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Abstract

VR-teleoperated robots provide immersive 3D experi-
ences essential for executing complex remote tasks. How-
ever, rendering effects and 3D reconstruction quality sig-
nificantly impact the precise robot-environment interaction.
Due to hardware limitations, the depth data collected by the
robot are challenged by sparsity, noise, and instability. To
address this, we propose a real-time rendering and recon-
struction system that enhances visual perception and inter-
action precision through dense depth perception and tem-
porally consistent rendering in dynamic scenes. In partic-
ular, (1) We employ sensor-specific data augmentation that
aligns with the robot’s sensor input perceptual characteris-
tics. (2) We achieve real-time depth completion using an
algebraically-constrained, normalized CNN to propagate
depth and confidence through multi-scale multi-modal fu-
sion network regulated by a gradient matching loss. (3)
A spatial-temporal geometry-aware filter is implemented
to ensure temporally consistent point cloud reconstruction.
Rendered in Unity, our system reconstructs 3D point clouds
from robot camera feeds and uses consumer-grade VR hard-
ware to remotely control a Boston Dynamics Spot robot.
To our best knowledge, this is the first system for VR-
teleoperated robots that concurrently addresses data spar-
sity and dynamic scene stability, achieving real-time render-
ing speeds of 40 FPS. Our code, demo videos and trained
models are available at the project page.

1. Introduction

Robot teleoperation, i.e., the remote control of a robot by a
human operator, is essential for performing dangerous and
complex robotic tasks, especially in fields such as industrial
automation [1], deep space exploration [31], and nuclear
facility maintenance [12]. Unlike complex and expensive
fully autonomous systems, robot teleoperation based on
human-robot collaboration provides a more flexible and re-
liable solution that can enhance operational accuracy while
retaining the flexibility of human decision-making [26].
The rapid development of Virtual reality (VR) has provided
a breakthrough in robot teleoperation [7, 35, 39]. Unlike
traditional 2D interfaces, the immersive 3D experience pro-
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Figure 1. Overview. The Spot robot streams RGB images and
sparse depth data to the ROS server. We first complete depth maps
and estimate optical flow. Then the pose and optical flow are used
to refine completed depth maps for temporal consistency. Finally,
the reconstructed temporally consistent point clouds are rendered
to VR through Unity, enabling real-time VR teleoperation.

vided by VR can greatly enhance the operator’s spatial per-
ception, thereby improving the user experience and reduc-
ing cognitive load [36].

Despite significant progress in VR-teleoperated robots,
3D scene reconstruction and rendering still face huge chal-
lenges due to the limitations of robot hardware and the com-
plexity of constructing immersive environments in VR. This
results in low reconstruction quality and a poor user experi-
ence.

Due to the hardware limitations of robots, the depth data
from the robot sensors for 3D reconstruction faces problems
such as sparsity, noise, and instability [22, 25]. Although
offline depth completion [37, 38, 42, 49] has made signif-
icant progress, models on various datasets continue to in-
crease the complexity of the architecture in order to improve
accuracy, sacrificing inference speed and real-time perfor-
mance. Therefore, although these models have high accu-
racy and good generalization capabilities, they cannot meet
the real-time reconstruction and 3D scene rendering of VR-
teleoperated robots. On the other hand, although some mod-
els can provide real-time depth completion [9, 16, 19, 40],
a common challenge faced by these models is their lack of
generalization ability. Specifically, they perform poorly un-
der certain perceptual characteristics, especially when faced
with noisy and specially distributed robot depth data. As a
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result, their depth completion is not always reliable.
Since the robot and its surrounding environment are dy-

namic, maintaining the consistency and stability of the point
cloud in both spatiality and temporality between frames is
critical for high-quality visual rendering results and seam-
less transition of 3D-reconstructed scenes. Most exist-
ing methods focus on consistent video depth estimation
which render a consistent and dense 3D point cloud di-
rectly from RGB video [13, 15, 18, 21]. However, since
there is no sparse point cloud as input, they cannot gen-
erate metric depth. Recurrent architectures have also made
great progress in enforcing temporal consistency [6, 28, 46].
However, due to the quadratic scaling of the sequence input
for the image and the complexity of the architecture itself,
their inference speed is slow, which limits their application
scenarios.

To address these challenges, our paper introduces a
real-time depth completion and point cloud reconstruc-
tion system for VR-teleoperated robots. Compared to pre-
vious methods, our pipeline enables temporally consis-
tent reconstruction and rendering in real-time. The sys-
tem adapts Spot’s perceptual characteristics by applying
a Spot-collected sensor mask to generate training input
for the model. It achieves accurate depth completion us-
ing a lightweight RGB-guided multi-scale multi-modal fu-
sion network. It also ensures temporally consistent point
cloud reconstruction between frames by using a spatial-
temporal geometric awareness filter based on the pretrained
NeuFlow-v2 optical flow estimation model [47]. As shown
in Fig. 1, the Quest Pro consumer-grade VR hardware and
the Spot mobile robot from Boston Dynamics [8] teleoper-
ated by the GHOST [2] also provide an ideal testing plat-
form for our system.

2. Related Work
Depth Completion LiDAR [10] and SfM [32] generate
sparse depth data, prompting extensive research on depth
completion. Traditional approaches, such as IP-Basic [16],
combine image processing techniques to interpolate and re-
fine the sparse depth maps. And in recent years, we have
witnessed a rapid progresses in learning-based approaches.

Spatial propagation models use local information to
complete depth. Nconv [9] conducts normalized-CNNs to
jointly propagate confidence and depth. CSPN [4] utilizes
fixed kernel sizes for simultaneous pixel updates, while
CSPN++ [5] enhances this by integrating adaptive ker-
nel sizes. DSPN [22] and NLSPN [27] predict non-local
neighborhood by deformable convolutions and affinities.
TVPD [44] propagate affinitive neighbor in TPV spaces.
BPNet [37] incorporates content-dependent bilateral filter
at the earliest stage. These propagation-based methods are
suitable to be used as preprocessing for sparse depth [9, 37]
or as refinement mechanism [5, 27, 44]. Building on the

unguided Nconv [9], the first stage of our network propa-
gates sparse depth to construct a light-weight architecture
and accelerate convergence.

And in the fusion stage, the common way is to di-
rectly concatenate the depth map and RGB image [24].
RigNet [41] propose repetitive hourglass network to extract
and fuse features. RigNet++ [43] further apply semantic
information to guide the fusion. Deeplidar [29] integrates
surface normal and ACMNet [48] uses symmetric gated fu-
sion strategy. FseNet [3] applies continuous convolution on
3D points to fuse 3D geometry. Our approach utilize multi-
scale depth features from the previous resolution layer.

Although many models [37, 38, 49] are highly accu-
rate, these complex models cannot be used for real-time
3D scene reconstruction and VR teleoperated robots due to
their slow inference speed. Some models [19, 40] with real-
time inference speeds, however, face the problem of poor
generalization ability. We propose the sensor-specific data
augmentation to train lightweight but high-accurate models
specifically for robot sensors.

Consistent Video Depth Maintaining the consistency
and stability of the reconstructed scene is critical for VR-
based systems. Optical flow are widely used to ensure con-
sistency, both in refining video [17], and in generating video
depth estimation [15, 20, 23]. Li et al. [20] introduces opti-
cal flow-based alignment and occlusion handling to enforce
temporally consistency. CVD [23] take advantage of opti-
cal flow and structure-from-motion. RobustCVD [15] apply
geometry-aware depth filtering and spatially-varying depth
deformation model to refine the estimated depth video. Re-
currence models such as convolutional LSTMs [6, 28, 46]
have also made great progress due to their ability to cap-
ture spatial and temporal dependencies simultaneously, but
they have a more complex architecture and have longer in-
ference time. Shao et al. [33] reformulate the task into a
conditional generation problem and use Diffusion model to
generate consistent video depth. Khan et al. [14] maintain
a dynamicly-updated global point cloud to encourages con-
sistency. Due to the noisy and unstable nature of the robot
sensor and our need for real-time application, we denoise
and refine the completed video depth using spaial-temporal
geometry-aware filter based on real-time optical flow esti-
mation [47].

3. Method
3.1. Overview

As shown in Fig. 1, the Spot robot streams RGB images and
sparse depth data to the ROS server. Unity is then used to
render the temporally consistent point cloud reconstructed
by the pipeline shown in Fig. 2 into VR in real-time. Using
our GHOST [2] system, the user can seamlessly navigate
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Figure 2. Real-time consistent depth completion pipeline. (a) Sensor-specific data augmentation applies robot-collected sensor masks
to generate training inputs. (b) A lightweight, algebraically-constrained CNN performs efficient depth and confidence propagation via
multi-scale RGB-guided fusion. (c) Optical flow between frames are generated from pretrained real-time optical flow estimation model.
(d) A spatial-temporal geometry-aware filter ensures consistent point cloud reconstruction, enhancing dynamic scene rendering quality.

and manipulate the robot within a 3D virtual environment.
As shown in Fig. 2, an RGB-guided multi-modal fu-

sion network trained by sensor-specific data augmentation
is used to generate dense depth D̃ from sparse depth S and
RGB image I for each frame. A temporally consistent point
cloud is then reconstructed from frames of completed depth
based on optical flow estimation and the geometry-aware
filter.

3.2. VR-teleoperation

Our GHOST [2] system collects data from Spot’s sensors
for reconstruction pipeline and provides a flexible naviga-
tion and manipulation of a Boston Dynamics Spot robot.
For data collection, it uses a ROS-based pipeline to com-
presses depth data to overcome bandwidth limitations, as
well as utilizes time synchronization to ensure data align-
ment. For robot control, the user can drive the Spot and
control the robotic arm from flexible perspective in VR and
get real-time feedback.

3.3. Sensor-Specific Data Augmentation

When there are mismatches between training data and
the specific perceptual characteristics of robot sensors, the
model’s performance will degrade. Since the sparse depth
maps in public datasets are not collected by the Spot sensor,
and it’s hard to obtain the dense depth from the Spot sensor
directly to build our own dataset, we first collect a set of
sparse depth maps M from our Spot as shown in the upper

left of Fig. 2. Then for a ground truth dense depth map D,
we select a Spot-collected sensor mask from M to generate
the sparse training input S for our model as:

S = D ◦ I(m > 0.0), m ∼ Uniform(M). (1)

Together with the RGB image I corresponding to D in the
original data set, (S,D, I) forms a pair of training data.
Our experiments in Section 4 demonstrate that this sensor-
specific augmentation significantly improves depth comple-
tion accuracy and visual quality on the Spot’s sensor.

3.4. RGB-guided Multi-modal Fusion

Unguided normalized CNNs Building on the architec-
ture presented in Nconv [9], the algebraically-constrained
normalized convolution layers propagate depth S̃l−1 and
confidence Cl−1 for the (l − 1)th resolution layer to the
lth layer as:

Cl
p =

∑
q∈N (p) C

l−1
q Γ(W l

q)∑
q∈N (p) Γ(W

l
q) + ϵ

, (2)

S̃l
p =

∑
q∈N (p) S̃

l−1
q Cl−1

q Γ(W l
q)∑

q∈N (p) S̃
l−1
q Γ(W l

q) + ϵ
+ bl, (3)

where N (p) refers to neighborhood centered around the
pixel p, W is the weights generated by our model, Γ is the
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activation function, ϵ is use to prevent divide-by-zero prob-
lems and b is the bias. Moreover, the initial value of C and
S̃ can be writtern as:

C0 = I(m > 0.0), (4)

S̃0 = S, (5)

where S is the sparse depth input.
By generating pseudo depth maps S̃ prior to multi-

modal fusion, the propagation model addresses the chal-
lenges posed by sparse data, improving fusion quality and
accelerating the convergence of the fusion network. More-
over, the number of parameters required for the unguided
normalized CNN layer is less compared to other methods,
thus ensuring the efficiency of the network and meeting the
real-time requirement of the teleoperated-robot.

Multi-scale multi-modal fusion network After propa-
gating sparse data to generate pseudo depth maps, we incor-
porate RGB data from the Spot’s camera to enhance edge,
corner and texture information. We adopted a general struc-
ture and fusion strategy similar to some existing architec-
tures [29, 37, 40]. As shown in Fig. 2, an encoder con-
sisting of a simple residual block [11] extracts features of
multiple scales from the RGB image. These RGB features
ϕ(Iℓ) are then concatenated with corresponding downsam-
pled pseudo depth maps S̃ℓ for the ℓth resolution layer using
an early fusion strategy and fed into the multi-modal fu-
sion decoder. We adopt a multi-scale approach, where each
intermediate fusion layer receives S̃ℓ and ϕ(Iℓ) of current
resolution, and additionally obtains the depth result S̃ℓ−1

of the previous layer, thereby integrating coarse-to-fine in-
formation. This fusion process results in the final high-
resolution estimated depth map D̃, improving depth com-
pletion accuracy.

3.5. Temporally Consistent Depth Refinement

The robot and its surrounding environment are dynamic,
leading to noisy and unstable point clouds. Frame-by-frame
completion and reconstruction of unstable depth data will
produce jittery scene in VR rendering. As shown in Fig. 2, a
spatial-temporal geometric awareness filter is implemented
to ensure consistent reconstruction.

Flow Reprojection Our refinement pipeline begins with
the utilization of the NeuFlow-v2[47] model to estimate op-
tical flow between frame i and frame j. For RGB images Ii
and Ij , the flow reprojection from frame i to frame j can be
obtained as:

fi→j(p) = Vj→i(FNeuFlow(Ii, Ij), p), (6)

where FNeuFlow represents the pre-trained NeuFlow-
v2[47] model that return a flow vector from Ii to Ij and

Vj→i is the map from 2D depth index p in the frame j to
the 2D depth index of the corresponding point in frame i
base on optical flow.

3D Reprojection Then the flow reprojection can be used
to project the corresponding point of p in frame i to the
camera coordinate of frame j:

Ti→j(p) = R⊤
j (RiK

−1D̃i ◦ fi→j(p) + ti − tj), (7)

where R is the rotation matrix, K is the camera intrinsic
matrix, t is the translation vector and D̃ is the completed
depth map. R and t can be directly calculated from the pose
matrix P based on

Pi = [Ri|ti]. (8)

To complement the 2D motion information from optical
flow, the built-in kinematics module in ROS is used to ob-
tain real-time pose estimations.

Temporally Consistent Point Cloud Denoising We im-
plement a spatial-temporal geometry-aware filter similar to
CVD [23] and RobustCVD [15] as the point cloud refine-
ment to generate consistent point clouds. To denoise and
refine the point cloud, we calculate the reprojection weights
of p and its neighbors N (p) for each geometrically corre-
sponding pixel in the past n frames. And use 3D repro-
jection of them to calculate the refined camera coordinate
position c̃i(p) for frame i:

c̃i(p) =
∑

q∈N (p)

i∑
j=i−n

Tj→i(q)wrp(ci(p), Tj→i(q)), (9)

where wrp is the reprojection weight. Previously, CVD [23]
and RobustCVD [15] used disparity loss and ratio loss, re-
spectively, to calculate the reprojection weight. However,
they only consider the spatial weight and ignore the tem-
poral weight. In our method, we take advantage of spatial-
temporal information to formulate our reprojection weight:

wrp(vi, vj) = ws(vi, vj)wt(i− j), (10)

where the spatial weight ws is the ratio weight with custom
parameter σs which can be written as:

ws(u, v) = exp

(
−σs(

max(uz, vz)

min(uz, vz)
− 1)

)
, (11)

the reason to use ratio weight is because of the unstable pose
estimation and the bias of the disparity loss. And the new
temporal weight can be written as:

wt(t̃) = exp

(
− (ηt̃)2

2σ2
t

)
, (12)

where t̃ is frame index difference, η is time between two
frames and σt is custom parameter.
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Figure 3. Qualitative Comparison with BP-NET [37], DepthAnything-v2-Metric [45], DFU [38] and KB-NET [40] on our data collected
from the Spot robot. Our method is demonstrated in the last row.

3.6. Implementation Details

Loss Function We use two loss terms for each scale to
train our model. The multi-scale loss is used to ensure that
depth maps generated from each scale are fully supervised.
The loss function can be written as:

Ltrain =

S∑
s=0

λs(αLgd + (1− α)Ll1), (13)

where Lgd is the gradient matching loss , Ll1 is the l1 re-
construction loss, S is the total number of scales, λs is the
weight for each scale and α is customer parameter.

The gradient matching loss Lgd is proposed by Mi-
DaS [30] that will tend to produce the same discontinuous
edges as the ground truth, thus ensuring sharpness and dis-
continuities at the edges of the complemented depth map.

The gradient matching loss can be written as:

Lgd =
1

N

N∑
i=1

(|∇xHi|+ |∇yHi|) , (14)

where
Hi = Di − D̃i. (15)

And we define the l1 reconstruction loss as

Ll1 =
1

N

N∑
i=1

|Hi| . (16)

4. Experiments
4.1. Experimental setup

Datasets We evaluate the effectiveness of our proposed
method on two customized datasets. The first dataset was
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Figure 4. Temporally Consistent Point Cloud Denoising The top row shows the final rendering results of the Spot moving through the
dynamic scene, the middle row shows the result after frame averaging, and the last row shows the result after applying temporally consistent
point cloud denoising. We can observe that the geometry of the chair is preserved when the Spot is moving.

used to qualitatively evaluate and compare different mod-
els. This dataset contains 3000 sets of consecutive frames
captured from Boston Dynamics Spot Robot’s [8] two front
sensors, each frame contains the sparse depth map and the
corresponding RGB image. Since the data collected on Spot
does not contain ground truth depth, we only use these data
for qualitative evaluation to compare the performance of
different models on real robots.

To quantitatively evaluate the performance of the mod-
els. We collected some sparse depth maps from Spot and
used sensor-specific data augmentation introduced in Sec-
tion 3.3 to preprocess the NYUv2 [34] dataset to gener-
ate our second dataset for quantitative evaluation. The
NYUv2 [34] dataset was chosen because the depth data dis-
tribution in it is similar to the environment of our Spot robot,
and the use of sensor-specific data augmentation to simulate
the effects of robotic sensor acquisitions aligns the percep-
tual characteristic between the two datasets.

Evaluation Metrics We adopt the following evaluation
metrics in our quantitative evaluation dataset: root mean
squared error (RMSE), mean absolute error (MAE), inverse
reciprocal mean squared error (iRMSE), inverse recipro-
cal mean absolute error (iMAE), gradient matching error
(GME), relative error (REL) and percent error (δ1.25).

4.2. Depth Completion

We first evaluate our depth completion model on our quan-
titative evaluation dataset. Tab. 1 lists the results of our
model, compared with other state-of-the-art model in depth
completion and depth estimation. Note that although
DepthAnything-v2 [45] is a depth estimation model, here

we use its metric depth estimation version for our experi-
ments. Overall, our model secures the top position across
all seven evaluation metrics among all the methods in our
test dataset.

Fig. 3 shows the qualitative comparisons with other
methods on real Spot data. Compared to other models,
since we have preprocessed the training set of our model
using sensor-specific data augmentation, our model is more
adapted to this specific perceptual characteristics of the Spot
sensor and thus can produce higher quality results on real
robot data. Specifically, compared to other depth comple-
tion methods, our model is more suitable for filling inhomo-
geneous depth gaps. Whereas other models produce discon-
tinuous depth results in the middle of large gaps. Compared
to depth estimation models, though, depth estimation mod-
els produce smoother depth maps and higher quality details.
However, they do not estimate depth very accurately and
will scale the scene, which we will continue to explore in
Sec. 4.3.

4.3. Rendered Point Cloud

Since the VR operator is consistently immersed in a 3D
environment, it is clear that the quantitative and qualita-

RMSE↓(mm) MAE↓(mm) iRMSE↓(1/km) iMAE↓(1/km) GME↓ REL↓ δ1.25 ↑(%)

BP-Net [37] 190.444 137.998 81.315 46.685 0.251 0.054 92.148
KB-Net [40] 378.377 372.879 87.512 62.124 0.802 0.127 80.958
DFU [38] 171.746 201.614 81.612 36.383 0.573 0.084 91.914
DepthAnything-v2(Metric) [45] 484.033 615.561 101.050 79.988 0.227 0.228 67.291

Ours 119.816 69.730 31.558 10.178 0.160 0.024 97.548

Table 1. Quantitative Comparison Results We examine the
quantitative performance of five models on our second dataset.
The performance is measured by RMSE↓(mm), MAE↓(mm),
iRMSE↓(1/km), iMAE↓(1/km), GME↓, REL↓ and δ1.25 ↑(%).
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Figure 5. Qualitative Comparison of Reconstruction Results
The top row shows the input RGB images, followed by depth maps
and 3D reconstructions from DepthAnything-v2-Metric [45], BP-
NET [37], and Ours.

tive evaluations of the depth map alone do not provide the
most realistic representation of the robot operator’s visual
experience. To better evaluate the user’s visual experience,
we reconstructed and rendered several keyframes from BP-
NET [37], DepthAnything-v2 [45], and our own model
within Unity, as demonstrated in Fig. 5.

Although the depth maps produced by DepthAnything-
v2[45] appear smooth and rich in detail, the correspond-
ing VR renderings suffer from poor realism. The model
preserves the original RGB details but misestimates rela-
tive object distances and applies incorrect global scaling,
resulting in an unnatural scene. Although BP-NET [37]
restores overall depth structures, its reconstruction results
contain a lot of noise, ultimately degrading the user’s vi-
sual experience and the accuracy of the VR-teleoperation.
In contrast, Ours methods generate the most accurate and
visually consistent results, with sharper object boundaries,
smoother depth maps, and high-fidelity 3D reconstruction.
These improvements highlight the robustness of our method

in achieving superior reconstruction quality.

4.4. Temporally Consistency

To demonstrate the effectiveness of our temporally consis-
tent point cloud denoising approach, we use a VR to move
Spot through a dynamic scene, rendering and presenting
a series of keyframes. As shown in Fig. 5, our method
improves noisy and unstable reconstructed scenes. More-
over, our approach produces temporally consistent scene re-
constructions and preserves the geometry of objects in the
scene. Thus high-quality visual renderings and seamless
transitions are generated in real-time for dynamic scenes.

5. Conclusions
In this paper, we presented a real-time system for depth
completion and temporally consistent 3D reconstruction tai-
lored for VR-teleoperated robots. By introducing sensor-
specific data augmentation, a lightweight multi-scale multi-
modal fusion network, and a spatial-temporal geometry-
aware filter, our approach effectively addresses the chal-
lenges of hardware limitation, challenged environment and
domain mismatching. Experimental results demonstrated
the superiority of our method over state-of-the-art ap-
proaches in both quantitative and qualitative evaluations,
achieving high-quality, temporally stable point clouds ren-
dered in real-time. These advancements significantly im-
prove immersive VR experiences and enhance precision in
robot-environment interactions.
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