
Capstone: Compiler Optimization 1

Capstone: Compiler Optimization
Dec.12, 2022, Yueshan Li (yli287)

Introduction
In this project, I implemented 3 optimizations, including constant propagation, inlining,
and common subexpression elimination, in order to speed up the program execution at
runtime.

Design/Implementation
1. Constant Propagation

Constant propagation involves replacing parts of the program that can be statically
determined with their statically determined results during compile time to save
computation during runtime. In my implementation of propagate constants, I use a
propagate helper function to determine which part of the program could be replaced
by their static result.

To start, I replaced primitive operations including add1 , sub1 , plus , minus , eq , and
lt with their statically determined results with pattern matching. The case of
replacing let-bound names is more nuanced. Since after determining that a let-
bound name could be replaced by number or boolean, in the body of the let
expression, any instances of the let-bound names must also be replaced by the
same number or boolean. To store the values associated with the static value of the
let-bound name, I used a Symtab to map the name to its static value and when
encountered in the body of the let expression, check the Symtab to replace the
name with its static value.

For conditionals, when the expression is an if statement, I first check if the condition
would evaluate to a static value, if so and we can determine the static value to be
false, then the expression should just return the folded version of the else
expression. Otherwise it should return the folded version of the then expression.

2. Globally unique variables

Uniquify variables is an AST pass that guarantees that the input program would
have globally unique names, as this would be very helpful for other optimizations

Capstone: Compiler Optimization 2

such as Inlining and Common Subexpression Elimination. To achieve uniqueness, I
use a combination of gensym and Symtab to store each variable name to its new
unique name during Let binding in the body expression of each function definition
as well as and function argument names, and the main program body.

3. Inlining

The general method I took for inlining in the project follows the flow-chart below:

In determining whether a function is a leaf function and checking if it satisfies the
heuristics, I used check_static_calls and check_depth on each function. Depth is the
number of nodes in the current function AST tree. If a function has 0 static calls in
its function body, then it is a leaf function, if the number of statics calls to this
function in all functions and the main program body * depth of this function ≤ 100,
then I consider the function as passing the heuristic check. This would prevent
memory intensive programs after inlining, which could slow down the program
execution compared to just doing the function call.

4. Common Subexpression Elimination

Capstone: Compiler Optimization 3

The general method I took for common subexpression elimination follows the flow-
chart below, the flow-chart represents the process to eliminate common
subexpressions in each body expression:

This process would guarantee that we eliminate the longest common subexpression
at first, even if it contains more smaller common subexpressions. The check in-
scope is also important, especially after function inlining, there can be very long

Capstone: Compiler Optimization 4

common subexpressions that are inlined into the body expression from a previous
leaf function that could be out of scope if they are extracted out of the previous let
binding.

Results
Constant Propagation:

To test the performance of constant propagation, I pick the benchmark tests whose
runtime would differ drastically between applying and not applying constant
propagation.

To compare, I have the following cases as examples where constant propagation
significantly reduce the runtime:

benchmarks/const_prop_if.lisp: (runtime -73.56%)

const_prop_if.lisp,const prop,5579055.500015784

const_prop_if.lisp,no-op,21104358.100024

benchmarks/const_prop_simple.lisp: (runtime -83.59%)

const_prop_simple.lisp,const prop,6398201.299964512

const_prop_simple.lisp,no-op,38981784.999987215

benchmarks/const_prop_test.lisp: (runtime -39.03%)

constant-prop-test.lisp,const prop,5472295.599997778

constant-prop-test.lisp,no-op,8975568.39997833

Inline:

To test the performance of inlining, I pick the benchmark tests whose runtime would
differ drastically between applying and not applying uniquify variables + inlining.

To compare, I have the following cases as examples where inlining significantly reduce
the runtime:

benchmarks/many_functions_to_inline.lisp: (runtime - 7.83%)

many_functions_to_inline.lisp,inline,5524806.5999649055

many_functions_to_inline.lisp,no-op,5994112.600001244

benchmarks/inlining-small-function-with-many-call-sites.lisp (runtime - 8.55%):

inlining-small-function-with-many-call-sites.lisp,inline,6218130.199999905

inlining-small-function-with-many-call-sites.lisp,no-op,6799365.099959686

Capstone: Compiler Optimization 5

benchmarks/inlining-allows-cprop.lisp (runtime -5.52%):

inlining-allows-cprop.lisp,inline,94378585.30000083

inlining-allows-cprop.lisp,no-op,99887359.20003363

benchmarks/inline-with-cprop.lisp (runtime -15.07%):

inline-with-cprop.lisp,inline,5345569.4999456685

inline-with-cprop.lisp,no-op,6293929.300022682

CSE:

To test the performance of common subexpression elimination, I pick the benchmark
tests whose runtime would differ drastically between applying and not applying uniquify
variables + CSE.

To compare, I have the following cases as examples where CSE significantly reduce the
runtime:

benchmarks/cse_recursive_power.lisp (runtime: -66.46%):

cse_recursive_power.lisp,cse,8184540.000002016

cse_recursive_power.lisp,no-op,24403595.499961738

benchmarks/inlining-allows-cse.lisp (runtime -7.68%):

inlining-allows-cse.lisp,cse,93688667.49998689

inlining-allows-cse.lisp,no-op,101484254.00000179

benchmarks/repeatedsum-args.lisp (runtime -16.58%):

repeatedsum-args.lisp,cse,6275773.000061234

repeatedsum-args.lisp,no-op,7522740.999934284

benchmarks/repeated-subexpressions-multiple (runtime -11.53%):

repeated-subexpressions-multiple.lisp,cse,6098607.299963987

repeated-subexpressions-multiple.lisp,no-op,6893369.500016889

All Optimizations:

To test the performance of all optimizations working together, I pick the benchmark tests
whose runtime would differ drastically between applying and not applying all
optimizations in the sequence of constant propagation, uniquify variables, inline, and
eliminate common subexpressions.

Capstone: Compiler Optimization 6

To compare, I have the following cases as examples where all optimizations significantly
reduce the runtime:

benchmarks/const-prop-reassoc.lisp (runtime -30.72%):

const-prop-reassoc.lisp,all-op,5091941.599994244

const-prop-reassoc.lisp,no-op,7349752.799996167

benchmarks/const-prop-w-inlining.lisp (runtime -31.37%):

const-prop-w-inlining.lisp,all-op,5322271.699992598

const-prop-w-inlining.lisp,no-op,7754620.199989404

benchmarks/expanded-fibonacci.lisp (runtime -64.86%):

expanded-fibonacci.lisp,all-op,6385940.799987111

expanded-fibonacci.lisp,no-op,18170936.000024088

benchmarks/inline_req_constprop.lisp (runtime -97.56%):

inline_req_constprop.lisp,all-op,7181759.600007355

inline_req_constprop.lisp,no-op,294613675.200003

benchmarks/wilsons-theorem.lisp (runtime -37.92%):

wilsons-theorem.lisp,all-op,689518578.4999967

wilsons-theorem.lisp,no-op,1110709975.200007

Conclusion
I learned a lot from implementing compiler optimization and realized it is a pretty hard
task to achieve optimal performance in all cases, since despite the increased
performance in parts of the benchmark test cases, some optimized program actually
runs a bit slower than the non-optimized program, potentially to due to their memory
intensity after optimization, and finding the best heuristic also needs trail and error.

