
POMDP Categorization Based on Agent Memory

Alexander Ivanov

May 15, 2025

1 Introduction

A common assumption for many reinforcement learning problems is that the core
environment dynamics are accurately described as a Markov Decision Process
(MDP). While this basic assumption has allowed the development of efficient
algorithms across a variety of tasks, it is unrealistic and requires that the learn-
ing agent has access to the exact world state. In many cases, especially for real
world problems, we are interested in learning optimal behavior while not having
access to all the information. Partially Observable Markov Decision Processes
(POMDP) model the learning agent’s incomplete view of the world and so can
be applied to a much broader set of problems. In particular, POMDPs can be
used to represent tasks were the agent has noisy sensors or where the agent
cannot see all parts of its environment, problems that are often seen in robotics
where real physical agents need to navigate complex spaces with limited sensors.

POMDPs represent a wide class of problems which makes the impact and
value of an efficient learning algorithm quite large. At the same time, because
POMDPs represent so many possible tasks, some of those tasks can be incredibly
difficult. POMDPs are provably hard to solve and in practice finding solutions
can be intractable [6]. A common approach is to define a new subset of POMDPs
which admits to practical algorithms because of a shared property or structure
[1–3,10]. Although the resulting POMDP class may not represent all POMDPs,
there can still be many practical applications which fall within the POMDP
class. Investigating such classes of POMDPs and their relationships is essential
for developing new methods and to understanding the space of all POMDPs as
a whole.

A specific area that hasn’t been as thoroughly investigated with respect to
POMDPs is the role of agent memory. Previous work explores similar ideas,
such as history features [5, 7, 9] and variable-length history windows [5, 8], but,
as we will see there are still many unanswered questions and unexplored ideas.
This report will show how agent memory is closely tied with the complexity and
structure of POMDPs. Memory types can be used to define various POMDP
classes and the relationships between different types of memory suggest the
existence of a POMDP class hierarchy. This work aims to investigate the com-
plexity of POMDPs through the lens of agent memory and to uncover classes
of POMDPs in terms of the kind of memory used to solve them.

1

2 Background

2.1 POMDP and Trajectories

POMDPs are defined as a 7-tuple (S,A, P,R,O,Φ, γ) where S is the set of
states, A is the set of actions, P : S × A → ∆S is the transition function, R :
S×A×S → R is the reward function, O is the set of observations, Φ : S×A → O
is the observation function, and γ is the discount factor. Additionally, there is
some initial state distribution ∆S which determines which starting state for
each new episode.

When an agent first begins an episode it receives an initial observation as
determined by Φ and preforms a series of actions, receiving the corresponding
observations and rewards. The sequence of actions and observations is called the
agent trajectory and is represented by τ . Rewards are excluded as any POMDP
can be trivially modified for the observations to include the reward at the same
time step and such modification doesn’t change the results or conclusions of this
work. We write τ as (o0, a0, o1, a1, . . . , on, an).

We can also consider a partial trajectory τ which represents a sequence of
actions and observations which hasn’t necessarily reached the end of an episode.
For a given partial trajectory where the agent takes action a and receives obser-
vation o we can express the resulting partial trajectory as τ ′ = τ + (a, o). Note
that if action a resulted in terminating the episode there would be no following
observation and the resulting trajectory would terminate in a.

It is important to note that two agents taking the same actions and en-
countering the same observations but end up in completely distinct underlying
states. This work typically considers the existence of a partial trajectory τ
which only implies that there is a non-zero probability that a random agent
could experience τ .

In same cases, it is useful to consider the underlying states that an agent
traverses in addition to the actions and observations. I represent this as a true
trajectory and write it as τ̄ = (s0, o0, a0, s1, o1, a1, . . .). It can also be useful to
consider states and actions alone which I also refer to as a true trajectory and
write similarly as τ̄ = (s0, a0, s1, a1, . . .). I typically only consider trajectories
and partial trajectories and will make clear when I am using true trajectories
or true partial trajectories and if they include observations.

2.2 Reinforcement Learning Agent With Memory

An agent interacting with an environment, specifically a POMDP, can be rep-
resented by a policy π : O → ∆A which for a given observation o samples an
action a ∼ π(o). We also write P(a|o) to represent the probability of a particular
action under the policy. A call a policy deterministic if for all o ∈ O there exists
a ∈ A such that P(a|o) = 1. Otherwise the policy is stochastic.

In this work I consider a particular model of a learning agents memory which
is sufficiently flexible for our needs; memory as a Finite State Machine (FSM).
Under this model the agent has a memory state m ∈ M and updates this

2

memory at every time step according to a memory function µ : M × A× O →
∆M which takes the current memory state, the previous observation, and the
previous action to produce the memory state for the current time step. Like the
policy, the memory function can be be stochastic or deterministic. The size of
a memory function µ refers to the number of possible memory states |M |.

3 Trajectory Sets

When considering how an agent may use its memory to solve a POMDP, the
requirements of the memory can be viewed in two ways. One common view is to
consider the history of the agent thus far, the partial trajectory τ . If the agent
remembers all of its past actions and observations it has all the information it
could possibly have and so can pick next action optimally 1. Another perspective
is to consider the result of the agents future actions. If the agent knows the
exact distribution of outcomes for any possible choice of actions it also has all
the information it needs to pick the next action optimally. I begin by exploring
this second case, looking at the future results of agent actions, and eventually
come to define trajectory sets.

3.1 Construction

Given a trajectory τ from time step 0 to t with observation oi at time step i, I de-
fine the future of this trajectory as the probability distribution over observations
for all finite sequences of actions taken from the end of τ . More precisely, the fu-
ture of τ is the function fτ : An → ∆(O) such that fτ (at, . . . , at+n) = ∆Ot+n+1

a distribution over the possible observations at time step t + n + 1. Each ob-
servation in Ot+n+1, ot+n+1 has probability P (ot+n+1|τ, at, . . . , at+n) given the
finite action sequences at, . . . , at+n. If a given action sequence is invalid then the
function is said to be undefined. An action sequence can be invalid if the episode
terminates earlier in the action sequence or if a particular action is invalid at a
particular time step.

We can get an exact expression for the future by relying on the underlying
state. Given a true trajectory τ̄ over states and actions, let the set of possible
observed trajectories be O(τ̄). Similarly, for a trajectory τ the set of possible
true trajectories that could have produced it is O−1(τ). This lets us write the
future of a trajectory τ as:

fτ (a0, . . . , an) = E
τ̄∈O−1(τ)

[
E

τ ′∈O(τ̄+(a0,...,an))

[
p(on|τ ′)

]]
(1)

Two futures f1 and f2 are equal iff f1(a0, . . . , an−1) = f2(a0, . . . , an−1) for
all finite action sequences a0, . . . , an−1 ∈ An and both f1 and f2 are defined for
the same set of finite action sequences. This allows us to define a relation over

1The agent does not have access to the underlying state so the only information that is
available is the sequence of actions and observations.

3

all partial trajectories in terms of when the futures of two trajectories are equal.
This gives us the definition of trajectory sets.

I define the trajectory set Tτ induced by a trajectory τ be the set of trajec-
tories for which the future is the same:

Tτ = {τ ′|fτ ′ = fτ}. (2)

Trajectory sets are a partition of the space of all trajectories. If two trajec-
tory sets T1 and T2 share a trajectory τ then all trajectories in both must have
future fτ and so T1 = T2. Because of this, I can define the future of a trajectory
set T as the future of any of its member trajectories, fT = fτ ∀τ ∈ T .

3.2 Markov Property

An interesting property of trajectory sets is that they preserve the Markov
property under a natural extension of the POMDP transitions.

Consider an state machine with the states T = {Tτ |∀τ} and actions A.
The transition function P(Tτ ′ |Tτ , a) would follow from τ ′ = τ + (a, o) where
the probability of o ∈ O is determined by the POMDP transition probabilities
conditioned on the trajectory seen so far: P(o|τ, a). As stated, it is not clear
that the Markov Property should hold as for each transition there are many
choice of τ ∈ Tτ .

Given a trajectory set T and an action a, we want to show that all trajectories
τ ∈ T lead to a single trajectory set T ′ upon taking action a and receiving
observation o. Consider trajectories τ ∈ T and t′ ∈ T ′ with τ ′ = τ + (a, o). We
can write fτ ′ exactly as fτ ′(a1, . . . , an) = fT (a, a1, . . . , an|o) and we notice that
this holds for all τ ∈ T because they all by definition have the same future fT .
This tells us that the transition function is well defined.

Because we have that the transitions are only dependent on the most re-
cent trajectory set, p(Tn+1|T0, T1, . . . , Tn, a) = p(Tn+1|Tn, a), we have that the
Markov property is preserved.

3.3 Trajectory Set MDP

There are two possible ways to construct an MDP with trajectory sets as states.
We can exclude observations from the action set as we see in section 3.2 which re-
sults in a stochastic MDP. The transitions are stochastic because the probability
of observation o for action a in a partial trajectory τ depends on the distribution
of true trajectories τ̄ which could generate τ and the possible observations that
could be produces from taking action a in those true trajectories.

A more interesting MDP construction incorporates the observation into the
available actions. In this case the states of the POMDP are still trajectory sets
but the actions are action-observation tuples (a, o) resulting in deterministic
transitions. Starting in trajectory set Tτ and taking action (a, o) results in
exactly trajectory set Tτ+(a,o). An important caveat here is that not all actions
are available in all trajectory states. For a trajectory set Tτ the only available

4

actions (a, o) are those where the probability of the observation o given a and
some partial trajectory τ ∈ Tτ is non-zero. This draw back makes this MDP
hard to analyze.

Reward for both cases is hard to define and can be expressed in terms of
posterior distributions over the underlying state. We could consider a possible
reward function such as:

R(Tτ , a, Tτ ′) = E
τ̄∈O−1(τ)

E
τ̄ ′∈O−1(τ ′)

R(s, a, s′)

with s and s′ being the final states of τ̄ and τ̄ ′ respectively. Similarly, we would
have the following expression when actions are an A×O tuple.

R(Tτ , (a, o), Tτ+(a,o)) = E
τ̄∈O−1(τ)

E
τ̄ ′∈O−1(τ+(a,o))

R(s, a, s′)

In each case there is a tricky dependence on the underlying state which makes
this reward definition impractical. Additionally, it is an average over possible
rewards and so wouldn’t correspond to the actual reward an agent might see
when traversing an environment and consider which trajectory set it moved
from and to.

3.4 Information Constant Trajectory Sets

while constructing a well defined and cohesive MDP in terms of trajectory sets
is difficult, we still see that trajectory sets can provide useful insight into how
the information an agent holds about it environment. In particular, we see that
trajectory sets in some way represent both information about the location of
the agent in an environment and also what the agent could possibly know about
its environment based on its history.

We define τ →n τ ′ as a predicate indicating the existence of a sequence of
actions of length n, a0, . . . , an−1, such that taking the actions from τ can result
in trajectory τ ′ with non-zero probability. If τ →n τ ′, τ ′ is n steps in the future
from τ .

We can define an analogous relation on trajectory sets:

T1 →n T2 := ∀ τ ∈ T1 ∃ τ ′ ∈ T2 s.t. τ →n τ ′. (3)

We write T1 → T2 as shorthand for T1 →1 T2.
We say that two trajectory sets T1 and Tn are information constant, written

as T1 ∼ Tn, if T1 → Tn and Tn → T1 or there exists a sequence T1, T2, . . . , Tn−1, Tn

such that Ti ∼ Ti+1 for all i ∈ [1, n− 1].
Intuitively, a trajectory set T1 represents the future of a particular trajectory

and writing T1 → T2 for T1 ̸= T2 implies some change in the probability dis-
tributions of future observations for the agent. Consider the example in figure
3.

Trajectories that end in different corridor states would have different trajec-
tory sets because the colored state is a different number of actions away. This

5

Figure 1: Hallway POMDP with three hallway states and a single end state.
The agent starts in either the top or bottom hallways. The corridor states all
have the same observation, ogrey, and the end state gives either observation ored
or oblue depending on the hallway.

Figure 2: Hallway POMDP with three labeled trajectory sets before the color
of the end state is discovered.

means we can write T1 → T2 and T2 → T3 because the color of the end state is
unknown. We also have that T3 → T2 and T2 → T1 so T1 ∼ T2 ∼ T3. Intuitively,
moving up and down the corridor changes the future because the end state is a
different number of steps away but it doesn’t resolve the color of the end state,
making these trajectory sets information constant.

disc
This example also shows what it means for trajectory sets to not be informa-

tion constant. By walking to the end of the corridor the color is observed and
the agent now knows if it is in the top or bottom hallway. This new information
is reflected in the futures of trajectories that saw the top corridor versus the
bottom. While both T3 → T4 and T3 → T8 are true, we don’t have the reverse
direction because that would correspond to forgetting the color of the end state.
We do however have that T7 ∼ T6 ∼ T5 ∼ T4 and T11 ∼ T10 ∼ T9 ∼ T8.

Figure 3: Hallway POMDP trajectory sets after the color of the end state is
discovered.

6

3.5 Trajectory Sets and Memory

Trajectory sets have some useful properties with respect to representing the
location of an agent and its information about the environment. It turns out
that trajectory sets actually translate naturally into a deterministic memory
function which can achieve optimal behavior along with some policy.

Notice that for a given POMDP, a learning agent that represents each tra-
jectory set with a memory state would be just as good as a learning agent that
remembers the entire trajectory. If we consider two partial trajectories τ1 and
τ2 which fall into the same trajectory set T we realize that the optimal action
must be the same for both because by definition their futures are indistinguish-
able. There may exist an optimal policy π∗ and memory function µ∗ for which
τ1 and τ2 are followed by distinct actions but taking the same action must also
be optimal.

Once we have memory states, M , for each trajectory set we can also define
the memory function transitions in terms of the deterministic version of the tra-
jectory set MDP presented in section 3.3. At each time step the agent takes an
action a and observes observation o. To update their memory state m consider
the corresponding trajectory set T , take any trajectory τ ∈ T then find the
trajectory set T ′ for τ + (a, o) and the corresponding memory state m′. This
gives an exact definition for the deterministic memory function µ : M ×A×O.

One important note is that the number of trajectory sets for the POMDP
is not necessarily finite and so this memory function may require an infinite
number of memory states. Nonetheless, the fact that such a memory function
exists and can be deterministic, is an interesting result. This motivates us to
consider if there are possible steps that can be taken to reduce the necessary
number of memory states. Specifically, we want the smallest number of memory
states for which there still exist a memory function and policy pair, (µ, π), that
match the optimal policy π∗ with a memory function µ∗ that remembers the
entire trajectory thus far τ .

In general, to reduce the necessary number of memory states |M | for a
memory function µ, without changing its behavior, we can carefully inspect the
policy and memory function. If for two memory states m1,m2 ∈ M and all
observations o ∈ O we that π(m1, o) = π(m2, o) then the distinction between
m1 and m2 is not necessary from the perspective of the policy. Similarly, if for
two memory states m1,m2 ∈ M , all observations o ∈ O, and all actions a ∈ A
we that µ(m1, a, o) = µ(m2, a, o) then the distinction between m1 and m2 is not
necessary from the perspective of the memory function. If distinguishing m1

and m2 is not necessary for both the policy and the memory function then the
two memory states can be treated as the same reducing the number of required
memory states. We can additionally restrict our view to only the trajectories
that the agent has a non-zero probability of taking under π and µ. This allows
us to consider a subset of all actions and observations when determining if two
memory states need to be distinguished which can further reduce the required
memory size.

While such reductions may reduce the memory size it is not clear if they will

7

result in the smallest possible memory and in fact, we know that this is not the
case by counter example. Note that before any reductions each memory state
would correspond to a trajectory set and any further reductions only serve to
merge memory states. To show this is not optimal we would need the optimal
memory for some POMDP to ”split” a trajectory set, taking different actions
in different partial trajectories.

Before presenting the counter example, I want to point out how strange this
notion is intuitively. The claim is that there exists a POMDP where the agent
can walk down two possible paths τ1 and τ2 which happen to fall into a singe
trajectory set T . By definition, there no sequence of actions the agent could
possibly take to distinguish τ1 from τ2 and yet, the agent must take different
actions in the two partial trajectories. This is incredibly strange and highlights
that while there is no reason to distinguish trajectories within a trajectory set
with respect to the policy the need does arise when determining the smallest
optimal memory function.

Consider a POMDP where an agent receives a sequence of 5 observations in
{o0, o1} and then the ocount observation. The agent must count the number of
o1 observations and summarize the count with its two actions A = {alow, ahigh}.
The agent receives positive reward after the last observation if it correctly takes
action alow for a count less than 3 and ahigh for a count greater than or equal to
3. Note that this environment results in at least 5 trajectory sets because the
distance from the end of the episode is distinguishable and so partial trajectories
at each time step have different futures. We also have a trivial and optimal
counting memory function with 4 states where each state represents the number
of o1 seen so far.

Now lets consider the two partial trajectories τ1 = o0, o0, o0, o0 and τ2 =
o0, o0, o0, o1. In both cases, regardless of the third observation, these trajectories
will have a count less than 3, will have the same optimal actions, and fall into the
same trajectory set. Because they are in the same trajectory set, any memory
function that is constructed in terms of trajectory sets would represent both
with a single memory state. On the other hand the trivial counting memory
function does distinguish these two trajectories. These two trajectories have
exactly the desired property because our trivial counting memory distinguishes
them while trajectory sets suggest no reason to do so. For this POMDP, no
aggregation of trajectory sets into memory states can achieve a memory of the
same size as the trivial counter while preserving the optimal policy.

3.6 Practical Considerations

In this section I have investigated various theoretical properties of trajectory sets
and how they relate to agent memory functions. Although these are interesting
results, for example the existence of deterministic memory functions, there are
several drawbacks that make it difficult to consider trajectory sets for practical
applications.

Firstly, trajectory sets are defined in terms of the future function. This
by itself is a complex object, representing distributions for all possible action

8

sequences, making it difficult to handle in theory and exceptionally hard to
implement in practice. Representing the future of a trajectory in computer
memory for a toy POMDP seems daunting let alone a POMDP that has infinite
actions sequences. Additionally, some aspects of trajectory sets like the trajec-
tory set MDP still rely in part on the underlying state representation. This
further increases the challenge of using trajectory sets in practice because the
underlying state may not be available.

There is some hope for trajectory set usefulness in considering the process
of learning a new memory function. This work does not investigate this idea in
depth but it may be possible to learn a memory function iteratively by relying
on the Markov assumption of trajectory sets and the deterministic transitions
of the trajectory set MDP. If memory states are assumed to correspond to
trajectory sets, one could imagine checking candidate memory functions and
updating them iteratively if they violate the deterministic transition property.
Investigate algorithms for memory learning based on trajectory sets and further
analyzing the theoretical properties of trajectory sets are open areas for future
work.

4 Finite Memory Functions

When considering the requirements of agent memory for a POMDP trajectory
sets provide a kind of bound on what information a memory function could
choose to represent. Unfortunately this model has little promise of translating
into practice, in particular because of a dependence on the underlying state and
the difficult problem of translating trajectory sets to a well defined memory
function. Both of these problems can be addressed by directly considering a
finite memory function and determining if it is sufficient for maximizing return
or any other metric of choice.

A few metrics that are of particular interest for memory functions come from
the state abstraction hierarchy [4]. Memory, and an agents memory function,
can be thought of as an abstraction over a particular kind of MDP; the tra-
jectory MDP. This MDP represents the best possible memory an agent could
have, remembering everything, and allows us to consider memory functions that
preserve particular properties of this MDP.

Definition 4.1 (Trajectory MDP). Given a POMDP (S,A, P, γ,O,Φ, R) with
initial state distribution s0, we define the trajectory MDP to be (T,A, P ′, R′, γ),
where T := {τ ∈ (O × A)∗ × O} is the space of observation-action partial
trajectories, P : τ × at 7→ τ ⊕ at ⊕ ot+1 with ot+1 ∼ Pr(·|τ, at) and ⊕ denoting
concatenation, and R′(τ = (o0, a0, . . . , ot), at) := Est|τ [R(st, at)].

This decision process is Markov by definition as a trajectory τt up to time t
being a prefix of τt+j implies that Pr(τt+k|τt, τt−1, . . .) = Pr(τt+k|τt).

In this section I will consider memory functions in the context of three
specific metrics derived from the state abstraction hierarchy; expected return

9

(π∗ − preservingabstraction), Q∗ error, and Model error. The precise defini-
tions of these metrics are presented in table 1. An interesting consequence of
considering these three metrics is that we can show a hierarchical relationship
between memory functions that preserve each of the quantities. In particular,
we have that a model preserving memory function is also Q∗ preserving and a
Q∗ preserving memory function is in turn π∗ preserving.

Type State Abstraction

Model ∃fP : ϕ(T)×A → ∆O.||[fP]ϕ − Po||1 < ϵP
∃fR : ϕ(T)×A → R.||[fR]ϕ −R||∞ < ϵR

Q∗ ∃f : ϕ(T)×A → R.||[f]ϕ −Q∗
M ||∞ ≤ ϵQ∗

π∗ ∃π : ϕ(T) → ∆A.||V [π]ϕ
M − V ∗

M ||∞ ≤ ϵπ∗

Table 1: Approximate State Abstractions for memory functions. Here, ϕ : T →
∆M×∆O, and Po(ot+1) = Pr(ot+1|τt, at) and R are defined as in Definition 4.1.

In addition to these three metrics I will also consider a few types of memory
function. The first distinction is if the memory function itself is stochastic,
µ : M × A × O → ∆M , or deterministic, µ : M × A × O → M . I will
also consider the number of memory states a memory function uses (size). For
simplicity I will consider either memory functions with 2 states, the smallest
possible memory, or k states for arbitrary k.

For a given type of memory function and a given metric we can classify the
quality of a memory function into three broad categories.

• Useless - the memory function is no better than no memory with respect
to the metric

• Improving - the memory function is better than Useless with respect to
the metric

• Optimal - the memory function achieves the maximum possible value of
the metric

With these definitions we can begin asking questions about the existence of dif-
ferent kinds of memory functions such as 2-state deterministic Model-improving
or k-state stochastic Q∗-optimal.

4.1 Existence of Memory Functions

In general it is hard to say if a given type of memory function must exist for
a given POMDP, in fact, it typically does not. We instead restrict the set
of POMDPs to those where one kind of memory function exists and we can
then consider if another kind must also exist. Each result of this form can be
thought of as one type of memory implying the existence of another for the space
of POMDPs. These kinds implications allow the construction of a POMDP

10

class hierarchy where each class of POMDP corresponds to a particular type
of memory function. A structured hierarchy of this kind could be incredibly
useful for future research as it would carve up the large and intractable space
of POMDPs into more manageable chunks and the hierarchical nature may
aid in generalizing results to specific sub categories of POMDP more easily.
The following examples and proofs are motivated by the construction of such a
hierarchy.

4.1.1 Detecting Stochastic Memory - Expected Return

For this first counter example we consider a POMDP which is adversarially de-
signed to reward agents with stochastic memory. By relying on the probabilistic
nature of stochastic memory this POMDP statistically analyses the agents ac-
tions and can detect when memory transitions occur deterministically. The
statistical test built into the POMDP can only detect deterministic memory in
the limit and so it relies on unbounded reward to outpace the exponential dis-
counting which normally pushes return to zero for the ends of long trajectories.
This counter example shows that while stochastic memory can help improve
expected return, deterministic memory may be of no use.

Figure 4: Diagram of counterexample POMDP. Detection mechanism (left).
Reward mechanism (center). Combination of detection and reward (right).

The following counterexample proves the following claims:

• The existence of 2-stochastic expected return optimal memory doesn’t
imply the existence of k-deterministic expected return optimal memory if
rewards are unbounded.

• The existence of 2-stochastic expected return improving memory doesn’t
imply the existence of k-deterministic expected return improving memory
if rewards are unbounded.

• The existence of 2-stochastic or k-stochastic expected return optimal mem-
ory doesn’t imply the existence of k-deterministic expected return optimal
memory if rewards are unbounded.

11

• The existence of 2-stochastic or k-stochastic expected return improving
memory doesn’t imply the existence of k-deterministic expected return
improving memory if rewards are unbounded.

To show both the optimal conditions and the improvable conditions it is
sufficient to show that for a given POMDP where there exists a k-stochastic
memory function which is expected return optimal there doesn’t necessarily ex-
ist a k-deterministic memory function which is improvable. This is derived from
the fact that an optimal memory function is improving, along with its contra-
positive: if there doesn’t exist an improving memory function there cannot exist
an optimal one. For this purpose, we construct the following counter example
and depict its structure in Figure 4.

Consider an environment where the agent’s task is to simulate trajectories
in a stochastic virtual environment and sample from the state distribution after
some number of steps. The agent’s actual environment is constructed adver-
sarially such that the agent is rewarded if it produces different samples for the
same simulated trajectory over multiple trials. The environment is composed of
a detection mechanism and a rewarding mechanism. The detection mechanism
detects whether an agent has deterministic or stochastic memory irrespective
of the stochasticity of the policy. The rewarding mechanism produces different
reward based on if the agent memory is deterministic or stochastic and induces
non-improving reward for deterministic memory. Finally, there is also an opt-
out action that can be taken at the first time step giving the agent 0 reward.

The detection mechanism is composed of a series of tests where the agent is
asked to simulate a particular stochastic environment. The virtual environment
is a board with n = 10 spaces in a line and a token in the first space. The value
of n corresponds to the number of memory states of the stochastic memory
function and we choose it to be 10 for the purposes of this example. For an
agent with 2 stochastic memory states we would similarly have n = 2. Each
test starts with oreset which indicates that the token should be virtually placed
on the first space. Then, an arbitrary long sequence of observations from the set
{oleft, oright} is provided to the agent. When receiving oleft or oright the agent is
expected to simulate the token moving left or right respectively with probability
0.9 or otherwise staying in place (the choice of probability here is arbitrary as
long as it isn’t uniform). Finally, the agent gets the observation osample for
which the agent is expected to take an action from a1, . . . , a10 corresponding to
where the simulated token ended up. For all other observations, the agent is
expected to provide the action a0.

After a single test the likelihood that the sampled action was in fact from
the expected virtual distribution is computed and by repeating the test the
statistical confidence can be increased. To run infinitely many tests infinitely
many times a list of current tests is constructed and run sequentially. Upon
completion a new longer test is added and the full list of tests is repeated. This
ensures that in the limit as a finite time step t goes to infinity, infinitely many
tests, are run infinitely many times, and the length of the tests also approaches
infinity.

12

A single test cannot be executed perfectly by an agent with deterministic
memory while it is trivially handled by a stochastic memory agent with 10
memory states. For any choice of finite deterministic memory size there will
eventually be a test that requires remembering more possible distributions than
there are memory states. In this case, the best that the agent would be able
to do is sample from a distribution that is ϵ close to the true distribution. As
that particular test is repeated infinitely many times, the discrepancy between
the agents sampling distribution and the true distribution will always become
statistically significant and detectable.

For the rewarding mechanism of the environment, we simply give the agent
reward depending on if it is believed to have stochastic or deterministic mem-
ory. A reward that is exponential in the time step, |R(t)| = O(1/γt), would
be sufficient to overshadow the discount factor γ. For this particular counter
example, we will provide a positive reward for agents believed to have stochastic
memory and a negative reward for agents believed to have deterministic mem-
ory (according to the detection mechanism). Positive and negative rewards are
equal in magnitude. If the current likelihood estimate doesn’t have sufficient
confidence a reward of 0 is given. In the limit, the probability that the detecting
mechanism is wrong about the nature of the agents memory goes to zero and
so in the limit, all agents with receive positive/negative reward if they have
stochastic/deterministic memory respectively.

The opt-out action is available for the agent at the first time step and if
taken gives the agent 0 reward and ends the episode. This reward is arbitrary
as long as it is better than the reward achieved by an agent with deterministic
memory. This ensures that the best option for a deterministic agent is to opt
out and so achieve the same performance as no memory.

We now combine the detecting mechanism with the rewarding mechanism.
Importantly, the detecting piece is never certain that a given agent has deter-
ministic or stochastic stochastic memory for any finite time step t. This means
we cannot switch to the rewarding piece indefinitely. Instead, after each test in
the detecting piece we allow the rewarding piece to take over for a single time
step to provide reward based on the current likelihood of the agent having de-
terministic memory. Because of randomness an agent with stochastic memory
may be believed to have deterministic memory but in the limit this will resolve
and the expected return will be positive. A deterministic memory agent with
finitely many states will be detected after finitely many time steps and so will
have a negative expected return even if it receives zero or positive reward for
some finite number of time steps initially. Because of this, any non-stochastic
agent or agent with insufficient memory will take the opt-out action when maxi-
mizing expected return and so achieve the same reward as a no memory function
behavior.

Note that for this counter example we require non-finite trajectories and we
only detect deterministic memory in the limit as the time step goes to infinity.
If trajectories are finite, then proof 4.1 gives a deterministic memory that is
better or equal to any given stochastic memory.

13

4.1.2 Imitating Stochastic Memory - Expected Return

The previous counter example relies on unbounded rewards in order to separate
deterministic memory from stochastic memory. It turns out however that if
rewards are bounded, k deterministic memory can achieve arbitrarily close per-
formance to k stochastic memory by imitating the stochastic system. Moreover,
if trajectory length is finite this proof shows that k deterministic memory is just
as good if not better than stochastic memory for maximizing expected return.

This result actually states something more general about finite automata
and not just memory functions and so I present the lemma and proof in those
terms. For our purposes a deterministic finite automata (DFA) and stochastic
finite automata (SFA) are equivalent to deterministic and stochastic memory
functions respectively.

Lemma 4.1. Let µ∗
k be a k-state stochastic finite automata that will serve as a

memory function in a POMDP. For any POMDP with bounded reward and for
all ϵ, there exists a k′-DFA which achieves an expected return that is only ϵ less
than µ∗

k. Furthermore, it is sufficient to choose k′ ≥ k ln(ϵ(1 − γ)/Rax)/ ln(γ)
where Rmax is the bound on reward and γ is the discount factor.

Proof. Let µ∗
k be the given k-SFA memory function with the corresponding

policy π∗. Let µ̂k′ be the k′-DFA memory function with corresponding policy
π̂.

For a given POMDP, let τt be a trajectory in the environment of states, ob-
servations, memory states, actions and rewards up to time step t where memory
state mt is being chosen. Let the observation, memory states, and rewards for
a time step t be ot, mt, and rt, respectively.

For a given τt, we define Gπ,µ(τt) as the expected sum of discounted rewards
for trajectories that start with τt and then proceed according to the policy π
and memory function µ.

Gπ,µ(τt) = E
τ |τt

[∞∑
i=t

γi−tri

]
We then define Gπ,µ(mt, τt) as the expected sum of discounted rewards for

trajectories that start with τt, transition to memory state mt at time step t,
and then proceed according to the policy π and memory function µ.

Gπ,µ(mt, τt) =
∑
τt+1

Pr(τt+1|τt,mt)Gπ,µ(τt+1)

where Pr(τt+1|τt,mt) is the probability of a trajectory of length t+1 given that
it starts with trajectory τt of length t and that the memory state at time step
t is mt given the policy π.

Let P (m′|m, a, o) be the probability distribution for the transitions of the
memory function µ. This gives P ∗(m′|m, a, o), the probability distribution of the
stochastic memory function µ∗

k, and P̂ (m′|m, a, o), the probability distribution
of the deterministic memory function µ̂k′ .

14

For any time step t we can write the expected return of the stochastic policy
as:

Gπ∗,µ∗
k
= E

τt

[∑
mt∈M

P ∗(mt|ot, at−1,mt−1)Gπ∗,µ∗
k
(mt, τt)

]
Because M is finite, there must exist a m̂t such that for all possible mt ∈ M

Gπ∗,µ∗
k
(m̂t, τt) ≥ Gπ∗,µ∗

k
(mt, τt)

We then let P̂ (m̂t|ot, at−1,mt−1) = 1 and have p̂ be 0 for all other mt. This
guarantees that

E
τt

[∑
mt∈M

P ∗(mt|ot, at−1,mt−1)Gπ∗,µ∗
k
(mt, τt)

]
≤

E
τt

[∑
mt∈M

P̂ (mt|ot, at−1,mt−1)Gπ∗,µ∗
k
(mt, τt)

]

Note that such assignment of P̂ is equivalent to a deterministic memory
function. So we have that for a particular time step t the memory state can
be chosen in a deterministic way to achieve the same or better expected return
when compared to choosing the memory state according to µ∗

k

The same argument can be made inductively, conditioning on a finite initial
trajectory τstart. We can consider longer and longer starting trajectories and
in each case we can deterministically assign P̂ to achieve the same or better
expected return when compared to µ∗

k.

E
τt|τstart

[∑
mt∈M

P ∗(mt|ot,mt−1)Gπ∗,µ∗
k
(mt, τt)

]
≤

E
τt|τstart

[∑
mt∈M

P̂ (mt|ot,mt−1)Gπ∗,µ∗
k
(mt, τt)

] (4)

where Eτt|τstart
is the expectation over trajectories τt that start with τstart.

Importantly, this holds only for finite trajectories τstart. Consider picking the
memory states deterministically as described for trajectories τstart of increas-
ing length. Equation 4 will continue to hold and at some finite point the
Gπ∗,µ∗

k
(mt, τt) term will become epsilon small due to the bounded reward. This

means that a deterministic memory can achieve the same or better expected
return compared to the stochastic memory function for a finite number of time
steps t and after is ϵ close. To achieve this however, we need to distinguish iden-
tical observation, action, memory state pairs that might occur when considering
trajectories of different lengths. To remedy possible conflicts that would prevent
always selecting the optimal memory transitions, we can augment the memory
with the current time step t.

15

We construct µ̂k′ by making t copies of each memory state in µ∗
k, one for

each of the first t time steps. So for a given memory state m from µ∗
k we now

have mt for each time step t. The policy π̂ can be defined to return the same
action as π∗ for each of the t duplicates of a given memory state, ignoring the
time step. We then construct µ̂ as described above by taking the best choice of
memory state transition at each time step ensuring that Gπ∗,µ∗

k
≤ Gπ̂,µ̂k′ .

This gives us a k′-deterministic memory function with k′ = k ∗ t. To guaran-
tee Gπ∗,µ∗

k
−Gπ̂,µ̂k′ < ϵ for a given ϵ we can consider the worst case which would

be a difference of Rmax right after the first t time steps. This gives the expres-
sion Rmaxγ

t(1 + γ + γ2 + . . .) ≤ ϵ which means it is sufficient to take t greater
than ln(ϵ(1−γ)/Rmax)/ ln(γ). This works because once the deterministic mem-
ory function matches the performance of the stochastic memory function for all
trajectories of a sufficiently large finite length, all further rewards are negligibly
small due to the discount factor γ.

4.1.3 Model and Q∗ Error Bounds

Before continuing to further results for Model and Q∗ error I prove a sim-
ple intermediary result. Relying on the fact that both Q∗ abstractions and
Model abstractions share a requirement for the memory function to represent
reward/return I produce the following result:

Lemma 4.2. If there exists a terminal trajectory, τ , such that |[f]ϕ(τ)−R(τ)| ≥
ϵ for all f : ϕ(T)×A → R, then:

1. ϵQ∗ ≥ ϵ
Because τ is a terminal trajectory Q∗

M (τ) = R(τ) and by the definition of
infinity norm || · ||∞, we must have that ϵQ∗ is at least ϵ

2. ϵR ≥ ϵ
By the definition of infinity norm || · ||∞, ϵR must at least be ϵ

This result lets us simplify the search for counter examples that violate
a particular Q∗ error or Model error condition. By finding a single terminal
trajectory that satisfies the condition we can immediately bound both ϵQ∗ and
ϵR. Constructing a POMDP to contain such a trajectory is typically an easier
task and we see a couple such examples in the following sections.

4.1.4 Deterministic Memory Compounding Error - Model and Q∗

This counter example presents a POMDP for which 2 stochastic memory states
are sufficient to be both model and Q∗ optimal while no amount of deterministic
memory can help at all. In particular, this POMDP highlights how stochastic
memory can be highly expressive, not because of its state at any particular
time step, but because of the real-valued probabilities defining the memory
transitions.

The following counter example is for the following results:

16

• The existence of 2-stochastic Q* improving memory doesn’t imply the
existence of k-deterministic Q* improving memory.

• The existence of 2-stochastic Model improving memory doesn’t imply the
existence of k-deterministic Model improving memory.

• The existence of 2-stochastic Q* optimal memory doesn’t imply the exis-
tence of k-deterministic Q* optimal memory.

• The existence of 2-stochastic Model optimal memory doesn’t imply the
existence of k-deterministic Model optimal memory.

First we define a virtual MDP with two states s1 and s2 and a parameter-
ized set of actions A = {ax|x ∈ [−1, 1]}. Actions ax with x >= 0 result in
the the following two transitions P (s2|s1, ax) = x, P (s1|s1, ax) = 1 − x, and
P (s2|s2, ax) = 1. Actions ax with x < 0 result in the the following two transi-
tions P (s1|s2, ax) = x, P (s2|s2, ax) = 1 − x, and P (s1|s1, ax) = 1. Actions are
selected uniformly at random at each time step.

We now wrap this MDP with a POMDP to produce the desired counter
example. The POMDP tracks the running probability of state s1 and at each
time step communicates the action taken in the MDP, ax, to the agent as ob-
servation ox. At each time step the POMDP has a .1 probability of terminating
and presenting the agent with the oend observation. For this observation the
reward is equal to the probability of the MDP being in state s1. The reward for
all other observations is 0. The trajectory terminates after the oend observation.
The action space for the agent is A = {a}, a single action for all time steps.

There exists a 2-stochastic optimal memory which is sufficient to predict
the reward at each time step. Specifically, we take the memory function which
for observations transitions its memory states m1 and m2 in the same way as
the virtual MDP transitions its states s1 and s2 at each time step. This is Q∗

optimal. f can be chosen such that f((m1, oend), a) = 1 and f((m2, oend), a) = 0
which gives an Q∗ error of 0 for terminal trajectories. For non-terminal partial
trajectories we note that the true future return is independent of the actual time
step because there is no time dependence for transitions nor termination. This
lets us define R̂(s1) to be the future discounted rewards if the current MDP
state is s1 and R̂(s2) to be the future discounted rewards if the current MDP
state is s2. We can then choose f((m1, ox ̸= oend), a) = R̂(s1) and f((m2, ox ̸=
oend), a) = R̂(s2) which also gives ϵQ∗ = 0. This is because P (m1|τ) = P (s1|τ)
and P (m2|τ) = P (s2|τ) so when lifting for a given trajectory τ we get P (m1) ∗
f((m1, o ̸= oend), a)+P (m2)∗f((m2, o ̸= oend), a) = P (s1)∗R̂(s1)+P (s2)∗R̂(s2)
which is exactly the true future discounted reward.

Following similar reasoning, this memory function is also Model optimal. For
terminal trajectories fR can match f and for non-terminal trajectories fR((·, o ̸=
oend), a) = 0 which gives ϵR = 0. For transitions, the probability of oend is always
.1 and the probability of the observations ox follows U(−1, 1) ∗ .9 which gives a
natural choice of fP with ϵP = 0.

17

No memory can at best achieve ϵQ∗ = 1/2 and ϵR = 1/2 because the true
reward at the final observation can be either 0 or 1 and f(oend, a) can at best
be assigned to the middle of this range to minimize error.

We now consider a k-deterministic memory function µ, with corresponding
. Lets assume that exists function f : ϕ(T) × A → R such that ||f(ϕ(τ)) −
R(τ)||∞ ≤ ϵ < 1/2. Note that this is identical to the terminal trajectory
requirement for f in Lemma 4.2. For simplicity we can exclude the observation
and action, which are always oend and a respectively, to get an identical f :
M → R. We now prove by contradiction that such f cannot exist.

For each memory state mi we define Si = {τ |ϕ(τ) = mi, τ is terminal} and
R(S) = {R(τ)|τ ∈ S}. Let S, generated by memory statem, be the set for which
supR(S)− inf R(S) ≥ supR(Si)− inf R(Si) for all Si. The best choice of f(m)
is (supR(S) + inf R(S))/2 because for all τ ∈ S, |f(m)− R(τ)| ≤ (supR(S)−
inf R(S))/2 ≤ ϵ < 1/2. This implies that supR(S)− inf R(S) ≤ 2ϵ < 1. Either
inf S > 0 or supS < 1. Without loss of generality, assume that inf S > 0.

We now consider an arbitrary trajectory τ and define the operation τ ⊕ ox
for observation ox which generates a new terminal trajectory by inserting the
observation ox before oend in the trajectory. Notice that for any τ1, τ2 ∈ S and
ox, we have that ϕ(τ1 ⊕ ox) = ϕ(τ2 ⊕ ox) = µ(m, a, ox). We also have that for
positive x, R(τ⊕ox) = (1−x)R(τ) as defined by the probability of transitioning
from s1 to s1 in the virtual MDP.

For any choice 0 < ϵ′ < 1
4 supR we can choose τ1, τ2 ∈ S and ox such that

supR(S)−R(τ2⊕ox) = ϵ′ and R(τ1⊕ox) < inf R(S). First we pick τ2 ∈ S such
that supR(S) − R(τ2) = δ < ϵ′, for δ ∈ R, which gives R(τ2) = supR(S) − δ.
This then means we can choose x = 1 − (supR(S) − ϵ′)/(supR(S) − δ) which
gives the desired supR(S) − R(τ2 ⊕ ox) = ϵ′. The condition 0 < ϵ′ < 1

4 supR
ensures x ∈ (0, 1]. We can now choose τ1 ∈ S such that R(τ1) − inf R(S) =
δ′ < x

1−x inf R(S) which reduces to the desired R(τ1)(1 − x) < inf R(S) which
is equivalent to R(τ1 ⊕ ox) < inf R(S).

We now consider a sequence of choices of ϵ′, ϵ1, ϵ2, . . . , such that ϵi = ϵi−1/2.
For each choice of epsilon ϵi we have τ1,i, τ2,i ∈ S and ox such that supR(S)−
R(τ2,i⊕ox) = ϵ′ and R(τ1,i⊕ox) < inf R(S). Let mi = ϕ(τ1,i⊕ox) = ϕ(τ2,i⊕ox)
for each ϵi. For the infinite sequence of mi, there must be some particular m̂
that repeats infinitely many times. Let m̂ generate Ŝ and I be the set of
{i|mi = m̂}. For the pairs τ1,i ⊕ ox, τ2,i ⊕ ox ∈ Ŝ, we have that inf R(Ŝ) ≤
infi∈I R(τ1,i ⊕ ox) < inf R(S) and supi∈I R(τ2,i ⊕ ox) = supR(S) ≤ supR(Ŝ).

This implies that supR(Ŝ)− inf R(Ŝ) > supR(S)− inf R(S) which contradicts
the definition of S. So we have that ||f(ϕ(τ))− R(τ)||∞ ≥ 1/2 and by Lemma
4.2 we have that ϵQ∗ ≥ 1/2 and ϵM ≥ 1/2.

4.1.5 Stochastic Memory Can’t Count Multiples - Model and Q∗

Our final counter example shows a scenario where k deterministic memory func-
tion can perfectly predict the return and model a POMDP while a 2 state
stochastic memory cannot. This highlights that while normally stochastic mem-
ory transitions are often much more expressive, there are scenarios where the

18

exact precision of deterministic memory is necessary.
Consider an environment where the agent needs to keep track of the multi-

plicity of the time step. First, the agent receives a sequence of 0, 1, 2, or 3 onull
observations followed by a single oend observation. At each time step, the agent
can only take the action a. After each observation, the agent receives a reward
of 0 unless the observation is oend and the time step is a multiple of 3. More
specifically, here are the rewards for the following observation sequences:

1. R(oend) = 1

2. R(onull, oend) = 0

3. R(onull, onull, oend) = 0

4. R(onull, onull, onull, oend) = 1

Each of the possible trajectory sequences is equally likely.
A 3-state deterministic memory function is sufficient to achieve 0 reward

error in this environment. Consider three states m1, m2, and m3 that transition
in a cycle with 100% probability. Whenever the memory is in state m1, the
initial memory state, the agent can predict a reward of 1 and otherwise predict
a reward of 0. This gives a candidate f which satisfies ||[f]ϕ −Q∗

M ||∞ ≤ ϵQ∗ .
An agent with no memory could achieve a maximum error of 1/2 by pre-

dicting a reward of 1/2 in all cases.
We now consider the constraints that a 2-state stochastic memory func-

tion would need to satisfy in order to perform better than an agent with no
memory. Note that because the agent only has one available action, we can
think of f as a function only of memory. We will also reduce our view to only
the oend observation because if no f exists which outperforms a memoryless
agent over just one of the observations it also cannot exist over both. Because
we are considering only a single action and a single observation, f becomes
a function of only the memory state. This lets us succinctly express [f]ϕ as
E(m,o)∼ϕ(τ)[f(m)] = Pr(m1|τ)f(m1) + Pr(m2|τ)f(m2). For convenience, we
write f = (f(m1), f(m2)).

We now need to determine what Pr(m1) and Pr(m2) would be for a given
trajectory. Because the observation is always onull for all time steps before the
oend observation, and because the agents action is always a, the memory function
update reduces to a function of only the previous memory state. This also lets us

express it as a two by two matrix A =

(
p 1− p

1− q q

)
, where p is the probability

of transitioning to m1 when in m1 and q is the probability of transitioning to
m2 when in m2. Now, given a vector representing the probabilities of each
memory state, we can find the corresponding probabilities at the next time
step by multiplying this vector by A. Finally, we say the initial memory state
distribution is y = (y1, y2) where y1 is the probability of starting in state m1

and y2 is the probability of starting in state m2.
Using y, A, and f , we can express the predicted Q∗ value, which is equiva-

lently the final reward, for the terminal states of the four possible trajectories

19

of this environment. If we assume that this 2-stochastic memory agent is im-
proving, we know that these predictions must be greater or less than 1/2 based
on the true Q∗ value.

1. yfT > 1/2

2. yAfT < 1/2

3. yA2fT < 1/2

4. yA3fT > 1/2

Note that these inequalities are strict because predicting 1/2 would mean that
the error of the agent is at least |1/2− 1| or |1/2− 0| which is not better than
a no-memory agent.

From the first two conditions, we get that yAf < yf , and subtracting yf =
yIf , where I is the identity matrix, we get y(A − I)f < 0. From the second
two conditions we get that yA2f < yA3f and subtracting yA2f gives 0 <
y(A3 −A2)f . We can calculate A3 −A2 to be (a+ b− 1)2(A− I) so we get the
final condition of 0 < (a+ b− 1)2y(A− I)f .

Because (a + b − 1)2 is positive we have a contradiction. Both 0 < (a +
b − 1)2y(A − I)f and y(A − I)f < 0 cannot be true. This implies that a 2-
stochastic memory agent cannot perform any better than a no memory agent
on this environment.

4.2 The POMDP Hierarchy

In this section, I set out to define classes of POMDPs in terms of memory
functions, to determine which classes include each other through our proofs and
counter examples, and to build a structured POMDP class hierarchy. What
our proofs and counter examples show is that the POMDP hierarchy I desired
is actually quite sparse. Excluding trivial relations ships, the existence of one
kind of memory tells you almost nothing 2 about the existence of any other
kind of memory. While the various counter examples presented in this section
don’t produce a satisfying POMDP class hierarchy but, they do highlight the
tremendous complexity of environments which are represented by the POMDP
space.

The particular types of memory function considered here are by far not ex-
haustive and one could consider many more variations. On particularly limiting
constraint is that I consider only memory functions with 2 and k memory states
for arbitrary k. Focusing on specific integer values for memory size, for ex-
ample, might help produce more granular memory function dependencies and
could lead to a clearer POMDP class hierarchy.

2The notable exception being the proof given in section 4.1.2

20

5 Conclusion

In this work I present two separate views on agent memory in the context of
POMDPs; trajectory sets and finite memory functions. Trajectory sets are
shown to have several interesting theoretical properties. They preserve the
Markov property and this allows them to be composed into an MDP. Trajec-
tory sets also represent the information that a learning agent obtained so far
and can be converted into an optimal memory function. Although these results
are promising, I find trajectory sets to be non-practical due to their complex-
ity. Further study would be necessary to determine if these drawbacks can be
avoided and if trajectory sets can be used for learning memory functions.

In the second half of this work, I explore and construct a POMDP hierarchy
in terms of different types of agent memory functions. To build the links in
this hierarchy I present counter examples and proofs to show if the existence of
one kind of memory function necessarily implies the existence of another. The
results didn’t lead to a satisfying hierarchy but many results are quite interesting
on their own. In particular, I show that deterministic memory can closely
approximate stochastic memory and that in specific POMDPs deterministic
memory can be necessary.

6 acknowledgments

I would like to thank Dr. Konidaris for supervising my research work during
my master’s program. I would also like to thank Aaron Kirtland for his kind
mentoring and helpful discussion of many of the ideas, proofs, and examples
presented in this work.

References

[1] Daniel S Bernstein, Shlomo Zilberstein, and Neil Immerman. The com-
plexity of decentralized control of markov decision processes, 2013.

[2] Fan Chen, Huan Wang, Caiming Xiong, Song Mei, and Yu Bai. Lower
bounds for learning in revealing pomdps, 2023.

[3] Jiacheng Guo, Minshuo Chen, Huan Wang, Caiming Xiong, Mengdi Wang,
and Yu Bai. Sample-efficient learning of pomdps with multiple observations
in hindsight, 2023.

[4] L. Li, T.J. Walsh, and M.L. Littman. Towards a unified theory of state
abstraction for MDPs. In Proceedings of the Ninth International Symposium
on Artificial Intelligence and Mathematics, 2006.

[5] Long-Ji Lin and Tom M Mitchell. Memory approaches to reinforcement
learning in non-Markovian domains. Citeseer, 1992.

21

[6] Michael Littman. Algorithms for sequential decision making. pages 120–
128, 08 2009.

[7] Lisa Meeden, Gary McGraw, and Douglas Blank. Emergent control and
planning in an autonomous vehicle. In Proceedings of the Annual Meeting
of the Cognitive Science Society, volume 15, 1993.

[8] Mark Bishop Ring. Continual learning in reinforcement environments. The
University of Texas at Austin, 1994.

[9] Jürgen Schmidhuber. Reinforcement learning in markovian and non-
markovian environments. Advances in neural information processing sys-
tems, 3, 1990.

[10] Arthur Wandzel, Yoonseon Oh, Michael Fishman, Nishanth Kumar, Law-
son L.S. Wong, and Stefanie Tellex. Multi-object search using object-
oriented pomdps. In 2019 International Conference on Robotics and Au-
tomation (ICRA), pages 7194–7200, 2019.

22

