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Introduction
In this project, I implemented 3 optimizations, including constant propagation, inlining, 
and common subexpression elimination, in order to speed up the program execution at 
runtime.  

Design/Implementation
1. Constant Propagation

Constant propagation involves replacing parts of the program that can be statically 
determined with their statically determined results during compile time to save 
computation during runtime. In my implementation of propagate constants, I use a 
propagate helper function to determine which part of the program could be replaced 
by their static result. 

To start, I replaced primitive operations including add1 , sub1 , plus , minus , eq , and 
lt  with their statically determined results with pattern matching. The case of 
replacing let-bound names is more nuanced. Since after determining that a let-
bound name could be replaced by number or boolean, in the body of the let 
expression, any instances of the let-bound names must also be replaced by the 
same number or boolean. To store the values associated with the static value of the 
let-bound name, I used a Symtab  to map the name to its static value and when 
encountered in the body of the let expression, check the Symtab  to replace the 
name with its static value.

For conditionals, when the expression is an if statement, I first check if the condition 
would evaluate to a static value, if so and we can determine the static value to be 
false, then the expression should just return the folded version of the else 
expression. Otherwise it should return the folded version of the then expression.

2. Globally unique variables

Uniquify variables is an AST pass that guarantees that the input program would 
have globally unique names, as this would be very helpful for other optimizations 
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such as Inlining and Common Subexpression Elimination. To achieve uniqueness, I 
use a combination of gensym  and Symtab  to store each variable name to its new 
unique name during Let binding in the body expression of each function definition 
as well as and function argument names, and the main program body.

3. Inlining

The general method I took for inlining in the project follows the flow-chart below:

In determining whether a function is a leaf function and checking if it satisfies the 
heuristics, I used check_static_calls  and check_depth  on each function. Depth is the 
number of nodes in the current function AST tree. If a function has 0 static calls in 
its function body, then it is a leaf function, if the number of statics calls to this 
function in all functions and the main program body * depth of this function ≤ 100, 
then I consider the function as passing the heuristic check. This would prevent 
memory intensive programs after inlining, which could slow down the program 
execution compared to just doing the function call. 

4. Common Subexpression Elimination
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The general method I took for common subexpression elimination follows the flow-
chart below, the flow-chart represents the process to eliminate common 
subexpressions in each body expression:

This process would guarantee that we eliminate the longest common subexpression 
at first, even if it contains more smaller common subexpressions. The check in-
scope is also important, especially after function inlining, there can be very long 
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common subexpressions that are inlined into the body expression from a previous 
leaf function that could be out of scope if they are extracted out of the previous let 
binding. 

Results
#### Constant Propagation: 

To test the performance of constant propagation, I pick the benchmark tests whose 
runtime would differ drastically between applying and not applying constant 
propagation. 

To compare, I have the following cases as examples where constant propagation 
significantly reduce the runtime:

benchmarks/const_prop_if.lisp: (runtime -73.56%)

const_prop_if.lisp,const prop,5579055.500015784

const_prop_if.lisp,no-op,21104358.100024

benchmarks/const_prop_simple.lisp: (runtime -83.59%)

const_prop_simple.lisp,const prop,6398201.299964512

const_prop_simple.lisp,no-op,38981784.999987215

benchmarks/const_prop_test.lisp: (runtime -39.03%)

constant-prop-test.lisp,const prop,5472295.599997778

constant-prop-test.lisp,no-op,8975568.39997833

#### Inline:

To test the performance of inlining, I pick the benchmark tests whose runtime would 
differ drastically between applying and not applying uniquify variables + inlining. 

To compare, I have the following cases as examples where inlining significantly reduce 
the runtime:

benchmarks/many_functions_to_inline.lisp: (runtime - 7.83%)

many_functions_to_inline.lisp,inline,5524806.5999649055

many_functions_to_inline.lisp,no-op,5994112.600001244

benchmarks/inlining-small-function-with-many-call-sites.lisp (runtime - 8.55%): 

inlining-small-function-with-many-call-sites.lisp,inline,6218130.199999905

inlining-small-function-with-many-call-sites.lisp,no-op,6799365.099959686
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benchmarks/inlining-allows-cprop.lisp (runtime -5.52%): 

inlining-allows-cprop.lisp,inline,94378585.30000083

inlining-allows-cprop.lisp,no-op,99887359.20003363

benchmarks/inline-with-cprop.lisp (runtime -15.07%):

inline-with-cprop.lisp,inline,5345569.4999456685

inline-with-cprop.lisp,no-op,6293929.300022682

#### CSE:

To test the performance of common subexpression elimination, I pick the benchmark 
tests whose runtime would differ drastically between applying and not applying uniquify 
variables + CSE. 

To compare, I have the following cases as examples where CSE significantly reduce the 
runtime:

benchmarks/cse_recursive_power.lisp (runtime: -66.46%):

cse_recursive_power.lisp,cse,8184540.000002016

cse_recursive_power.lisp,no-op,24403595.499961738

benchmarks/inlining-allows-cse.lisp (runtime -7.68%):

inlining-allows-cse.lisp,cse,93688667.49998689

inlining-allows-cse.lisp,no-op,101484254.00000179

benchmarks/repeatedsum-args.lisp (runtime -16.58%):

repeatedsum-args.lisp,cse,6275773.000061234

repeatedsum-args.lisp,no-op,7522740.999934284

benchmarks/repeated-subexpressions-multiple (runtime -11.53%):

repeated-subexpressions-multiple.lisp,cse,6098607.299963987

repeated-subexpressions-multiple.lisp,no-op,6893369.500016889

#### All Optimizations:

To test the performance of all optimizations working together, I pick the benchmark tests 
whose runtime would differ drastically between applying and not applying all 
optimizations in the sequence of constant propagation, uniquify variables, inline, and 
eliminate common subexpressions. 
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To compare, I have the following cases as examples where all optimizations significantly 
reduce the runtime:

benchmarks/const-prop-reassoc.lisp (runtime -30.72%):

const-prop-reassoc.lisp,all-op,5091941.599994244

const-prop-reassoc.lisp,no-op,7349752.799996167

benchmarks/const-prop-w-inlining.lisp (runtime -31.37%):

const-prop-w-inlining.lisp,all-op,5322271.699992598

const-prop-w-inlining.lisp,no-op,7754620.199989404

benchmarks/expanded-fibonacci.lisp (runtime -64.86%):

expanded-fibonacci.lisp,all-op,6385940.799987111

expanded-fibonacci.lisp,no-op,18170936.000024088

benchmarks/inline_req_constprop.lisp (runtime -97.56%):

inline_req_constprop.lisp,all-op,7181759.600007355

inline_req_constprop.lisp,no-op,294613675.200003

benchmarks/wilsons-theorem.lisp (runtime -37.92%):

wilsons-theorem.lisp,all-op,689518578.4999967

wilsons-theorem.lisp,no-op,1110709975.200007

Conclusion
I learned a lot from implementing compiler optimization and realized it is a pretty hard 
task to achieve optimal performance in all cases, since despite the increased 
performance in parts of the benchmark test cases, some optimized program actually 
runs a bit slower than the non-optimized program, potentially to due to their memory 
intensity after optimization, and finding the best heuristic also needs trail and error. 


