CSCI 1410 GOT Final: Final (Written, Capstone)

Jonathan Dou

100/ 100

Total
v - 0 pts Correct

Page 1



GoT RL Bot Writeup

Jonathan Dou

November 2022

1 Introduction

For the ML/Capstone part of this GoT project, I used reinforcement learning
with tensorflow keras to create a bot that learns and improves from playing
against other bots. There were many hiccups along the way, definitely more
of a challenge than I expected, but in the end I was able to beat RandomBot,
SafeBot, and AttackBot most of the time on the small 13x13 emptyroom map
after training and fine-tuning the reinforcemenet learning model. I unfortu-
nately did not have time to train the model to beat the bots on the larger maps,
which takes much longer to improve its performance. The actual winrates might
be not displayed on gradescope because it seems to not handle importing ten-
sorflow properly, however I have graphs of many games played over time and
will show the results in this writeup.

2 Implementation

My original design for the state, action, and rewards were very simple. States
were basically the map states encoded into a long one-dimnesional vector (values
ranged from 1 to 8) depending on the type of the cell on the map. Next it was
processed by a feed forward network which outputted a softmaxed probability
vector of size 4. (one for each possible action U, D, L, R). Lastly the reward
was very sparse. 1 for a win at the end, and -1 for a loss at the end. At end we
plug these lists of states, actions, and rewards into our loss function and update
the model accordingly. The network looked something like:

self.D1 = tf.keras.layers.Dense(256)

self.D2 = tf.keras.layers.Dense(128)
self.D3 = tf.keras.layers.Dense(64)
self.D4 = tf.keras.layers.Dense(4)



This did not end up working well for a various number of reasons. I think
the main reason was that my representation of the state was suboptimal, the
encoded cell values that ranged from 1 to 8 did not really correlate with anything
meaningful so the model had trouble learning. After realizing this, I switched to
a more effective model that uses convolution layers instead of just feed forward
layers. This made much more sense in terms of since now we are mapping the
13x13 game state to a 13x13x8 numpy array. (13x13 for the map size and 8 for
each possible type of cell). The third dimension of this state were size 8 one-
hot encoded vectors that represented what type of cell was on that particular
location. This made much more sense intuitively and also worked better in
practice. This was the network that I ended up with:

self.D1 = tf.keras.layers.Conv2D(filters=256, kernel_size=5, strides

self.D2

self.D3

tf.keras.layers.Conv2D(filters=64, kernel_size=5, strides =

tf.keras.layers.Conv2D(filters=128, kernel_size=5, strides =

(1,1), activation
(1,1), activation

(1,1), activation

2

self.D4 = tf.keras.layers.Dense(num_actions, kernel_initializer=tf.keras.initializers.Randor

minval=-0.03, maxval=0.03))

There were a few more things I had to do in order to make this work. I
think one of the most important changes was to change the reward system from
the sparse (win/lose only system) to a smoother one that involved calcuating
the total amount of territory gained at each move. This encouraged the model
to learn how to gain territory which ended up in much more efficient learning
rather than immediately trying to win against the other bots. For whatever
reason, punishing the bot for losing never seemed to help. I just ended up
appending a reward of zero at the end for losses and a positive reward at the
end for wins. These design worked very well against safebot. And this was the
wins per 100 games over the first 10k games against safebot.



100 +

80

60

40 -

20 +

0 - T T T T

0 20 40 60

As we can see it was able to continously make improvements in its gameplay
against Safebot and eventually beating it most of the time in the end (variance
is high however). The high variance might be because I used random.choice to
pick moves instead of np.argmax in order to encourage more exploration. With-
out exploration the model would often get stuck doing a repetitive strategy and
not learn.

However, this design resulted in a problem when facing against AttackBot. For
whatever reason, it would endup stalling against AttackBot to avoid getting
killed and resulted in the game timing out over and over again. In order to
counter this, I increased the exploration rate manually and forced the bot to
pick a ”suboptimal” choice at a small percentage of the time. I just added a
small value to the probabilities array and then normalized it so it made the dis-
tribution more even and even if the model predicted a near zero probability for
one of the choices it would still have a small chance to be picked. I didn’t want
this to happen forever though because eventually I want the model to converge

80

T
100




into an optimal strategy, so I lowered this exploration value after each game
such that it dissapears completely after 10000 games. And this was the result
against AttackBot: (first graph is first 10k games and second graph is the next
10k-20k games).

|

ED_ |

40 A

20 +

T
0 20 40 60 80 100



100

80 +

60

40 -

20+ V

0 20 40 60 80

As we can see it makes noticeable improvements over the first 10k games and
slight improvements over the next 10k games. There was very high variance in
the results and I guess it is to be expected since reinforcement learning can be
very unstable. There were several times when the gradients exploded initially
during training against AttackBot and I ended up lowering the learning rate
and created a more gradual reduction in exploration rate over time to increase
stability.

3 Future ideas and Conclusion

If I had more time I would definitely train the model on the large maps as well,
but unfortunately it took several days to get to where I am and I am currently
out of time for training. I spent a lot of time trying out different model archi-
tectures because most of the time the model was not able to even learn. I want
to try adding in different activation layers and maybe try different combination
of filter/kernel sizes than the ones I have tested. (5x5 seemed to outperform

T
100




3x3 by alot). Overall, I still gained a good amount of experience trying to train
a reinforcement learning model from scratch and make adjustments to the ar-
chitecture and training process along the way to make the training more stable
and effective. I'm definitely interested in researching more training techniques
that increase model stability and performance; I realized from this project that
tiny adjustments to how the model is trained can make very big differences,
sometimes more than the architecture itself.



7 Total 100/ 100
v - 0 pts Correct

Page 8



