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ABSTRACT

Disentangled representations offer a path to sample-efficient and generalizable
reinforcement learning (RL) from rich visual observations by exploiting the com-
positional structure of tasks in robotics or embodied AI—such as goal reaching
or object manipulation—requiring agents to learn the ‘rules’ of complex environ-
ments. However, disentanglement is poorly defined for sequential data and strug-
gles to uncover factors underlying task dynamics. Current approaches using self-
supervised learning (SSL) for disentanglement in RL promote invariance to visual
perturbations or spurious correlations. We propose 2 novel SSL representation
learning objectives using the language of Factored MDPs that encourage indepen-
dence between state-factors through covariance constraints and partially masked
forward dynamics, given only visual observations. Our learned representations
are evaluated on 3 exploration heavy and multi-factor environments (DoorKey
6x6, FourRooms and BlockedUnlockPickup) demonstrating strong feature disen-
tanglement, compositionality and greater policy generalization.

1 INTRODUCTION

Reinforcement learning (RL) is formalized by a closed-loop agent-environment interaction, where
an agent perceives observations, selects optimal actions using its policy, and receives reward feed-
back. Agents typically rely on high-dimensional observations from general-purpose sensors to in-
teract with their environment, which directly influences data distributions used for learning policies.
However, not all visual representations are equally useful for decision making. The distribution of
rich observations can be reduced to a set of task-relevant causal variables or ‘factors’. For instance,
all 1364 positions on a chess-board with any visual variation can be reduced to 64 factors represent-
ing the piece on every (x, y) square. Rather than making decisions using an appropriately distilled
representation, the agent is forced to use a problem-agnostic sensor.

Black Queen: (8,4)
White Queen: (1,4)
Black King: (8,5)
White King: (1,5)
Black Bishop: (8,3)

. . .

Figure 1: RL agents cannot control the representations provided to them and not all representations
are useful for decision making. Though large distributions of rich visual observations can be reduced
to a set of causal factors useful for decision making.
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Disentanglement attempts to tackle this by recovering distilled representations from feature-rich ob-
servations, where each component captures factors that change independently of one another and
are relevant to the target task. Within RL, these such representations could capture causal factors
governing transition or reward dynamics of a task, which policy learning algorithms can exploit
for more sample-efficient learning, more generalized extrapolation to out-of-distributions tasks gov-
erned by similar factors or generalized interpolations to variations of factors within a target task.
Thus, disentangled representations are crucial for consistently extracting the most-relevant informa-
tion for tasks in visual RL, where an agents’ data distributions are feature-rich and continuously
shifting based on exploration of the environment. focus on a narrow set of high-reward states Tra-
ditional disentanglement metrics, however, are non-conducive to RL. Factors to recover in RL are
often unknown a-priori or task-dependent (non-global). The agent’s action history introduces non-
stationarity/correlation to the distribution of factors i.e. the data distribution is no longer i.i.d. and
dependent on an evolving policy. Also, as policy learning evolves, data distributions gradually skew
towards a subset of high-reward states. This makes disentanglement ill-defined and challenging
in RL, with practitioners often pre-defining desirable factors Dunion et al. (2023a)Träuble et al.
(2021)Locatello et al. (2019). At the same time, useful disentanglement makes policy learning more
effective and requires the right level of abstraction or information removal, delicately balancing
representation learning with policy learning Dunion et al. (2023b). Remove too little and noise ir-
relevant to the task is preserved; remove too much and the representation cannot accurately capture
environment dynamics. This underscores critical challenges for disentanglement in RL:

• How can we extract task-relevant factors not previously specified from visual observations?
• To what extent can such factors generalize across tasks?
• What is the optimal degree of information to discard when learning useful abstractions?

Most related works learning disentangled representations for RL target invariance to visual distri-
bution shifts and spuriously correlated features, or decompose environment rewards across factors
for approximately factored value functions. We focus on uncovering independent factors governing
dynamics using disentanglement, and turn to factored MDP definitions of sparse inter-dependence.
Both proposed approaches leverage self-supervised learning (SSL) to motivate disentanglement,
given only visual observations with no assumptions on RL tasks, thereby eliminating reliance on
pre-defined factors. One method sparsifies the covariance between latent features, while the other
encourages consistent state transitions by applying a sparse mask that models inter-factor depen-
dence. To our knowledge, we are the first to approach disentanglement of visual observations using
SSL for RL by explicitly enforcing factored MDP constraints for transition dynamics. We evaluate
our learned representations on 3 MiniGrid environments (DoorKey-6x6, FourRooms and Blocke-
dUnlockPickup across 4 seeds), showing they align with factored MDP definitions for disentangle-
ment and [to be written...].

2 BACKGROUND

2.1 FACTORED MDPS & THE REPRESENTATION GAP

The disparity in RL performance between rich, high-dimensional observations and distilled expert
states induces a ‘representation gap’ Chandak et al. (2019); He et al. (2022); Allen (2023), where
the latter leads to 5 − 20× more sample-efficient policy learning Zhang et al. (2018). Bridging
the gap requires learning lower-dimensional representations that discard irrelevant information but
preserve enough to fully characterize state environment dynamics. Maćkiewicz & Ratajczak (1993);
Kingma & Welling (2022; 2019); Su & Wu (2018); Allen (2023). Rajeswaran et al. (2017) have also
found relative improvements using structured low-dimensional representations than entangled deep
network representations.

Our work adopts Factored Markov Decision-Process (F-MDP) definitions Boutilier et al. (1999);
Koller & Parr (2013); Higgins et al. (2016), where a standard MDP transition function on a a single
monolithic state (st) instead depends on a set of finite state-variables or factors (K) – modeled as
a dynamic Bayesian network Murphy (1998). This induces a factored representation with ‘focused
causes’, where changes to a factor st+1[i] are fully explained by a sparse subset of parent factors
ρ(st+1[i]) ∈ {st[j]} for j ∈ [1, k]. An F-MDP transition function follows (Eq1); as the maxi-
mum number of parent factors, P := max ρ(st+1[i]),∀i reduces relative to total number of factors
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(P << K) the representation becomes more factored – until it is disentangled i.e. ρ(st+1[i]) = st[i].
See Fig 2.

T (st+1 | at, st) =
K∏
i=1

T (st+1[i] | at, ρ(st+1[i])) (1)

Figure 2: Visualization of a factored and disentangled MDP with K factors. In this example, ρ(si)
are parent factors; ρ(s1) = {s1, s2} for factored and ρ(s1) = {s1} for disentangled representations

Figure 3: The representation gap (Allen, 2023) captures difference in policy learning observed be-
tween using raw visual observations and pre-distilled expert features – where the latter leads to faster
learning. Our methods hope to learn visual encoders ϕ whose latent representation bridges this gap

2.2 DISENTANGLED REPRESENTATIONS IN RL & OTHER DOMAINS

The pursuit of disentangled latent representations has been central across both model-based Oord
et al. (2018); Hafner et al. (2022) and model-free Dunion et al. (2023b;a); Anand et al. (2019)
policy learning frameworks, and is typically approached by minimizing mutual information between
latent variables through InfoNCE Oord et al. (2018) or Kullback–Leibler divergence losses. Similar
definitions of disentanglement have been used to separate static/factors for time series modeling
Fotiadis et al. (2023), leading to 33% smaller absolute error within/outside training distribution.

Other task-relevant abstractions, including object centric Feng & Magliacane (2023), graphical Bal-
aji et al. (2021) and mixture-of-expert Eigen et al. (2014) representations, have been explored as
alternatives to disentangled latent representations. However, these approaches assume prior knowl-
edge on factor inter-dependencies and object-level attributes or leverage specific architectures for
static factorization that may not be semantically related to dynamics.

2.3 SSL FOR DISENTANGLEMENT IN RL

The manifold hypothesis Meng et al. (2024) posits that high-dimensional data distributions (X (Θ))
lie on a lower-dimensional manifold, which is defined by a comparatively small set of intrinsic co-
ordinates (Θ). Manifold learning can recover these intrinsic coordinates, up to some transfomration
e.g. rotation, through self-supervised reconstruction: X−1X (Θ) = Θ Misra & van der Maaten
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(2019); Chen et al. (2020). For the problem setting of disentanglement in RL with visual observa-
tions, Θ represents causal factors (e.g. agent (x, y) or obstacle (x, y)) underlying rich-visual obser-
vation distributions and state dynamics. Thus our approach broadly aims to learn X−1 : X (Θ) → Θ
a function mapping feature-rich images to their disentangled causal factors.

Previous works in representation learning Burgess et al. (2018); Higgins et al. (2018); Wang et al.
(2021) show disentanglement improves generalization to visual changes for continuous control
– since color or lighting changes affect a fraction of latent factors with others preserving task-
relevant information. Oord et al. (2018) extracts useful representations from sequential high-
dimensional data by maximizing mutual information between embeddings of future time-steps and
auto-regressively predicting embeddings from a context vector — using the proposed InfoNCE loss.

Specifically within RL, works like Dunion et al. (2023a) introduced conditional independence (CI)
to disentangle spurious correlations between color and transition dynamics. Also, Dunion et al.
(2023b) proposed a self-supervised objective to separate non-stationary, agent-influenced features
from static ones, enhancing resilience to adversarial visual changes. However, the consistent advan-
tage offered by image augmentation invariance through SSL objectives in RL is being debated Li
et al. (2022). Most related to our work, AFaR Sodhani et al. (2023) enforces additive decomposition
of a state’s value V π(s) =

∑
V π
i (si) across learned factors using A2C loss without ground-truth

factor supervision. MoCoDA Pitis et al. (2022) achieves provable improvements in sample com-
plexity by leveraging either learned or pre-specified masks M(s, a), defining local inter-factor de-
pendencies over known entity-structured factors. These masks enable targeted sampling of counter-
factual transitions for unseen combinations of local factors. DARLA Higgins et al. (2017) attempts
policy generalization across visual domains by separating representation from policy learning; the
approach uses a β-VAE for unsupervised disentanglement of static generative factors (e.g. color,
objects, texture), learning factorized encodings that generalize across domains but do not account
for temporal or dynamic dependencies.

Overall, previous works achieve disentanglement through mutual-information, conditional mutual-
information, or contrastive learning. Generally, disentanglement is used to build invariance to pertur-
bations; though some works disentangle auxilliary value functions/masks supporting towards policy
generalization or sample-efficiency. Our methods align more strongly with Factored-MDP definition
of disentaglement by sparsifying inter-factor dependencies during latent state dynamics.

3 METHODOLOGY

Given a feature-rich visual observation, our proposed representation learning methods use self-
supervision to disentangle factors underlying state dynamics. Representation and policy learning
occur in parallel using an ImpalaCNN Espeholt et al. (2018) and Proximal Policy Learning (PPO)
Schulman et al. (2017), respectively. A batch of visual observations ({o1, ..., ot}) are encoded into
latent representations (ϕ : oi ∈ R3×H×W → zi ∈ Rk) then used for downstream policy learning
– where k defines the number of factors in the representation. To evaluate the degree of disentan-
glement and the policy compositionality/generalization offered by the learned representations, we
overview experimental setup and evaluation metrics in Section 4.

3.1 COVIK: COVARIANCE & INVERSE KINEMATICS

Following a Barlow Twins Zbontar et al. (2021) objective, this method attempts to minimize the
Frobenius Norm loss of the covariance matrix (C) across all pairs of latent embeddings of visual
observations zi := ϕ(oi), by bringing the matrix closer to identity (C ≈ I ∈ Rk×k). This motivates
learned factors to be statistically independent of one another within a batch.

To prevent representation collapse, where C = I, we utilize an inverse-kinematic network
(I(zi, zi+1) = âi) to predict the discrete action used to transition between successive latent states,
updated by a cross-entropy loss. This auxiliary objective motivates the inverse-kinematic network
ikθ to encode transition dynamics (T ) of the RL task, under Markov assumption, motivating dis-
entangled representations (zi) to also be relevant for policy learning. Additionally, a factor-specific
smoothness loss following Allen (2023) promotes focused effects by penalizing when multiple fac-
tors change together. We also allow the PPO A.1 Q-function loss to shape the representation zi. See
Fig. 4a and loss function in Eq2.
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(a) CovIK Method: disentanglement in ϕ(oi) is
motivated by aligning the covariance matrix (C)
between each pair of k factors with an identity
matrix (I ∈ Rk×k); mode collapse (C = I)
is prevented by decoding actions between succes-
sive state-pairs using an inverse-kinematics projec-
tor âi := ikθ(zi, zi+1)

(b) MaskedFD Method: disentanglement in ϕ(oi) is
motivated by sparsifying a learned mask M that de-
fines the subset of current state factors M(zi) used
to estimate factors in future latent states zi+1; mode
collapse is prevented by differentiating valid future
latent states (zi+1) from shuffled future latent states
( ˜zi+1)

Figure 4: Overview of proposed methods. A batch of sequential visual observations {o1, ..., ot} ∈
Rn are embedded to latent representations zi = ϕ(oi) ∈ Rk, k ≪ n with k factors.

3.2 MASKEDFD: MASKED FORWARD DYNAMICS

Following locally modular dynamics in MoCoDA Pitis et al. (2022), this method attempts factored
latent transitions (F : zagg[j], ai → ˆzi+1[j]) between aggregated latent features in the current latent
state (zagg[j] = M [zi] = Σmzi[m]Mj,m) and actions (ai) to the jth factor in the future latent state
( ˆzi+1[j]). A learned mask M ∈ [0, 1]k×k explicitly models inter-factor dependencies by controlling
the weightages of each parent factor as they are aggregated into zagg . A Frobenius Norm loss on
the learned mask (M ) enforces disentanglement following FactoredMDP (Eq 1) transitions.

To prevent representation collapse, where M = I, a binary discriminator network (D( ˆzi+1, zi+1) =
{0, 1}) predicts whether transitions are real ( ˆzi+1, zi+1) or shuffled ( ˆzi+1, ˜zi+1), updated by a cross-
entropy loss. This auxiliary objective on motivates the factor-wise representation ( ˆzi+1) to capture
identical information encoded directly in representation zi+1. We also allow the PPO A.1 Q-function
loss to shape the representation zi. See Fig. 4a and loss function in Eq3.

Lcovik = λcov

ρ
∑
i ̸=j

σ(Cij) + µ
∑
i

(1− σ(Cii))
2


+ λik CE(IK(ϕ(oi+1), ϕ(oi)), ai)

+ λdiff

(√
(ϕ(oi+1)− ϕ(oi))2 − d

) (2)

where C is covariance across factor pairs, d is a margin penalizing large factor changes, and CE is
the cross-entropy loss.

Lmaskfd = λmask

ρ
∑
i ̸=j

σ(Mij) + µ
∑
i

(1− σ(Mii))
2


+ λtrue CE(D(F (M [ϕ(oi)]), zi+1), 1)

+ λfalse CE(D(F (M [ϕ(oi)]), z̃i+1), 0)

(3)

where M is the learned mask capturing inter-factor dependence and CE is cross-entropy loss

3.3 BASELINES

As defined in 2.1, our encoder ϕ : oi → zi uses self-supervision to learn a disentangled representa-
tion (zi) that bridges the representation gap.
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To measure improvements from enforcing latent disentanglement, we learn PPO policies directly
on rich visual observations (oi). As an empirical upper-bound, we also learn PPO policies directly
on expert representations (z∗i ) that are disentangled by construction. To quantify benefits from self-
supervision, we design a supervised but factored baseline where d-dimensions of a latent represen-
tation ϕ(oi) are split across k factors, with each d

k subspace trained to predict a specific ground-truth
expert factor in z∗i ; this encourages modular disentanglement with supervision – gauging the benefits
of our self-supervised approach. Details on architecture design and hyperparameters can be found
in Appendix A.4 and A.5.

4 EXPERIMENTAL SETUP

4.1 REINFORCEMENT LEARNING TASKS

Figure 5: The learned representations and baselines are evaluated on 3 sparse-reward MiniGrid
environments i.e. FourRooms-19×19, DoorKey-6×6, BlockedUnlockPickup-6×10
Our learned representations and those of baseline methods are evaluated on 3 sparse-reward Min-
iGrid Chevalier-Boisvert et al. (2023) environments (Fig. 5). These environments have discrete
states and actions (turn left, turn right, forward) but exhibit compositional structure –requiring nav-
igation, object interaction (e.g. with keys, doors, obstacles), and conditional subtask execution –
making them ideal environments for the simplest forms of discrete factored representations. Each
environment is chosen for a specific evaluative purpose

• FourRooms: has the largest number of factors (13 with 2 agent pos, 1 agent direction, 2
goal pos, 2 × 4 wall gap pos) yet has the smallest state space i.e. ≈ 1, 400 states. Serves
as a standard baseline for recovering several factors with limited interdependence and for
sample-efficiency of learning disentangled representations

• DoorKey: has the least number of factors (9 with 2 agent pos, 1 agent direction, 2 goal
pos, 2 key pos, 1 door open, 1 door locked, 1 holding key) but has significantly larger
state space i.e. ≈ 20k states. Serves as a benchmark for direct generalization (without
fine-tuning) across starting states and scale to DoorKey-8×8

• BlockedUnlockPickup: has both a large number of factors (11 with DoorKey factors plus
2 obstacle pos) and the largest state space i.e. ≈ 1bn states. Serves as a challenging
benchmark for recovering multiple heavily interdependent factors; it also captures whether
the learned factors are compositional

4.2 COMPOSITIONALITY ACROSS NUMBER OF FACTORS

Given 2 tasks (T1 and T2) with identical objectives but a different number of underlying factors and
their inter-dependencies, specifically where T2 has ⊆ of factors in T1, a disentangled representation
should support compositional generalization across T1 and T2. For instance, in BlockedUnlock-
Pickup, disentangled representations learned across a curriculum of subgoals (e.g., pick up key, open
door) could be composed to solve longer-horizon tasks (e.g., pick up key and open door) without
retraining. Conversely, a policy trained on the full compound task in BlockedUnlockPickup could
zero-shot transfer to simpler subtasks (e.g., only pick up key) or to environments (e.g., DoorKey-
6 × 6) that omit some factors (2 factors for obstacle position). This transfer is possible because
disentangled representations isolate the dynamics of specific factors into subspaces of the global
latent representation, Rf ⊆ Rk, such that each factor’s dynamics can be interpreted and combined
independent of the other factors.

We evaluate (i) bottom-up compositionality: learning representations for a curriculum of tasks
(i.e., unblock door, pick up key, open door, reach goal) then evaluating zero-shot representation
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transfer to BlockedUnlockPickup; (ii) top-down compositionality: learning representations for
BlockedUnlockPickup then evaluating zero-shot policy transfer to sub-goals (i.e., unblock door,
pick up key, open door, reach goal); (iii) task generalization: learning representations for Blocke-
dUnlockPickup and transferring representation to DoorKey 6×6. We report the following metrics
to assess whether representations support localized credit assignment and generalize to subsets of
latent features:

• zero-shot success rate: the fraction of 20 episodes achieving inference-time task

• step-weighted reward: 1
T

∑T
t=1 rt, that accounts for solution efficiency, penalizing ineffi-

cient policies, with a 0− 1 reward

4.3 COMPOSITIONALITY ACROSS SCALE & STATE

Given 2 tasks (T1 and T2) that share identical number of factors and factor inter-dependencies, but
differ in observation scale (factors take on larger range of values) or the initial configuration of
those factors, a disentangled representation should generalize across T1 and T2. For example, a
disentangled representation for DoorKey-6×6 should transfer zero-shot to DoorKey-8×8 provided
the visual structure and factor semantics (e.g., position of agent, key, door, goal) are preserved.
Similarly in DoorKey-6× 6, once a disentangled representation captures the dynamics of individual
factors, it should generalize to out-of-distribution configurations of these factors (e.g., goal in a
novel location or agent starting behind a locked door) during test time. Given the factors and their
dynamics remain constant, the policy should be able to reuse learned factor-dynamics without having
to re-learn the task.

We evaluate (i) scale compositionality: learning representations for DoorKey-6 × 6 with padding
(for identical visual observation dimensions) then evaluating zero-shot policy transfer to DoorKey-
8 × 8; (ii) state compositionality: learning representations for DoorKey-6 × 6 then evaluating
zero-shot policy transfer to 500 randomly sampled initial factor configurations. Similar to composi-
tionality in Sec 4.2, we report zero-shot success rate and step-weighted reward to assess modularity
of learned disentangled representations.

4.4 DISENTANGLEMENT METRICS

Finally, to evaluate fundamental properties of latent representation disentanglement, we consider 2
metrics: Frobenius norm of feature correlation and the mutual information gap (MIG) Chen et al.
(2019).

Frobenius norm of feature correlation We measure Pearson correlation Pearson (1895), which
captures linear inter-feature dependence between variables, across all learned latent feature at-
tributes. We report the Frobenius Norm of this Pearson correlation matrix as a proxy for disen-
tanglement.

Mutual information gap (MIG) Mutual information, MI I(X;Y ), quantifies the information
shared between two random variables X and Y , quantifying the impact of knowing one variable on
reducing uncertainty about the other.

I(X;Y ) =
∑
x∈X

∑
y∈Y

p(x, y) log
p(x, y)

p(x)p(y)
(4)

By measuring how much the joint distribution p(x, y) of 2 variables (X ,Y ) differs from the product
of marginal distributions, p(x)p(y), MI captures dependence between them. MIG (Mutual Infor-
mation Gap) Eq5 correlates to disentanglement, by comparing the MI of the most and second-most
informative latent dimensions, averaged across all ground-truth (expert) factors. Thus, MIG assesses
the extent to which each ground-truth factor is independently captured by one independent/relevant
latent dimension. Refer to Carbonneau et al. (2022) for further detail.

MIG(X,Z) =
1

n

n∑
i=1

(
I(Xi;Z)−max

j ̸=i
I(Xj ;Z)

)
(5)
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