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We introduce a high-throughput neural network accelerator that embeds most network layers directly in hardware, minimizing data
transfer and memory usage while preserving a degree of flexibility via a small neural processing unit for the final classification layer.
By leveraging power-of-two (Po2) quantization for weights, we replace multiplications with simple rewiring, effectively reducing each
convolution to a series of additions. This streamlined approach offers high-throughput, energy-efficient processing, making it highly
suitable for applications where model parameters remain stable, such as continuous sensing tasks at the edge or large-scale data center
deployments. Furthermore, by including a strategically chosen reprogrammable final layer, our design achieves high throughput
without sacrificing fine-tuning capabilities.

We implement this accelerator in a 7nm ASIC flow using MobileNetV2 as a baseline and report throughput, area, accuracy, and
sensitivity to quantization and pruning—demonstrating both the advantages and potential trade-offs of the proposed architecture. We
find that for MobileNetV2, we can improve inference throughput by 20× over fully programmable GPUs, processing 1.21 million
images per second through a full forward pass while retaining fine-tuning flexibility. If absolutely no post-deployment fine tuning is
required, this advantage increases to 67× at 4 million images per second.
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1 Introduction

Hardware accelerators have become a cornerstone of modern deep learning, largely because of the computational
intensity associatedwith training and inference in neural networks. As datasets continue to grow andmodel architectures
become more complex, general-purpose processors such as CPUs often struggle to deliver the high throughput and
energy efficiency necessary for real-time or large-scale applications. By contrast, specialized hardware designs can
dramatically reduce the time and energy required to execute neural network operations.

Specialized architectures built for neural network processing come in several broad categories. First, there are GPU-
based solutions, which combine Turing-complete streaming multiprocessors with integrated tensor cores to accelerate
the matrix operations commonly found in neural network workloads. Second, there are FPGA-based accelerators that
gain efficiency through reconfigurable logic, allowing researchers to tailor the hardware pipeline to specific neural
architectures. Third, specialized ASICs like Google’s TPU and various neural processing units are designed from the
ground up to address specific patterns of computations in neural networks. Each approach offers distinct trade-offs
in terms of flexibility, power efficiency, and raw computational capabilities. Each of these solutions store the neural
network weight parameters in dynamically writable RAM memories that are loaded with the weight values from the
most recent version of the model at runtime. Multi-layer neural networks are time-multiplexed through the accelerator
hardware using the best-known scheduling policy, updating the weight memories with the relevant parameters for
each layer.

Authors’ Contact Information: Jonathan Herbst, Brown University, jonathan_herbst@brown.edu, c@example.com; Michael Pellauer, NVIDIA, mpellauer@
nvidia.com; Sherief Reda, Brown University, sherief_reda@brown.edu.
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In contrast, hardwiring the accelerator by fixing weights directly into the hardware can substantially simplify
the underlying architecture. A fixed-weight design can eliminate all weight related memory transfer overheads by
embedding learned parameters in logic. Furthermore, dedicating hardware resources to only those operations necessary
for the fixed model can streamline data pathways via design-time constant propagation, further increasing performance.
To accomplish this, different layers of the network are no longer time-multiplexed into the same datapaths and RAMs,
but instead are spatially “unrolled” into different physical areas of the chip. Thus, while per-layer area efficiency
increases, the overall area required to provision an entire DNN can be quite large. On the other hand, this spatial
distribution of resources also results in a high-throughput pipelined execution across layers, and so the tradeoff can be
favorable.

Hardwired accelerators offer compelling advantages for scenarios requiring high-performance, energy-efficient
inference with relatively static or infrequently updated models. They are particularly well-suited for applications where
the target model is stable for extended periods and speed or power efficiency is paramount—such as embedded systems
performing continuous sensing or computer vision tasks, edge devices with stringent power budgets, or large-scale
data centers running fixed workloads at massive scale. This combination of efficiency, reliability, and performance can
enable real-time responsiveness and broader deployment possibilities, especially in domains where frequent retraining
is not necessary or where hardware upgrade cycles naturally accommodate incremental updates to the accelerator
design. Of course, the natural downside of this is that post-deployment hardware adaptability decreases, which can be a
large problem in a fast-moving field like Deep Learning.

In this paper, we propose a high-throughput accelerator architecture that simultaneously addresses the downsides of
overall area efficiency and hardware adaptability when using hardwired weights. To retain a degree of post design-time
flexibility, we include a small neural processing unit (NPU) dedicated to handling the final classification layer, thus
enabling on-the-fly adjustment of model outputs (i.e., fine-tuning). Furthermore, we leverage power-of-two quantization
for hardwired weights, allowing us to dispense with multipliers or shifters entirely, as each shift operation becomes a
simple hardware re-wiring. This dramatically increases per-layer area efficiency, thus making our design the first to make

full spatial unrolling of a realistic neural network feasible in a limited area budget. It is our hope that our combination of
hardening and flexibility will inspire future research in this rich design space. We summarize the specific contributions
of this paper as follows:

• We present a novel hardwired CNN accelerator design that eliminates the need for storing and transferring
weights. By quantizing weights to powers of two, all multiplication operations are replaced with rewiring,
thereby reducing convolutions to a sequence of additions. We also show how batch normalization and non-linear
activations can be seamlessly integrated into this framework.

• To preserve flexibility, we incorporate a small neural processing unit (NPU) that handles the final classification
layer in a traditional manner. This approach offers adaptability in the output stage, mitigating some of the rigidity
introduced by hardwiring the earlier layers.

• We analyze the area implications of our proposed architecture and identify widely-used CNN models that
fit within reticle constraints, demonstrating how they can be effectively deployed to leverage the benefits of
hardwired processing.
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• Using MobileNetV2 as a baseline and implementing our design in a 7 nm ASIC flow, we provide a comprehensive
set of experimental results evaluating throughput, area, accuracy, and flexibility. We also conduct a sensitivity
analysis to assess how bit quantization and pruning affect these performance metrics.

The remainder of this paper is organized as follows. In the Background section, we review key concepts and existing
accelerator architectures relevant to our proposed design. Next, in Section 3 we detail our hardwired architecture,
including the quantization strategy and the integration of a small neural processing unit for added flexibility. In Section
4 we discuss training. In Section 5, we present comprehensive performance benchmarks, including throughput, area,
accuracy, and sensitivity analyses. We then discuss our work within the broader research landscape in the Related Work
section, discussing key differences and similarities to prior accelerator designs. Finally, Section 7, summarizes our main
findings and suggests possible directions for future research.

2 Background

2.1 Convolutional Neural Networks

One of the most important types of Deep Neural Networks (DNNs) is the Convolutional Neural Network (CNN),
formalized by Yann LeCun as a way to extract spatial information from images [17]. CNNs “slide” a filter over the
previous layer’s features, using several filters to separate information into planar “channels.”

Throughout this paper, we use the following convention, defined in Eyeriss [6]: 𝑃 and 𝑄 represent the convolutional
output’s height and width,𝑀 represents output channels, 𝑅 and 𝑆 represent the kernel’s height and width, and 𝐻 ,𝑊 ,
and 𝐶 represent the convolutional input’s height, width, and number of channels respectively. In addition, we use 𝑂 or
𝑂𝑃×𝑄×𝑀 to represent the convolution output,𝑊 or𝑊𝑀×𝑅×𝑆×𝐶 to represent the filter matrix, and 𝐼 or 𝐼𝐻×𝑊 ×𝐶 to
represent the convolution input. Thus we can write each output element in tensor algebra summation notation:

𝑂𝑝𝑞𝑚 =

𝑅∑︁
𝑟=0

𝑆∑︁
𝑠=0

𝐶∑︁
𝑐=0

𝑊𝑚,𝑟,𝑠,𝑐 · 𝐼𝑝+𝑟,𝑞+𝑠,𝑐

In practice, many accelerators map this operation onto a 2-dimensional matrix multiplication, known as the Toeplitz
representation. We flatten the 𝑀 filter weight matrices𝑊 𝑅×𝑆×𝐶 into the 2D matrix𝑊𝑀×𝑅𝑆𝐶 , and unroll the input
image 𝑃𝑄 times to get 𝑋𝑅𝑆𝐶×𝑃𝑄 . Thus, another equivalent way to write the equation would be

𝑂𝑃𝑄×𝑀 =𝑊𝑀×𝑅𝑆𝐶𝑋𝑅𝑆𝐶×𝑃𝑄

after reshaping the results to a 3-dimensional format.
In order to calculate an output element, we need RSC filter weights and inputs, which must be loaded from memory.

Because hardware devices only have limited on-chip storage, these values must be continuously streamed from main
memory, which provides a memory bottleneck that reduces computational intensity.

2.2 Hardware-FriendlyQuantization & Pruning

In order to reduce these memory costs (as well as increase area- and energy-efficiency) we can compress the model size
through two techniques known as quantization and pruning. Quantization reduces the number of bits used to represent
each weight, which sometimes also applies to the activations; this can also involve changing the representation type,
for instance from floating-point to fixed-point. This applies across all weights in the model, although some layers can
have different quantization than other layers, i.e., mixed-precision [4, 31, 33].
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Fig. 1. 2:4 Weight Compression. We slice the matrix along its row axis in groups of four elements, then extract the two nonzero
elements into a smaller matrix. Our metadata matrix contains two-bit indices of the nonzero values in their original groups.

Table 1. Qualitative comparison to existing DNN accelerators. See Figure 4 for detailed quantification of area unrolling costs.

Design Category Design Weight Value Strategy Datapath Strategy Multi-Layer Strategy Throughput†
Qualitative Area Cost

Design-Time Run-Time Per Layer Unrolled

PE Array

Eyeriss [6] - Dynamic Multipliers (Row Stationary) Time-Multiplexing Medium Full Die Infeasible
DianNao [3] - Dynamic Multipliers (Weight Stationary) Time Multiplexing Medium Full Die Infeasible
TPU [15] - Dynamic Multipliers (Systolic Array) Time Multiplexing Medium Full Die Infeasible

Hardened PE Array Nonexistent Fixed - Constant-Propagated Multipliers Space Unrolling High Medium Infeasible

Shifter-Based
ShiftCNN [9] - Dynamic Po2 Shift-and-Add (ShiftALU) Time Multiplexing Medium Medium Infeasible
Universal Shift [30] - Dynamic Po2 Shift-and-Add (conv2d-shift) Time Multiplexing Medium Medium Infeasible
Jumping Shift [12] - Dynamic Po2 Shift-and-Add (2-bit barrel) Time Multiplexing Medium Medium Infeasible

This Work HaShiFix Fixed Po2 - Rewire (Constant-Propagated Shift) Space Unrolling Highest Very Low Large
HaShiFlex Fixed Po2 Fine Tuning Rewire (Constant-Propagated Shift)

and Multipliers
Space Unrolling and
Time Multiplexing

High Low Full Die

† Refers to throughput of completing a forward pass through all DNN layers.

The other major compression technique is pruning, which eliminates some proportion of the model’s weights
entirely. We can perform either structured or unstructured pruning, where the former involves clamping weights in some
organized pattern and the latter allows us to clamp any of the weights without regard to organization. Both pruning
formats reduce the number of multiplications needed, since we can ignore the zero weights, but they have limited
benefits in many accelerators. In particular, GPUs compress in a 2:4 weight compression strategy, which preserves two
weights out of every four elements in a row group. This means transferring half the weights and inputs instead of the
full amount, but also requires us to transfer a compression matrix with the indices of each nonzero element (Figure
1). This means that for matrices𝑊 𝑃𝑄×𝑅𝑆𝐶 and 𝑋𝑅𝑆𝐶×𝑀 , instead of transferring PQRSC + RSCM weights we transfer
𝑃𝑄 𝑅𝑆𝐶

2 + 𝑅𝑆𝐶
2 𝑀 weights and 𝑃𝑄 𝑅𝑆𝐶

2 2-bit indices in our metadata matrix.
In terms of compute cycles, 2:4 weight compression allows us to run a smaller matrix multiplication: instead of

𝑊𝑀×𝑅𝑆𝐶𝑋𝑅𝑆𝐶×𝑃𝑄 we only compute𝑊𝑀× 𝑅𝑆𝐶
2 𝑋

𝑅𝑆𝐶
2 ×𝑃𝑄 , where the inner dimension is only halfsize. We model this

cycle count with SCALE-Sim [28] in our results section to understand sparsity’s effect on accelerator throughput.

2.3 Contrast to Existing DNN Accelerators

DNN accelerators fall into three subtypes: fully programmable (i.e., GPUs), fixed function multiplier arrays (i.e„ TPUs),
and Field-Programmable or Coarse-Grained Reconfigurable Arrays (also called NPUs). Each of them has a main
characteristic in common, which is a loadable array of processing elements, or PEs. To execute a complete forward
pass through a multi-layer Deep Neural Network, these PEs load the parameters of each layer in sequence (i.e., time
multiplexing of the hardware datapaths), passing output features from one layer into the next via on-chip storage.

Table 1 shows a detailed breakdown of why these PE approaches cannot be used directly to achieve our goals. Namely,
while they achieve maximum post-deployment ability to change DNN parameters, overall forward pass throughput
suffers because of this time multiplexing. Thus, when field updating of weights is not required, it is natural to investigate
whether using design-time constant weight values and constant-propagation is feasible to increase throughput. This
Manuscript submitted to ACM
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Fig. 2. An overview of the HaShiFlex ASIC design. Image inputs are loaded into on-chip memory, run through the hardcoded
convolution layers, and the feature extractor outputs are stored in an intermediate buffer. These activations are run through a flexible
NPU array that multiplies them against stored on-chip weights to compute the final classification probabilities, which are streamed
off-chip.

approach requires spatially “unrolling” the hardware for each layer – as each layer has different fixed weight values.
Unfortunately, multipliers themselves are large and area inefficient. This style of constant propagation does not result
in sufficient area savings to allow for fitting an entire realistic sized DNN on a reticle-limited die.

One discovery in the field of energy-efficient computing is that it can often be sufficient to simply shift the activation;
in other words, instead of multiplying X by 4, we simply left-shift it by 2. Our compute unit thus reduces from a
multiplier-accumulator to a shifter-accumulator, where 𝑋𝑘 𝑗 is shifted by log2 (𝑊𝑖𝑘 ). This works best when our weight
values are already power-of-two (Po2), and some research has been conducted on making neural networks accurate
when quantized to Po2 weights [8, 37], but the hardware works regardless of weight values. Because shifters are much
smaller than multipliers, our computational density becomes much higher, allowing us to achieve a higher throughput
for the same area cost. Most work done with shift accelerators is performed academically, and is run on FPGAs or
CGRAs for cost-purposes; the general terminology for such an array is Neural Processing Unit or NPU, which refers to a
systolic array of specific hardened computational units. We refer to these specific shifting array designs as “Shift NPUs,”
since they are systolic arrays with shift-and-accumulate compute units. For a detailed discussion of these approaches
see Section 6.

Our key insight is that hardening design-time fixed Po2 weight values into rewiring-and-accumulate modules results
in a significant jump in per-layer area efficiency. As we describe in detail in the next section, this both makes the spatial
unrolling of a realistic size neural network feasible, and also allows enough area left over for supporting strategic
flexibility.

3 Proposed Hardwired Accelerator Architecture

In our architecture, given in Figure 2, we load the initial inputs into on-chip memory using high-speed interconnect,
run the image through our hardened convolution, and save the results in a small buffer that reflects the outputs of our
feature extractor. By using power-of-two weight compression, which reduces the multiplication to rewiring when the
convolution weights are fixed, we are able to fit our entire neural network architecture on-chip. The last layer – a fully
connected layer for classification – is run in an on-chip NPU to maintain classification flexibility, and the outputs are
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fed back to our main processor. Our chip’s input is a series of HxW color images streamed onto the chip, and the output
is a series of k-length vectors that correspond to softmax probabilities which are streamed back out from the chip. Our
hardened convolution corresponds to the feature extractor of neural network architectures, while the on-chip NPU is
the classifier layer that accesses the feature-extractor outputs (𝑘𝑓 𝑒 ) stored in registers.

We begin by explaining the benefits of this hardcoded approach, explain each of the subcomponents’ translation
to hardware in greater detail, and conclude the section with a description of potential tradeoffs of the fixed-function
design.

Using a hardened accelerator comes with several benefits, enumerated below.

3.0.1 No weight transfers from off-chip. Because our chip “stores” the convolution weights in the operation of its
convolution engine, we do not need to continually fetch and store our filter weights from DRAM. Off-chip memory
access comes with a hefty latency and energy pricetag; thus, by avoiding this bottleneck we can achieve both higher
throughput and higher energy efficiency, a combination which is often a tradeoff in other settings.

3.0.2 No inter-layer I/O transfer. In addition to not needing to transfer weights from DRAM, we also do not suffer from
the difficulty that other DNN accelerators face, namely, transferring the outputs of each layer either off-chip or into a
streaming buffer. Because all layers of our design happen simultaneously on-chip, every layer’s inputs and outputs do
not need to be intermediately stored but propagate through the design. This only requires us to store the last outputs
in an on-chip buffer, which is orders of magnitude smaller (𝑘𝑓 𝑒 instead of a double-buffer with both layer inputs and
outputs i.e. 𝑃𝑄𝑀 + 𝐻𝑊𝐶; for example, in MobileNetV2 this is 1280 elements compared to 802,816 elements to store
Layer 2 Conv) and thus requires both less energy and area to store.

3.0.3 Fast cycle counts and throughput for entire model. The main benefit of our hardcoded design is its cycle count.
Because we constant-propagate all of our convolution operations in parallel, and because each convolution operation
involves spatial accumulation instead of accumulating over PEs, our entire feature extractor’s latency reduces to several
cycles. This allows extremely high throughput, on the order of millions of images per second (Section 5), making it a
good design choice for users with high throughput demand.

3.0.4 Increased area efficiency. Because our convolutional layers are purely combinational, we greatly reduce the
amount of area and energy required to calculate and store our elements (Section 5). In particular, our shifting-to-rewiring
algorithm removes the need for multiplication or even shifters, but translates directly to rewiring, which uses negligible
area and energy. This translates to immediate cost savings, allowing users to purchase a greater number of chips at a
functionally equivalent running-price.

3.0.5 Sparsity has immediate benefits. There has been much research on increasing sparsity in convolutional neural
networkswithout decreasing accuracy [34]. However, this has limited benefits in the actual hardware ofmost accelerators:
sparse weight matrices can be compressed, but their reliance on compression schemes requires structured sparsity to
run efficiently, which limits our search space for sparsity benefits. In addition, because traditional accelerators must
still compute matrices of reduced size, the decrease in our compute cycles is actually sublinear (Section 5). In contrast,
pruning an operation from a hardened, constant-propagated accelerator means removing its rewire-and-accumulate
from the chip; this does not require compression schemes because the compression format is hardwired onto the chip,
allowing for benefits at any pruning percentage, and the isomorphism between sparsity and hardware units dictates a
linear reduction in area and energy.
Manuscript submitted to ACM
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3.1 Hardwired Convolution

Our neural network compression depends on quantizing our weights to power-of-two format. The traditional algorithm
for a convolution uses floating-point 32-bit weights:

𝑂𝑝𝑞𝑚 =

𝑅∑︁
𝑟=0

𝑆∑︁
𝑠=0

𝐶∑︁
𝑐=0

𝑊𝑚,𝑟,𝑠,𝑐 · 𝐼𝑝+𝑟,𝑞+𝑠,𝑐

where a traditional accelerator involves a processor array of full 32-bit multipliers to compute the element-wise
multiplication. How the accelerator divides up its multipliers for element computation depends on chosen stationarity,
but involves time-multiplexing the same multipliers for multiple computations.

We rely on DeepShift’s [8] quantized activations and weights, where our weights are power-of-two format. When
we represent𝑊𝑚,𝑟,𝑠,𝑐 as 2𝑝 for some integer p within bitshift range, the multiplication simplifies to a bit-wise shift:

𝑊𝑚,𝑟,𝑠,𝑐𝑥 = 2p𝑥 =


𝑥 << p if p > 0
𝑥 >> p if p < 0
𝑥 if p = 0

Each power-of-two quantization entails some individual rounding errors (Figure 3) but the network on the whole
can achieve state-of-the-art precision for image classification [8].

Previous works have utilized the hardware-friendly shifter operation to reduce area-size, where the chip setup is
equivalent to a “Shift NPU” with processing arrays of variable shifters in place of multipliers [11, 30, 35]. Our crucial
difference from this approach involves the realization that, at inference-time, the neural network’s filter weights are
fixed; therefore, if we can propagate all of our multipliers on-chip instead of time-multiplexing them, then each weight
multiplication reduces to a fixed shifter, where the shifter is tied to the specific filter weight. However, this is equivalent
to a simple rewiring, which takes no area at all. Moreover, there is no accuracy tradeoff to this calculation, because the
result of rewiring is equivalent to the result of a fixed-function shifter, which is in turn equivalent to the result of a
binary shifter set to a specific value at runtime.

Because we rewire instead of using multipliers, our area overhead for each element multiplication is nonexistent, so
we can constant propagate all of our values to happen at the same time. The area cost for our convolution is solely
due to the reduction of these elements into one output: this requires 𝑅𝑆𝐶 − 1 adders, which may further simplify (i.e.,
addition of two right-shifted elements would require only a 7-bit adder instead of an 8-bit one).

To prevent overflow, we need an expanding adder tree such that our first layer is eight bits, our second layer is nine
bits, and so on. Each layer halves the number of partial sums that need to be reduced, which halves the number of
adders of that size required. We have RSC computations in each partial sum reduction to a single output 𝑂𝑝𝑞𝑚 ; our
number of layers is the number of times we have to halve RSC before reducing to a single output, which is 𝑙𝑜𝑔2 (𝑅𝑆𝐶).
We have 𝑅𝑆𝐶

2 8-bit additions in the first layer to add all RSC elements together; in the successive layer we need 𝑅𝑆𝐶
4

9-bit additions, and this number halves with each layer. Thus, our adder tree’s area is proportional to the following
formula:

𝑙𝑜𝑔2 (𝑅𝑆𝐶 )∑︁
𝑖=0

(𝑅𝑆𝐶 · 2−(1+𝑖 ) ) (8+i)-bit adders.

If we reduce our activation quantization to n-bits, this can have a significant saving in area and energy by reducing
the size of our adders; we analyze this tradeoff in Section 5.2.
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Fig. 3. The four stages of multiplication compression. We begin with a full n-bit multiplier, which involves𝑂 (𝑛2 ) full adders and
𝑂 (𝑛) half-adders. A traditional accelerator time-multiplexes this multiplier, with the weights being refreshed for each compute. Stage
two involves converting the weights to the nearest power-of-two, which incurs some accuracy reduction. Stage three replaces our
multiplier with a bit shifter, which uses𝑂 (𝑛) multiplexers. Shift NPUs time-multiplex this shifter in the same way that traditional
accelerators time-multiplex their multipliers. Finally, stage 4 is our novel approach: by constant-propagating all shifters on-chip and
hardening their weight values, we convert each shifter into a simple rewiring, which uses no logic.

The large number of adders used in our constant-propagated design also influenced our choice of algorithms: another
commonly used quantization scheme for neural networks is additive-power-of-two or APOT weights, where each
weight is represented as an addition of several powers of two to smooth the values. Each power of two inside of the
weight would be computed as a separate input rewiring in our design, which corresponds to an extra full-adder; thus,
using APOT with two sub-elements for each weight would double the size of the design, while three sub-elements
would triple it. Given the near-SOTA accuracy for Po2 quantization, we elected not to utilize APOT for this design.

In total we have 𝑃𝑄𝑀 adder-trees for each layer, where the formula for the adder-trees’ area is given above. The
total number of elements is large, but as Table 4 shows, most adder-trees are fewer than a hundred microns and several
hundred microns at maximum; thus, we will be able to fit our convolution on-chip for a carefully chosen model and
pruning.

3.2 Batch Normalization

The second main computation in neural networks is batch normalization, which does a per-channel normalization of
the inputs:

𝑏𝑎𝑡𝑐ℎ𝑛𝑜𝑟𝑚(𝑥𝑖 ) = 𝛾
©­­«
𝑥𝑖 − 𝜇𝑏√︃
𝜎2
𝑏
+ 𝜖

ª®®¬ + 𝛽

where 𝛾 and 𝛽 are learned scale and shift-parameters and 𝜇𝑏 , 𝜎𝑏 are the computed batch mean and variance, respectively.
To compute these means and variances would require per-element subtraction, multiplication, and division, which
would incur heavy area and power costs when performed in either a constant-propagated or time-multiplexed manner.
However, because our chip is only used for inference, the mean and variance are not actually computed but are used
from stored running-buffers, which stay constant; thus, we can fold the weights into the convolution:
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𝑏𝑎𝑡𝑐ℎ𝑛𝑜𝑟𝑚𝑖𝑛𝑓 (𝑥𝑖 ) = 𝛾
©­­«
(𝑊𝑥𝑖 ) − 𝜇𝑏√︃

𝜎2
𝑏
+ 𝜖

ª®®¬ + 𝛽

=

(
𝛾𝑊

√
𝜎2 + 𝜖

)
𝑥𝑖 +

(
𝛽 − 𝛾𝜇

√
𝜎2 + 𝜖

)
which is the same as a biased convolution operation. PikeLPN [24] quantizes this batch normalization by quantizing

𝑠 = 𝑄

(
𝛾√
𝜎2+𝜖

)
and 𝑏 = 𝑄 (𝛽) −𝑄

(
𝛾𝜇√
𝜎2+𝜖

)
and writes the batch normalization as 𝑏𝑎𝑡𝑐ℎ𝑛𝑜𝑟𝑚(𝑥) = 𝑥 ∗ 𝑠 − 𝑏, with the

ability to fold the quantized batch norm into the convolution at runtime. Our quantization augments this approach with
the additional constraint that our weights need to be quantized to Po2; therefore, we quantize all variables 𝛾, 𝛽, 𝜎𝑏 , 𝜇𝑏 to
fixed-point and additionally quantize 𝛾 and

√
𝜎2 + 𝜖 to a Po2 representation. Since all weights in W are Po2, we can

combine them together to get a single shifting convolution that corresponds to the combined variance-normalized
convolution, and then add a fixed-point bias term to offset the mean. This requires one additional adder for each output
term, or 𝑃𝑄𝑀 additional adders per layer.

3.3 ReLU

Finally, we focus on our activation function. Several activation functions are commonly used in neural networks,
including sigmoid, softmax, leaky ReLU, and Swish; we focus on ReLU, as it is the most common function and the
cheapest to implement in hardware. ReLU keeps the value of its input if it is positive, otherwise it clamps it to zero:

𝑅𝑒𝐿𝑈 (𝑥) =
{

𝑥 if x > 0
0 if x ≤ 0

With a signed fixed-point input, we can perform this in hardware by inverting the most significant bit and anding it
with the rest of the bits. Because this operation only requires two gates, it is very small in hardware, requiring only 2
cells and 0.1 𝜇m2 area in Asap 7nm; it must be performed once for each output, or 𝑃𝑄𝑀 times per layer.

3.4 Flexible Classification from Final Layer

While our feature extractor is compressed and hardened on-chip, the last layer(s) of neural networks is a classifier,
which is a fully-connected layer performing matrix-vector multiplication to compute the class logits for our input. If the
feature extractor has 𝑘𝑓 𝑒 outputs and can be written as a vector 𝑋𝑘𝑓 𝑒 and our network is a single matrix multiplication
A that outputs k classes, this is an𝑚𝑐 matrix multiplication

𝑂𝑚 = 𝐴𝑚×𝑐𝑋𝑐 .

To maintain flexibility and transfer learning capability, it is crucial that this layer is performed on an on-chip NPU,
where the weights are kept in a local buffer and can be streamed from the processor if the user wants to perform a
different task.

Leaving this last layer on-chip incurs negligible cost. While we explore the specific cycle count for MobileNetV2 in
Section 5.2, the fact that this is a relatively small matrix-vector multiplication means we can perform this operation
without incurring heavy area or latency costs. For instance, in MobileNetV2 the classification head is a 1000-by-1280
weight matrix multiplying a 1280-by-1 vector, which makes up only 0.4% of the MACs performed across all of the
feature extractor layers. Our design involves our feature extractor activations being fed directly into the NPU, allowing
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for an output-stationary dataflow with a cycle count proportional to k. In particular, we note in Section 5 that this cycle
count is often comparable to the number of cycles required to load our input image data onto the chip, and thus by using
pipelining we entirely amortize this cost. Both the weights and the inputs to the NPU are stored in local buffers, where
the input buffer is the intermediate buffer used to store our feature extractor activations and the weights buffer is a
𝑘 ×𝑘𝑓 𝑒 element buffer that can also be accessed from the main memory bus. This allows the user to stream new transfer
learning weights onto the chip, which are stored locally and allow the chip to perform the new image classification
task. After we perform this final matrix multiplication, we gather the final output classification probabilities and stream
them off-chip.

3.5 Tradeoffs of Hardwired Accelerators

Limited academic exploration of hardened CNN accelerators can largely be attributed to fears about the drawbacks of
hardening a chip design, especially given the slow development time of ASICs and quick development time of new
models. However, many of the initial drawbacks to the approach are not limiting:

3.5.1 The design is size-limited. Users who are interested in achieving accuracy at the cost of any other variable
might be dissuaded by the limitation of fitting the network entirely on-chip. ResNet-50 achieves maximal classification
accuracy among the CNN models, but even compressed using our Po2-rewiring scheme its sheer number of elements
and layers greatly exceeds reticle limit. However, we argue that ResNet is not necessary to achieve good accuracy;
Google’s MobileNetV2 and V3 architectures both achieve within 5% accuracy with hundreds of times fewer operations,
and remain the standard among lightweight models while also being competitive among full-scale models. Thus, the
size-limitation to run lightweight models should not pose a downside for most use cases.

3.5.2 The design is architecture-specific. Another concern is that by creating hardware that only encodes a specific
model, which is likely to become outdated by the time the chip is manufactured. However, we note that bothMobileNetV2
and MobileNetV3 have been around since 2019 and remain along the size-accuracy pareto frontier. We believe that the
long duration of these models eases these concerns and allows for the chip’s production without obsolescence factors.

3.5.3 Quantization and sparsity required for sufficient compression. Finally, users might be concerned about the
utilization of both Po2 quantization and sparsity in our model design. In particular, they might be concerned that Po2
quantized models cannot achieve SOTA for their use-cases, while other critics might argue that since the benefits
of sparsity are so persuasive, there will be a race to continually sparsify the model, preventing it from ever being
hardened for production. To the first case, we state that Po2 eight-bit quantized models have minimal accuracy loss
when retrained on the relevant dataset [8], and we demonstrate in Section 5 that this also applies to transfer learning
situations. To the second case, we acknowledge that our sparsity results may be surpassed; however, we claim that
neural networks can only become so sparse before incurring an unacceptable accuracy loss, and that future attempts at
pruning will not lead to instability in the specific die mask used long-term.

4 Training the Model

4.1 Neural Network Architecture Selection

To utilize our chip properly, we first need to carefully choose our model; using too large a neural network would prevent
us from being able to harden the feature extractor on the chip, while using a small or obsolete model would limit our
accuracy and use-cases. We performed an analysis of different popular CNN models, such as the MobileNet, VGGNet,
Manuscript submitted to ACM
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Fig. 4. Neural network architecture size when quantized to Q3.5 and compressed using our hardcoding procedure, compared to top-1
accuracy in pretrained model zoo. The MobileNet family gives a good tradeoff of chip size without sacrificing accuracy.

and ResNet families, and plotted their feature extractor size when hardened on ASIC against their top-1 accuracy from
the pretrained model zoo (Figure 4).

As we can see, there is a tradeoff between size and accuracy that prevents us from hardening ResNet-50, a very
deep and dense model, as its hardened size is far above the reticle limit. However, the MobileNet families achieve
high accuracies while being orders of magnitude smaller than ResNet, making them a good choice for our analysis.
In particular, MobileNetV2 [29] is conceptually easy to translate to hardware, as it consists only of convolutional
layers, batch normalization, and ReLU activations while still achieving top-1 accuracy similar to VGG-19. While
MobileNetV3-large achieves better accuracy than V2, its usage of Hardsigmoid and Hardswish activations requires
lookup tables instead of the simple invert-and-and operation for ReLU, increasing both model complexity and area,
such that MobileNetV2 remains the best candidate for this approach.
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4.2 Quantization and Secondary Sparsification

For a given neural network, there are a variety of quantization approaches, including INQ [37], ABC-Net [20], and
LogNN [21], which take different approaches to compression and training regimes. Our hardware accelerator requires a
Po2-weights compression with minimal encoding of each multiplication to a single binary shift to minimize adders,
while quantizing our activations allows our adders to have lower bitwidths; thus, we used DeepShift [8] as it provides
all of these functionalities.

Existing research has shown that we can perform weight-Po2 quantization on Resnets and VGGNets with minimal
Imagenet top-1 accuracy loss, and on MobileNetV2 with minimal CIFAR-10 top-1 accuracy loss [8]. We begin by
quantizing pretrained MobileNetV2 to verify that the model’s Imagenet top-1 accuracy loss is minimal. We also quantize
our inputs to fixed-point implementation to fit on-chip; we assess accuracy for different input bitwidths. Because our
weight shifting corresponds to input rewiring, there is no hardware savings from reducing our weight bitwidth to 5
bits as performed in DeepShift. Therefore, instead of reducing our weight bitwidth, we keep this value equal to the
value of our input bitwidth; for example, an input quantization of 3 integer bits and 5 fraction bits, represented Q3.5,
would have a weight bitwidth of 8. Our default quantization was Q3.5 as performed in DeepShift [8], and all learning
parameters were kept the same between quantizations. Our fully classified layer was kept at FP32, as this will be run at
full-precision on an on-chip NPU.

An additional, novel operation to DeepShift’s experimental paradigm involved quantizing our batch normalization
layers. As shown in Section 3.2, our accelerator involves folding the batch normalization into the convolution operation,
which requires the batchnorm layer’s running mean and shift variables to be fixed-point quantized and the running
mean and scale variables to be Po2 fixed-point quantized. We run our analysis with these quantizations, where the Po2
bitwidths correspond to the weight bitwidths in the convolutional layers and the fixed-point quantizations correspond
to the input bitwidths into the convolution.

After identifying the bitwidth-models within our accuracy threshold, we use sparsity as a secondary compression
technique, and assess the amount of pruning that each model can achieve without severely reducing the accuracy. In
particular, while we will be folding our batch normalization layers into the convolution when hardening our inference
engine, it is sufficient to prune our convolutional layers to achieve this sparsity savings. Because our convolution weights
become

(
𝛾𝑊√
𝜎2+𝜖

)
after folding, the batch-normalization factor 𝑠 = 𝛾√

𝜎2+𝜖
is a scalar multiplier onto our filter weights,

and does not change which weights are smallest and should be pruned. Thus, we can prune just our convolutional
layers and fold the batch normalization at runtime without consequences.

Because MobileNetV2’s depthwise separable convolutions incur minimal area costs (Table 2), we do not sparsify
these layers nor the first layer of our model. We begin pruning from the previous, quantized model version and train at
an initial learning rate of 0.001 decreasing over time, with monotonically increasing sparsity.

5 Evaluation

We first analyze the statistics of our accelerator, breaking down the area, latency, and power of the chip’s feature
extractor, classifier layer, and on-chip buffers.

Methodology:We use Cadence Genus Synthesis Version 19.10-p002_1 with the Asap7nm PDK, mapping to gate-level
logic and optimizing. Our last-layer NPU is based on SCALE-Sim’s [28] verilog code. We use MobileNetV2 for our
model, which takes in images of 224 × 224 × 3 and has a feature extractor output size of 1280, which it classifies using a
1000 × 1280 matrix multiplication. We quantize MobileNetV2 to Q3.5 with Po2 weights, and train the model to 60%
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sparsity with minimal accuracy loss (Section 5.2). We run SCALE-Sim in GEMM format for different NPU sizes and
show the speedup factor for 2:4 weight encoding. Finally, we assess the flexibility of our model by employing transfer
learning on other image datasets and comparing the results to transfer learning with the original MobileNetV2.

5.1 Main Result: Area, Throughput, and Latency

Table 2. Sub-component Area For Pruned MobileNetV2

Layer name Size (𝑚𝑚2)
Feature extractor 219
1024x1 on-chip NPU 0.24
On-chip buffers 0.42
Total (1 accelerator) 220
Total (4 accelerators) 880

Detailed area breakdown is shown in Table 2. Using 60% sparsity, our area for a Q3.5 feature extractor is 219 mm2.
On-chip buffers and our last layer NPU take up less than 0.5 mm2. Running SCALE-Sim [28] with a general matrix
multiplication of 1000x1x1280 MNK output-stationary format, our minimum achievable cycle count is 2278 cycles on a
1000x1 NPU array. Using SCALE-Sim’s provided systolic array code, our area costs for this unit is 0.24 mm2. Thus, each
individual accelerator is 220 mm2. We can duplicate our accelerator four times before reaching reticle limit, for a total
chip size of 880 mm2.

In contrast, HaShiFix does not have this last layer NPU, and thus does not require either the multiplier cost or the
1280-element buffer used to separate the feature extractor from the classifier unit. However, as these are relatively small
area costs compared to the size of our accelerator, our HaShiFix area is not significantly different from HaShiFlex.

Table 3. Comparison against SOTA Accelerators

Design Throughput (im/s) Latency (𝜇𝑠) Area (mm2)
HaShiFlex 1.21 * 106 3.3 880
HaShiFix 4.0 * 106 0.25 550
H100 GPU ≈ 60, 000 814
Google TPU v4 100 ≈ 2, 600 600
GraphCore M2000 ≈ 10, 000 520 4 ×823

Table 3 shows an overall breakdown of throughput and latency for HaShiFlex and HashiFix derived from our
methodology. Overall, we find our flexible HaShiFlex approach able to finish full forward passes through all layers on
millions of images per second, an improvement of roughly 20.2× in throughput over fully programmable GPU solutions.
In situations where no post-deployment adaptability is needed, this advantage increases to 67× for the fully-fixed
weight HaShiFix solution.

Comparative Analysis: Numbers are hard to find for MobileNetV2 throughput and inference for datacenter TPUs
and GPUs, but all metrics underperform by several orders of magnitude. Google’s Edge TPU achieves 2.6 ms latency
for unpruned eight-bit fixed-point MobileNetV2 [7], which is 800x slower than our design. Running on a server TPU,
we found inference throughput of 100 FPS for an INT8 MobileNetV2 with a batch-size of 32, which is 12000x below
our design. An NVIDIA H200 GPU can run ResNet-50v1.5 at INT8 at 65,045 images/sec [26]; while we cannot directly
compare statistics for MobileNetV2, this indicates orders of magnitude less volume. Similarly, the GraphCore IPU-M2000
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can achieve 0.52 ms latency and 9,404 images/sec throughput on Q16.16 ResNet-50v1.5 with configurations tuned
specifically to optimize these parameters; even accounting for latency reduction for fixed-point 8-bit and MobileNet,
both our throughput and latency perform 2 orders of magnitude better. Jiang et al. [14] created an FPGA accelerator
specifically for Mobilenet-V2, which achieved 1910 FPS; our work achieves a 600x better framerate. On MLPerf, a
Qualcomm Hexagon (TM) NPU achieved 2,036.56 images/sec on MobileNetV4 [22], which is again 600x less volume.
The smallest reported image classification latency for a MobileNet on MLPerf [23] was Qualcomm’s Snapdragon 8
Gen 3 Mobile HDK, which achieved 190 𝜇𝑠 on MobileNetV1 0.25x, a much smaller model; even so, their latency is
still 57x larger than ours. Given the existing limitations of reticle area and interconnect speeds, our design is limited
by memory bandwidth for a chip that only loads the image itself and outputs the final output; thus, it achieves the
maximum achievable throughput and minimum latency for CNN inference.

5.2 Efficiency Improvement Details

Because these bottom-line numbers can be difficult to understand in isolation, we now engage in a thorough explanation
of the source of the efficiency improvements.

• Our sparsity linearly impacts the size of our chip. For a chip of size 549 mm2, a sparsity factor of 𝑠 evaluates to a
chip of size 𝑎𝑖𝑛𝑑𝑖𝑣𝑖𝑑 = 549(1 − 𝑠).

• Our parallelization factor depends on chip size; given a reticle limit of 850 mm2, the amount of possible paral-
lelization is 𝑘 =

⌊
850

𝑎𝑖𝑛𝑑𝑖𝑣𝑖𝑑

⌋
.

• NVIDIA’s H100 GPU is 814mm2 and has an interconnect speed of 900 GB/s. Interconnect scales linearly with
area size, giving us interconnect speeds of 900 ∗ area

814 = 900 ∗ 𝑘∗𝑎𝑖𝑛𝑑𝑖𝑣𝑖𝑑
814 , but each accelerator can only access 1

𝑘
of

the memory bandwidth, giving each accelerator a memory bandwidth of 900
814𝑎𝑖𝑛𝑑𝑖𝑣𝑖𝑑 GB/s.

• Our chip operates at 1 GHz, limited by our NPU array; our feature extractor operates at a much slower speed,
but does not need to be clocked at the same speed. Our per-chip interconnect corresponds to 900

814𝑎𝑖𝑛𝑑𝑖𝑣𝑖𝑑 bytes
of data bus.

• For each run, an accelerator needs to load one image and store one 1000-length vector of probabilities off-chip.
Since our accelerator operates at Q3.5, we only need to load 8-bit image vectors, but our final classification
probabilities are FP32, requiring 32 bits. The amount of data through memory bandwidth is (2242 ∗ 3 + 1000 ∗ 8)
bytes per accelerator.

• Our NPU array requires 3300 cycles, regardless of sparsity or area sizes. Because our data input, feature extractor,
and NPU are pipelined, our maximum latency is determined by the larger of 3300 cycles and the number of
cycles to load our data. Below 65% sparsity, we are limited by NPU cycle count; above this sparsity, we are limited
by data loading.

• Our latency directly corresponds to our cycle count; for 3300 cycles, we achieve 3.3 𝜇 s latency.
• Our throughput is equal to our parallelization factor multiplied by our individual accelerator throughput, which
is 𝑘 109

𝑙
(Figure 5c). For 65% sparsity, we achieve 1.2 million images/sec. Our maximum throughput is at 69%

sparsity, where we achieve 1.24 million images/sec. Beyond this point, the effects of limited memory bandwidth
outweigh the benefits of parallelization, and both throughput and latency degrade.

In contrast, HaShiFix is not limited by the 3300 cycle count, but only by the time to load the data. Thus, we calculate
our cycles directly from parallelization and data load time, included in Figure 5c below. At 0% sparsity, we have the
maximum chip size allowing for the most memory bandwidth; 𝑎𝑖𝑛𝑑𝑖𝑣𝑖𝑑 = 549mm2, so our interconnect speed is 607
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GB/s. With a 607-byte bus devoted to a single accelerator loading (2242 ∗ 3 + 1000 ∗ 8) bytes of data, this only takes 250
cycles, allowing for a latency of 0.25𝜇𝑠 , 13 times lower than our HaShiFlex latency. Because we can’t parallelize, our
throughput becomes 109

250 = 4 million images/sec, almost four times higher than HaShiFlex’s design.

5.3 Impact of Model Compression

Given that our model is originally unpruned and only quantized to eight-bit, we assess the extent to which we can
compress our model along both quantization and sparsity axes, as well as the size of the model in each case.

Table 4. Hardened Convolution sizes (𝜇𝑚2) for different input bitwidths in Asap 7nm.

Convolution 5-bit 6-bit 7-bit 8-bit
3x3x3 27.3 (54.6%) 35.9 (71.8%) 43.5 (87%) 50.0
3x3 (pw) 1.0 (100.0%) 1.0 (100.0%) 1.0 (100.0%) 1.0
1x1x16 16.4 (55.8%) 21.0 (71.4%) 25.0 (85%) 29.4
1x1x32 33.3 (54.6%) 43.7 (71.6%) 50.0 (82%) 61.0
1x1x64 72.6 (57.6%) 88.2 (70.0%) 106.4 (84.4%) 126.0
1x1x320 362.9 (57.4%) 450.7 (71.2%) 543.2 (85.9%) 632.6
MAC Unit 16.8 (53.9%) 21.3 (68.3%) 25.9 (83.0%) 31.2

Table 5. MobileNetV2 Weight bit (WB) Po2Quantization and Input bit (IB) Quantization Versus Accuracy

Input Bitwidth Top-1 Accuracy (%) Top-5 Accuracy (%)
Original 72 90
WB 8, IB Q3.5 68 88
WB 7, IB Q3.4 66 87
WB 7, IB Q2.5 55 80
WB 6, IB Q3.3 56 80
WB 6, IB Q2.4 22 45
WB 5, IB Q3.2 0.23 1.1

Running our convolution modules in Genus with the Asap7 PDK, we get the area costs for an entire hardened
convolution unit (Table 4). The majority of our area costs are in pointwise convolutions, which are also our best
candidates for compression. Reducing our activations from 8-bit to 7-bit can provide area savings of 15%, while
compressing to five bits is roughly half the area cost. However, when running MobileNetV2 with different input
bitwidths, our accuracy degradation quickly becomes infeasible. Notably, our results degrade much more quickly than
in DeepShift [8] because we quantize our activations as well as our weights, as activation quantization is crucial for
reducing our adder bitwidths, while weight quantization (due to being simple rewiring) does not affect our area metrics.
We find a sharp accuracy decline between Q3.5 and Q3.4 quantizations and all other quantizations; in addition, only
Q3.5 is within a 5% accuracy threshold. Thus we use Q3.5 as our baseline quantization scheme.

Pruning is particularly beneficial for our chip, since sparsity level linearly decreases our area (Figure 5b). It is therefore
critical to identify the maximal amount of pruning possible before our accuracy decreases. Running incremental pruning
of 20%, with 30 layers of post-pruning retraining and with each pruning occurring on top of the previous fully-retrained
model, we find that we can prune to 60% before significantly degrading our accuracy. Running a secondary, more
fine-grained pruning of 3% incremental pruning with 10 epochs retraining from 60% to 69% sparsity threshold, we find
that our accuracy degrades quickly after reaching 60% sparsity, so we utilize this value for our hardwired design. This
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Fig. 5. Analysis of the effects of pruning on accuracy, area, and throughput. Accuracy analysis is taken from pruning our Q3.5
MobileNetV2 model with incremental sparsity of 20% and 30 epochs of retraining. Area analysis is taken from translating the resulting
sparse convolution modules into Genus with Asap7nm. Throughput analysis comes from Section 5.1 and depends on achievable
interconnect speed and parallelization capacity.

level of sparsity places us at 219 mm2, which allows us a four-times parallelization factor and corresponding throughput
increase.

In contrast, GPUs can only compress in a 2:4 weight compression strategy, which preserves two weights out of
every four elements, or a 50% compression. Systolic arrays in general are often not built to take advantage of the
small convolution sizes in MobileNetV2; TPU v4, for instance, is built around 128x128 systolic arrays and does not
dynamically resize them, meaning that the arrays are already underutilized for smaller pointwise convolutions such
as 1 × 1 × 24. However, when we run the layers in SCALE-Sim [28] on a 128-by-128 weight-stationary config file,
mirroring the TPU systolic arrays, we do find that the array can take advantage of 2:4 weight encoding. When we
compare the cycle counts for each layer of MobileNetV2 against the same layer when the inner dimension is halfsize,
𝑊𝑀× 𝑅𝑆𝐶

2 𝑋
𝑅𝑆𝐶
2 ×𝑃𝑄 compared to𝑊𝑀×𝑅𝑆𝐶𝑋𝑅𝑆𝐶×𝑃𝑄 , we find an average cycle count reduction to 83% of the original

cycle count across the different layers, resulting in 60% of the total cycles. Depending on the specific layer choice,
therefore, we can achieve linear savings on layers like 1x1x160 and 1x1x24, but fail to achieve cycle savings on badly
tiled layers such as 1x1x144 or 1x1x192. In general, we note that while neural networks can be carefully constructed to
be responsive to 2:4 weight encoding, the overall savings are often sublinear to the amount pruned.

In general, our hardware design is far more friendly to pruning than other accelerators: because pruning a weight
from a layer directly corresponds to removing its adder from the reduction tree, our hardware demonstrates benefits
when we prune to any amount. As we linearly reduce our area with sparsity, we can increasingly parallelize our
accelerator, with no drawbacks to latency since we continue to be compute-bound by our individual last-layer NPUs.

5.4 Post-Deployment Flexibility and Accuracy

In order to make our model competitive against other inference accelerators, it is crucial that we remain able to adapt
our feature extractor to different related image classification tasks. Without this capability, our accelerator’s use-cases
would be limited to baseline ImageNet classification; however, by retraining our last layer we can demonstrate successful
transfer learning onto new datasets.

In particular, we compare our quantized, sparsified version of MobileNetV2 to the original MobileNetV2 for accuracy
in transfer learning the CIFAR-10 and CIFAR-100 datasets. We note, crucially, that HaShiFix has a hardened classifier
layer, making it impossible to perform transfer learning when the task is different from ImageNet; HaShiFlex’s last
layer flexibility allows it to be useful across a much broader range of tasks.
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Fig. 6. Transfer Learning Accuracy Across Image Classification Datasets. All models are MobileNetV2 with fixed input dimension and
frozen except for the last layer. Original is pretrained from model zoo, Quantized is our 8-bit Po2 MobileNetV2 without sparsity, and
Sparse is pruned to 60% sparsity.

Our analysis is performed on the original FP32 MobileNetV2, the Q3.5 HaShiFlex model without pruning, and the
Q3.5 HaShiFlex model pruned to 60% sparsity. The last layer is kept at FP32 precision and fully programmable, while all
other layers are frozen. We chose Flowers102 [25], OxfordPets [27], and Food101 [1] as three representative datasets of
transfer learning regimes, with high input resolution that benefit strongly from CNN’s feature extraction capabilities.
In addition, we included CIFAR10 and CIFAR100 [16] as Transfer Learning regimes, since their low resolution can
demonstrate the limits of nonresizable neural networks. We retrained our models for 20 epochs with an initial learning
rate of 0.01 and a step size of 5 epochs.

We see that our hardened model maintains sufficient flexibility in its last layer to learn new image classification
tasks. All three variants suffer significantly for CIFAR10 and CIFAR100, since these are only 32-by-32 pixel images and
our accelerator can only work with 224-by-224 inputs; thus, rescaling the image to this size causes most learned spatial
features to be rendered useless. However, we believe that there are few cases when images will need to be processed at
such low resolutions, and our datasets Oxford Pets and Stanford Dogs occur in variable image sizes, demonstrating that
our network is still effective at learning from downsampled images.

Thus, we can see that our accelerator achieves throughput speedups of 400-600 relative to other hardware, with
latency reduction on the order of 1000x. This makes it an interesting alternative for high-throughput and low-latency
inference environments.

6 Related Work

6.1 Shifter-Based Hardware Accelerators

In 2017 Godovskiy and Rigazio introduced ShiftCNN [9], which proposed increasing hardware computational efficiency
by using power-of-two weights in order to remove the multipliers and replace themwith shifters. Furthermore, ShiftCNN
employed aggressive post-training quantization that enabled pre-computation of all possible terms in the output tensor
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based on the weights. Although this work was never formally peer reviewed, we include it because it had a large
influence on the remaining works in this section.

Hsieh et al. propose a multiplier-less CNN accelerator [11] based around programmable RAM-based lookup tables
whose sizes are limited by using a custom 4-bit quantization format called Signed Digit 4 (SD4). Beyond post-training
quantization, the authors developed several techniques to aid in the challenges of in-training quantization, including
compensating for gradient deltas that were notably smaller than the SD4 format’s range would encode.

Song et al. propose a “universal shift” CNN accelerator [30] based on 8-bit activations and 4-bit power-of-two weights
using lookup tables. Training is accomplished using shifted representation in-training, with post-training quantization.

Xu et al. propose a non-uniform codebook quantization using Huffman encoding [35] that can be implemented via
lookup tables. They accelerate this pattern using a hierarchical systolic array of 14x14 PEs, where each PE consists of a
5-element 1D systolic shifter.
6.2 Multiplication-Free Neural Networks

Inspired by hardware accelerator efficiency gains, a category of work looks to leverage those gains by exposing the lack
of multiplication operation directly to the neural network.

ShiftNet [32] described CNN convolutions by enumerating all the possible “shift matrices” that describe the shift
directions of a layer. This allowed all multiplications to be replaced with pointwise memory transfers. Unfortunately,
this made memory bandwidth a bottleneck. The Sparse Shift Layer [5] attempts to reduce this by eliminating ineffectual
shifts, particularly when paired with quantization.

DeepShift [8] is a software-only neural network that uses shift-based techniques directly in the architecture of the
layers. Additional contributions included reducing the number of shifts in a convolutional layer from ShiftCNN’s 2-3
to 1, and extending the technique to linear layers. Additionally, DeepShift demonstrated that training power-of-two
weights from scratch was possible, in addition to post-training quantization.

ShiftAddNet [36] uses separate shift and add layers, and demonstrated that the anchor-weight phenomenon can
exist in shifting layers as well as traditional multiplied weights. AddressNet [10] specializes these into three primitives
called “channel shift,” “address shift,” and “shortcut shift” that have efficient GPU implementations.

In contrast, AdderNet [2] demonstrated that shifts could be removed altogether by maximizing emphasis on addition
operations, replacing the convolutional dot-product with calculation of the ℓ1 distance between filter and input.

PikeLPN [24] is a network based around the insight that non-quantized elementwise operations such as activation
functions become the bottleneck. It proposes a technique called QuantNorm to quantize batch norm layers that we
leverage and expand upon.

6.3 Shifter-BasedQuantization

Finally, we discuss a survey of methods aimed at improving accuracy for power-of-two-based quantization accuracy. We
include this work as an overview of techniques that demonstrate the feasibility of our approach, and could be combined
with our insights as future work.

DenseShift [18] combines power-of-two quantization with sparse pruning by proposing zero-free shifting. The
resulting weights are densely encoded without zeros (which is technically not a power-of-two). Accuracy is recovered
using a sign-scale decomposition technique during training.

JumpingShift [12] proposes an alternative scheme called Jumping Logic Quantization wherein a new coefficient is
added to power-of-2 exponents, effectively “jumping” over regions in the quantization range, and also demonstrate
removing zeros to increase shifter utilization without loss of accuracy.
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Global sign-based network quantization (GSNQ) [13] assigns different ranges based on the sign bit of the weights
during training. The authors demonstrate competitively high accuracy by retraining CNNs both inter-layer and
intra-layer levels, effectively allowing later layers to compensate for pruned damage to earlier layers.

S3 [19] observes that shift-based networks are highly sensitive to weight initialization during training, and can
further suffer from vanishing gradients or sign-bit freezing due to short bit widths. They propose a sign-sparse-shift
decomposition representation that improves learning rate and decreases initialization sensitivity.

7 Discussion

Our novel approach to full constant propagation of large neural networks allows us to reduce our area costs in significant
ways. Crucially, because all weights exist on-chip, we can utilize power-of-two representation to convert each necessary
multiplication into a fixed bit shifter and thus ultimately to rewiring. Thus, our area costs only come from the adder
trees necessary for partial sum accumulation of outputs, and can fit in 220 mm2 for a lightweight, sparse network such
as sparsified MobileNetV2. Our approach allows for complete input multicasting and reuse, and eliminates the need to
transfer any data on- or off-chip besides the input data, thus achieving the theoretical maximum inference speed on
hardware.

Because of the state-of-the-art accuracy results of MobileNets even when these models are sparse, we are able to
reduce our inference engine to fit comfortably on-chip and to allow for easy parallelization for increased throughput.
Unlike GPUs and TPUs, which approach the reticle limit and still don’t achieve relatively high model throughput, our
design opens the possibility for chiplets that compute different tasks with the same input image. In particular, future
work encourages us to focus on multi-task learning encoders, as a hardened encoder can run a variety of different tasks
without much area increase from different decoder heads, greatly increasing flexibility.

Other possible avenues for future exploration include hardening different model architectures, such as transformers,
as well as increasing task flexibility by embedding Low-Rank Adaptation matrices into the hardened convolutional
layers. For actual chip production, there are still open questions to resolve, including making the chip robust to glitches.
By providing our results as well as our torch-to-HDL libraries, we hope to foster community discussion and adoption.
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