporates the style of the image
into the sky region, skillfully blending it with the original
image’s aesthetics. However, the TF-Hub model encoun-
ters challenges when extending its styling capacity to the
entirety of the image, resulting in less impressive outcomes
beyond the sky.

The Patch-based method is good at copying the brush-
strokes from the original style image, creating a similar
artistic texture in the final picture. Yet a problem arises
where you can notice the edges of the patches when look-
ing at the entire image. This makes it hard for the patches

to blend well together, affecting how the artwork looks as a
whole. Figure 5 shows the sample input pictures captured

Figure 5. Sample Input Insta360 Images

Figure 6. Sample Input Texture Images

Figure 7. Tiny Planet Effect Stylized Outputs

using the Insta360 Photos. As the photos taken with this

4

specific camera equipment are in the .insp format, we con-
verted them to .jpg format to apply our code. These images
are in the .jpg flattened format.

Figure 6 illustrates the various stylistic patches that we
experimented with for our painterly rendering tasks.

Figure 7 displays the results of our stylized painterly ren-
dering code applied to our .insp photos. To enhance the
visual appeal, we utilized these photos to generate a tiny
planet effect on the output panorama, contributing to the
creation of these stunning outputs.

Figure 8 represents the output of the texture based patch-
ing method on our mask-added input images.

Figure 9 represents the flattened .jpg outputs of the two
style transfer methods mentioned in Efros paper [1].

Figure 8. Texture Based Patch Outputs

4. Challenges
1. One challenge we faced was making the 360º images

look seamless in the immersive videos. We could not
find software that could turn the 2-dimensional images
into 3-dimensional interactive images seamlessly. The
Insta360 One app™ had the best results, but there are
still black spots and seams in the interactive images.

2. Additionally, we found that working with entire images
was challenging. Style transfers gave poor results on
foreground objects and texture transfer was time con-
suming. As a result, we attempted to mask out areas
of interest.

3. One of the other issues we had was developing masks by
code. We did better when making them manually, but
the generated masks still look similar.

4. Another challenge was applying style transfer with little
noise in the VGG model. We were able to reduce this by
factoring in the total variation of the image when calcu-
lating the loss in the neural network.

5. Contributions and Extra Credit

5.1. Contributions

a All Team Members:

We collectively sourced various styles and textures for all
the methods, and each of us executed the code files. Fur-
thermore, we collaborated on creating content for both the
presentation slides and this report.

b Allen Dufort:

I developed the neural network and masking code in
style transfer final.ipynb, including the CNN
and TF-Hub models. Additionally, I conducted research on
Gatys’ paper and Ghiasi’s paper [2, 3]. I contributed to the
documentation in the README.md file and played a part
in crafting sections of this final report.

c Gabby Litterio:

I developed the texture transfer code in main.py and
student.py, experimenting with various tile and overlap
sizes to optimize performance. Additionally, I conducted
research on Efros’ paper titled ”Image Quilting for Texture
Synthesis and Transfer” [1]. For comparison purposes, I
manually crafted a mask using Adobe Photoshop as part of
the experimentation process. I also presented our presenta-
tion to the class.

d Muskaan Patel:

I utilized the Insta360 One Camera to capture
360º photos and applied outcomes from both the
style transfer final.ipynb notebook and
main.py to generate interactive 360º stylized photo
videos within the Insta360 One app™. Throughout this
process, I conducted extensive experimentation involving
over 20 distinct styles and more than 30 different 360
images. This comprehensive approach allowed me to
implement and evaluate both style transfer and texture
transfer methods, aiming to select the most optimal results.
Moreover, I conducted essential pre-processing on the
Insta360 images to enhance the quality of the final outputs.
Lastly, I also created the videos of the interactive 360º
stylized photos on the Insta360 One app™.

5

Figure 9. Insta360 Style Transferred Outputs

5.2. Commensurate Extra Credit
In this project, we made commensurately extra efforts that
surpassed the standard expectations of the course. The
project comprises three distinct style transfer implementa-
tions, showcasing a patch-based algorithm covered in class,
a convolutional neural network (CNN) style transfer that
goes beyond the course content, and the integration of Ten-
sorFlow Hub with a pretrained CNN. This represents a com-
mensurately extra effort as it involved self-directed learn-
ing, model training, and applying advanced deep learning
concepts not explicitly covered in our coursework. Addi-
tionally, we transformed the style-transferred images into
interactive 360-degree visuals on the Insta360 One app™,
integrating our classwork with a real-world application.
Overall, the project’s extra credit is the diversity of tech-
niques, the integration of machine learning principles and
real-world applications.

References
[1] Alexei A. Efros and William T. Freeman. Image quilt-

ing for texture synthesis and transfer. https : / /
api.semanticscholar.org / CorpusID : 9334387,
2001.

[2] Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge. A
neural algorithm of artistic style. http://arxiv.org/
abs/1508.06576, 2015.

[3] Golnaz Ghiasi, Honglak Lee, Manjunath Kudlur, Vincent Du-
moulin, and Jonathon Shlens. Exploring the structure of a
real-time, arbitrary neural artistic stylization network. http:
//arxiv.org/abs/1705.06830, 2017.

http://arxiv.org/abs/1508.06576
http://arxiv.org/abs/1508.06576
http://arxiv.org/abs/1705.06830
http://arxiv.org/abs/1705.06830

