
Dynamic Causal Monitoring for Distributed Systems

Ryan Roelke
Brown University

Abstract

Monitoring and troubleshooting distributed systems is notoriously di�cult; potential problems are complex, varied,
and unpredictable.�e de-factomonitoring and diagnosis tools at our disposal today – logs, counters, and metrics –
have two important limitations: what gets recorded is de�ned a priori, and the information is recorded in a component-
or machine-centric way, making it extremely hard to correlate events that cross these boundaries.�is report is an
extended version of our full Pivot Tracing paper [68]. Pivot Tracing is a monitoring framework for distributed systems
that addresses both limitations by combining dynamic instrumentation with a novel relational operator – the happened-
before join. Pivot Tracing gives users, at runtime, the ability to de�ne arbitrary metrics at one point of the system, while
being able to select, �lter, and group by events meaningful at other parts of the system, even when crossing component
or machine boundaries. We have implemented a prototype of Pivot Tracing for Java-based systems and evaluate it on a
heterogeneous Hadoop cluster comprising HDFS, HBase, MapReduce, and YARN. We show that Pivot Tracing can
e�ectively identify a diverse range of root causes such as so�ware bugs, miscon�guration, and limping hardware. We
show that Pivot Tracing is dynamic, extensible, and enables cross-tier analysis between any inter-operating applications,
with low execution overhead.

�is report extends the original paper’s discussion [68] of Pivot Tracing’s implementation and provides further
details on instrumenting and operating Pivot Tracing within distributed systems.

1 Introduction
Monitoring and troubleshooting distributed systems is notoriously di�cult.�e potential problems are myriad: hardware
and so�ware failures, miscon�gurations, hot spots, aggressive tenants, or even simply unrealistic user expectations.
Despite the complex, varied, and unpredictable nature of these problems, the de-factomonitoring and diagnosis tools at
our disposal today – logs, counters, and metrics – have at least two fundamental limitations: what gets recorded is de�ned
a priori, at development or deployment time, and the information is recorded in a component- or machine-centric way,
making it extremely hard to correlate events that cross these boundaries.
While there has been great progress in using machine learning techniques [75, 97, 78, 60] and static analysis [100, 99]

to improve the quality of logs and their use in troubleshooting, they are still limited to a one-size-�ts all solution with
an inherent tradeo� between precision and overhead. Likewise, with monitoring, performance counters may be too
coarse-grained [74]; and if a user requests additional metrics, a cost-bene�t tug-of-war with the developers can ensue [21].
Dynamic instrumentation systems such as Fay [51] andDTrace [38] enable the diagnosis of unanticipated performance

problems in production systems [37] by providing the ability to select, at runtime, which of a large number of tracepoints
to activate. Both Fay and DTrace, however, are still limited when it comes to correlating events that cross address-space
or OS-instance boundaries.
In this paper we combine dynamic instrumentation with causal tracing techniques [52, 89, 39] to fundamentally

increase the power and applicability of either technique. We present Pivot Tracing, a monitoring framework that gives
operators and users, at runtime, the ability to obtain an arbitrary metric at one point of the system, while being able to
select, �lter, and group by events meaningful at other parts of the system, even when crossing component or machine
boundaries.
Like Fay, Pivot Tracing models the monitoring and tracing of a system as high-level queries over a dynamic dataset

of distributed events. Pivot Tracing exposes an API for specifying such queries and e�ciently evaluates them across the
distributed system, returning a streaming dataset of results.

�e key contribution of Pivot Tracing is a novel operator, the “happened-before join”, � , that enables queries to be
contextualized by Lamport’s happened before relation,� [65]. Using � , queries can group and �lter events based on
properties of any events that causally precede them in an execution.

1

To track the happened-before relation between events, Pivot Tracing borrows from causal tracing techniques, and
utilizes a generic metadata propagation mechanism for passing partial query execution state along the execution path of
each request.�is enables inline evaluation of joins during request execution, drastically mitigating query overhead and
avoiding the scalability issues of global evaluation.
Pivot Tracing takes inspiration from data cubes in the online analytical processing domain [54], and derives its

name from pivot tables and pivot charts [48] from spreadsheet programs, due to their ability to dynamically select
values, functions, and grouping dimensions from an underlying dataset. Pivot Tracing is intended for use in both manual
and automated diagnosis tasks, and to support both one-o� queries for interactive debugging and standing queries for
long-running system monitoring. Pivot Tracing can serve as the foundation for the development of further diagnosis
tools. Pivot Tracing queries impose truly no overhead when disabled and utilize dynamic instrumentation for runtime
installation.
We have implemented a prototype of Pivot Tracing for Java-based systems and evaluate it on a heterogeneous Hadoop

cluster comprising HDFS, HBase, MapReduce, and YARN. In our evaluation we show that Pivot Tracing can e�ectively
identify a diverse range of root causes such as so�ware bugs, miscon�guration, and limping hardware. We show that
Pivot Tracing is dynamic, extensible to new kinds of analysis, and enables cross-tier analysis between any inter-operating
applications with low execution overhead.

In summary, this paper has the following contributions:

• Introduces the abstraction of the happened before join (�) for arbitrary event correlations;
• Presents an e�cient query optimization strategy and implementation for � at runtime, using dynamic instru-
mentation and cross-component causal tracing;

• Presents a prototype implementation of Pivot Tracing in Java, applied to multiple components of the Hadoop
stack;

• Evaluates the utility and �exibility of Pivot Tracing to diagnose real problems.

�is report extends the original paper’s discussion [68] of Pivot Tracing’s implementation details and requirements
for deploying Pivot Tracing to a system.

2 Motivation
2.1 Pivot Tracing in Action: Preview
In this section we motivate Pivot Tracing with a monitoring task on the Hadoop stack. Our goal here is to demonstrate
some of what Pivot Tracing can do, and we leave details of its design, query language, and implementation to later
sections.
Suppose we want to apportion the disk bandwidth usage across a cluster of eight machines simultaneously running

HBase, Hadoop MapReduce, and direct HDFS clients. Section 5 has an overview of these components, but for now it
su�ces to know that HBase, a database application, accesses data through HDFS, a distributed �le system. MapReduce,
in addition to accessing data through HDFS, also accesses the disk directly to perform external sorts and to shu�e data
between tasks.
We run the following client applications:

FSread4m Random closed-loop 4MB HDFS reads
FSread64m Random closed-loop 64MB HDFS reads
Hget 10kB row lookups in a large HBase table
Hscan 4MB table scans of a large HBase table
MRsort10g MapReduce sort job on 10GB of input data
MRsort100g MapReduce sort job on 100GB of input data

By default, the systems expose a few metrics for disk consumption, such as disk read throughput aggregated by each
HDFS DataNode. To reproduce this metric with Pivot Tracing, we de�ne a tracepoint1 for the DataNodeMetrics class to
intercept the incrBytesRead(int delta)method, and we run the following query, in Pivot Tracing’s LINQ-like query
language [71]:

Q1: From incr In DataNodeMetrics.incrBytesRead
GroupBy incr.host
Select incr.host, SUM(incr.delta)

1A tracepoint is a location in the application source code where instrumentation can run, cf. §3.

2

Time [min]

0

50

100

150

200

0 5 10 15

H
D

F
S

 T
h

ro
u
g
h

p
u
t
[M

B
/s

] Host A Host E
Host B Host F
Host C Host G
Host D Host H

(a) HDFS DataNode throughput
per machine from instrumented

DataNodeMetrics.

Time [min]

H
D

F
S

 T
h

ro
u

g
h

p
u

t
[M

B
/s

]

0

50

100

150

200

0 5 10 15

MRSORT100G HSCAN
MRSORT10G HGET

FSREAD4M
FSREAD64M

(b) HDFS DataNode throughput
grouped by high-level client

application.

(c) Pivot table showing disk read and write sparklines for MRsort10g.
Rows group by host machine; columns group by source process. Bot-
tom row and right column show totals, and bottom-right corner shows
grand total.

Figure 1: In this example, Pivot Tracing exposes a low-level HDFS metric grouped by client identi�ers from other
applications. Pivot Tracing can expose arbitrary metrics at one point of the system, while being able to select, �lter, and
group by events meaningful at other parts of the system, even when crossing component or machine boundaries.

�is query causes each machine to aggregate the delta argument each time incrBytesRead is invoked, grouping by the
host name. Each machine reports its local aggregate every second, from which we produce the time series in Figure 1a.

�ings get more interesting, though, if we wish to measure the HDFS usage of each of our client applications. HDFS
only has visibility of its direct clients, and thus an aggregate view of all HBase and all MapReduce clients. At best,
applications must estimate throughput client side. With Pivot Tracing, we de�ne tracepoints for the client protocols
of HDFS (DataTransferProtocol), HBase (ClientService), and MapReduce (ApplicationClientProtocol), and use the
name of the client process as the group by key for the query. Figure 1b shows the global HDFS read throughput of each
client application, produced by the following query:

Q2: From incr In DataNodeMetrics.incrBytesRead
Join cl In First(ClientProtocols) On cl -> incr
GroupBy cl.procName
Select cl.procName, SUM(incr.delta)

�e -> symbol indicates a happened-before join. Pivot Tracing’s implementation will record the process name the
�rst time the request passes through any client protocol method and propagate it along the execution.�en, whenever
the execution reaches incrBytesRead on a DataNode, Pivot Tracing will emit the bytes read or written, grouped by the
recorded name.�is query exposes information about client disk throughput that cannot currently be exposed by HDFS.
Figure 1c demonstrates the ability for Pivot Tracing to group metrics along arbitrary dimensions. It is generated by

two queries similar to Q2 which instrument Java’s FileInputStream and FileOutputStream, still joining with the client
process name. We show the per-machine, per-application disk read and write throughput of MRsort10g from the
same experiment.�is �gure resembles a pivot table where summing across rows yields per-machine totals, summing
across columns yields per-system totals, and the bottom right corner shows the global totals. In this example, the client
application presents a further dimension along which we could present statistics.
Query Q1 above is processed locally, while query Q2 requires the propagation of information from client processes to

3

the data access points. Pivot Tracing’s query optimizer installs dynamic instrumentation where needed, and determines
when such propagation must occur to process a query.�e out-of-the box metrics provided by HDFS, HBase, and
MapReduce cannot provide analyses like those presented here. Simple correlations – such as determining whichHDFS
datanodes were read from by a high-level client application – are not typically possible. Metrics are ad-hoc between
systems; HDFS sums IO bytes, while HBase exposes operations per second.�ere is very limited support for cross-tier
analysis: MapReduce simply counts global HDFS input and output bytes; HBase does not explicitly relate HDFS metrics
to HBase operations.

2.2 Monitoring and Troubleshooting Challenges
Before we describe the design of Pivot Tracing, it is worth examining the challenges faced by traditional monitoring and
troubleshooting techniques. Essentially, we group these challenges along two dimensions: �rst, when the choice of what
to record about an execution is made a priori, there is an inherent tradeo� between precision and overhead. Second,
solutions are tied to each individual component, which makes it hard to correlate and integrate cross-component data.
One size does not �t all Problems in distributed systems are complex, varied, and unpredictable. By default, the
information required to diagnose an issue may not be reported by the system or contained in system logs. Current
approaches tie logging and statistics mechanisms into the development path of products, where there is a mismatch
between the expectations and incentives of the developer and the needs of operators and users. Panelists in [35] discuss the
important need to “close the loop of operations back to developers”. According to Yuan et al. [99], regarding diagnosing
failures, “(. . .) existing log messages contain too little information. Despite their widespread use in failure diagnosis, it is still

rare that log messages are systematically designed to support this function.”
�is mismatch can be observed in the many issues raised by users on Apache’s issue trackers: to request new

metrics [3, 4, 7, 8, 9, 17, 22]; to request changes to aggregation methods [10, 21, 23]; and to request new breakdowns
of existing metrics [2, 5, 6, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 25]. Many issues remain unresolved due to developer
pushback [20, 19, 17, 16, 12] or inertia [25, 23, 22, 18, 14, 8, 7, 5]. Even simple cases of miscon�guration are frequently
unreported by error logs [98].
Eventually, applications are updated to record more information, but this has e�ects both in performance and

information overload. Users must pay the performance overheads of any systems that are enabled by default, regardless
of their utility. For example, HBase SchemaMetrics were introduced to aid developers, but all users of HBase pay the 10%
performance overhead they incur [21].�e HBase user guide [1] carries the following warning for users users wishing
to integrate with Ganglia [70]: “By default, HBase emits a large number of metrics per region server. Ganglia may have

di�culty processing all these metrics. Consider increasing the capacity of the Ganglia server or reducing the number of

metrics emitted by HBase.”

In [81], the authors highlight the “needle-in-a-haystack” nature of diagnosis using logs; while a log may contain
information relevant to a problem, extracting this information from a log requires system familiarity developed over a
long period of time. VScope [95] introduces a novel mechanism for honing in on root causes on a running system, but at
the last hop defers to o�ine user analysis of debug-level logs, requiring the user to trawl through 500MB of logs which
incur a 99.1% performance overhead to generate. In [26], users complain that the entire state of the cluster is exposed via
a single JSON endpoint and can become massive, even if a client only wants information for a subset of the state.
Dynamic instrumentation frameworks such as Fay [51], DTrace [38], and SystemTap [80] address these limitations,

by allowing almost arbitrary instrumentation to be installed dynamically at runtime.�ese tools de�ne many probes in
the system, both at the kernel and user level, where they can insert instrumentation code, with near zero cost for inactive
probes.�is code can read, but not write, any state of the running system.�ey have proven extremely useful in the
diagnosis of complex and subtle system problems [37].�ey are limited, though, in the extent to which probes may share
information with each other. In Fay, only probes in the same address space can share information, while in DTrace the
scope is limited to a single operating system instance.
Crossing Boundaries In multi-tenant, multi-application stacks, the root cause and symptoms of an issue may appear in
di�erent processes, machines, and application tiers, and may be visible to di�erent users. A user of one application may
need to relate information from some other dependent application in order to diagnose problems that span multiple
systems. For example, [13] outlines how MapReduce lacks the ability to access HBase metrics on a per-task basis, and
that the framework only returns aggregates across all tasks. [25] outlines how the executors for a task do not propagate
failure information, so diagnosis can be di�cult if an executor fails. In discussion the developers note: “�e actually

interesting / useful information is hidden in one of four or �ve di�erent places, potentially spread across as many di�erent

machines.�is leads to unpleasant and repetitive searching through logs looking for a clue to what went wrong. (. . .)�ere’s

a lot of information that is hidden in log �les and is very hard to correlate.”

4

Yarn HBaseHDFS MapReduceZooKeeper Yarn HBaseHDFS MapReduceZooKeeper

Operators

Developers

DebuggingInstrumenting MonitoringTroubleshooting Requesting

Figure 2: Developers instrument and debug single components of complex systems, while operators troubleshoot and
monitor the entire system. On the le� is the current state: operators must request additional instrumentation from
developers. On the right is the ideal, where operators can instrument entire multi-component systems directly, without
depending on developers.

TracepointsQuery

Weave

System

Tuples

Users

Figure 3: Interactions between Pivot Tracing components (§3).

Prior research has presented mechanisms to observe or infer the relationship between events [34, 45, 69, 87, 100, 52,
89, 31, 86, 32, 43, 85, 28]. Studies of logging practices conclude that end-to-end tracing would be helpful in navigating
the logging issues they outline [81, 77]. A variety of these mechanisms have also materialized in production systems: for
example, Google’s Dapper [89], HBase’s HTrace [58], Accumulo’s Cloudtrace [27], and Twitter’s Zipkin [91]. Overall,
these approaches can obtain much richer information about particular executions than component-centric logs or
metrics alone, and have found uses in troubleshooting, debugging, performance analysis and anomaly detection, for
example.
However, most of these systems record or reconstruct traces of execution for o�ine analysis, and thus share some of

the problems above concerning what to record. Causal tracing enables coherent sampling [86, 89], which controls the
overhead, but risks missing important information about rare but interesting events.

Figure 2 summarizes the challenges outlined in this section. Currently, developers control what gets instrumented in
a system without an integrated view of all components. In the ideal case, operators should have tools that overcome
the insu�cient and isolated logging and monitoring mechanisms provided by components of a system. In the coming
sections we discuss Pivot Tracing, which presents a leap forward to resolving these issues.

3 Design
Pivot Tracing is a dynamic monitoring and tracing framework for distributed systems. At a high level, it aims to enable
�exible runtimemonitoring by correlatingmetrics and events from arbitrary points in the system.�e challenges outlined
in 2 motivate the following high-level design goals:

• Con�gure, implement, and install monitoring at runtime
• Low system overhead to enable “always on” monitoring
• Capture causality between events from multiple processes and applications

In this section we outline the fundamental concepts and mechanisms behind Pivot Tracing. We �rst give an overview of
Pivot Tracing components, then go on to describe each component in more detail.
Pivot Tracing Overview

5

Operation Description Example

From Use input tuples from a set of tracepoints From e In RPCs
Union (⋃) Union events from multiple tracepoints From e In DataRPCs, ControlRPCs
Selection (σ) Filter only tuples that match a predicate Where e.Size < 10
Projection (Π) Restrict tuples to a subset of �elds Select e.User, e.Host
Aggregation (A) Aggregate tuples Select SUM(e.Cost)
GroupBy (G) Group tuples based on one or more �elds GroupBy e.User
GroupBy Aggregation (GA) Aggregate tuples of a group Select e.User, SUM(e.Cost)
Happened-Before Join (�) Happened-before join tuples from another query Join d In Disk On d -> e

Happened-before join a subset of tuples Join d In MostRecent(Disk) On d -> e

Table 1: Operations supported by the Pivot Tracing query language

Figure 3 shows the high-level interactions between Pivot Tracing components. Pivot Tracing models events as the
tuples of a streaming, distributed dataset. Users submit relational queries over this dataset, which get compiled and
installed in the system; query results are streamed back to the user. A query refers to variables exposed by one or more
tracepoints— places in the system where Pivot Tracing can insert instrumentation. Each invocation of a tracepoint
generates a tuple. Queries can select, �lter, aggregate, and group tuples. We distinguish Pivot Tracing from prior work by
supporting joins between events that occur within and across process, machine, and application boundaries.
To install a query, Pivot Tracing generates code implementing the query and weaves that code into the queried

tracepoints. We discuss the generated code in §4.2 and the process of weaving in §4.3. A�er code is weaved, subsequent
requests executing in the system invoke that code each time their execution reaches the tracepoint.
Tracepoints Tracepoints provide the system-level entry point for Pivot Tracing queries. A tracepoint typically corresponds
to some event: a user submits a request; a low-level IO operation completes; an external RPC is invoked, etc. More
speci�cally, a tracepoint identi�es one or more locations in the system code where Pivot Tracing can install and run
instrumentation, which is speci�ed at runtime by operator queries and implemented in a restricted language which
we describe in §4.2. Tracepoints export named variables that can be accessed by instrumentation. Figure 10 shows the
speci�cation of one of the tracepoints in Q2 from §2. Besides declared exports, all tracepoints export a few variables by
default: host, timestamp, process id, process name, and the tracepoint de�nition.
Whenever execution of the system reaches a tracepoint, any instrumentation con�gured for that tracepoint will be

invoked, generating a tuple with its exported variables.�ese are then accessible to any instrumentation code installed at
the tracepoint.
Query Language Pivot Tracing enables users to express high-level queries about the variables exported by one or
more tracepoints. We abstract tracepoint invocations as streaming datasets of tuples; Pivot Tracing queries are therefore
relational queries across the tuples of several such datasets.
To express queries, Pivot Tracing provides a parser for LINQ-like text queries such as those outlined in §2. Table 1

outlines the query operations supported by Pivot Tracing. Pivot Tracing supports several typical operations including
projection (Π), selection (σ), grouping (G) and aggregation (A). Pivot Tracing aggregators include Count, Sum, Max, Min,
and Average. Pivot Tracing also de�nes the temporal �lters MostRecent, MostRecentN, First, and FirstN, to take the
1 or Nmost or least recent events. Finally, Pivot Tracing introduces the novel happened-before join query operator (�).
Happened-before Joins A key contribution of Pivot Tracing is the novel happened-before join query operator. Happened-
before join enables the tuples from two Pivot Tracing queries to be joined based on Lamport’s happened before relation,
� [65]. For events a and b occurring anywhere in the system, we say that a happened before b and write a � b if the
occurrence of event a causally preceded the occurrence of event b and they occurred as part of the execution of the same
request.2 If a and b are not part of the same execution, then a /� b; if the occurrence of a did not lead to the occurrence
of b, then a /� b (e.g., they occur in two parallel threads of execution that do not communicate); and if a � b then b /� a.
For any two queries Q1 and Q2, the happened-before join Q1 � Q2 produces tuples t1 t2 for all t1 ∈ Q1 and t2 ∈ Q2

such that t1 � t2.�at is, Q1 produced t1 before Q2 produced tuple t2 in the execution of the same request. Figure 4
shows an example execution triggering tracepoints A, B, and C several times, and outlines the tuples that would be
produced for this execution by di�erent queries.
Query Q2 in §2 demonstrates the use of happened-before join. In the query, tuples generated by the disk IO tracepoint

DataNodeMetrics.incrBytesRead are joined to the �rst tuple generated by the ClientProtocols tracepoint.
2�is de�nition does not capture all possible causality, including when events in the processing of one request could in�uence another, but could be

extended if necessary.

6

Execution Graph Query Query Results

A

A� B b2 b2

B�C
b1 b1

b2

(A� B)�C b2 b2

Figure 4: An example execution that triggers tracepoints A, B and C several times. We show several Pivot Tracing queries
and the tuples that would result for each.

Happened-before join substantially improves our ability to perform root cause analysis by giving us visibility into
the relationships between events in the system.�e happened-before relationship is fundamental to a number of prior
approaches in root cause analysis (§6). Pivot Tracing is designed to e�ciently support happened-before joins, but does
not optimize more general joins such as equijoins ().

4 Pivot Tracing Fundamentals
We have implemented a prototype of Pivot Tracing for Java-based system. We categorize our prototype implementation
into three pieces. To cross system components, we implement a generalization of end-to-end metadata propagation
called baggage that allows di�erent components of the system to interact with one another. To bridge high-level queries
with low-level implementation, we introduce an intermediary representation for queries called advice. Finally, to address
the problem of “one size �ts all”, we implement dynamic instrumentation for Java that allows us to insert code at runtime.

4.1 Baggage
A naïve implementation of happened-before join is expensive, as tuples must be aggregated across the cluster prior to
performing the join. For example, temporal joins implemented by Magpie [33] are expensive for this reason.
In order to support Pivot Tracing, we need an e�cient implementation of the happened-before join. To achieve an

e�cient implementation, Pivot Tracing borrows from techniques in end-to-end tracing, by generalizing causal metadata
propagating found in systems such as X-Trace[52] and Dapper[89].
Pivot Tracing introduces the baggage abstraction to e�ciently implement happened-before joins. Baggage is a per-

request container for arbitrary key-value pairs that is propagated alongside a request as it traverses thread, application
and machine boundaries.�e execution of a request starts in a single thread, but can split into new threads, traverse
process boundaries via the network, batch requests with other threads for a shared execution, or defer a subroutine to be
executed by a di�erent thread pulling it o� a queue. In each of these cases, we need to maintain identi�ers that identify
an execution and its key-value container as it branches o� from its original thread.
4.1.1 Implementation

Baggage is principally a container of key-value pairs; an application can store a key-value pair in the current execution’s
baggage, or query the baggage to retrieve all values previously stored under a speci�c key. Baggage maintains the invariant
that values stored at one point in a request’s execution are guaranteed to be available later on in the same execution
unless they are speci�cally removed. Pivot Tracing provides a client library implementation of baggage. Table 2 outlines
the API of this library, including functions to get and set key-value pairs, and to retrieve baggage for passing across
execution boundaries.
Pivot Tracing uses a thread-local variable to store baggage instances. At the beginning of a request, we instantiate

empty baggage in the thread-local variable; at the end of the request, we clear the baggage from the thread-local variable.
At any point during the execution, we can query for the current value of the thread-local variable to receive the current
baggage. Internally, baggage is a multimap pairing keys with lists of ByteStrings. Our baggage API, outlined in Table 2,
restricts the legal operations processes can perform on the values contained in this multimap. pack stores an arbitrary
value for propagation with this execution as it traverses thread or process boundaries; unpack retrieves values packed
prior in the execution.
Pivot Tracing provides a serialized representation for baggage.�e baggage API has methods for serializing and

deserializing the current baggage or setting the current baggage from a serialized representation. Serialization supports

7

Method Description

pack(k, t...) Add a value to the multimap
unpack(k) Retrieve all values from the multimap
repack(k, t...) Set the values in the multimap
serialize() Serialize the multimap to bytes
deserialize(b) Set the multimap by deserializing from bytes
split() Split the baggage for a branching execution
join(b1, b2) Merge baggage from two joining executions

Table 2: Baggage API for Pivot Tracing Java implementation. API methods are static and only allow interaction with the
current execution’s baggage.

e1 (delta=20)
e2 (delta=5)

e3 (delta=10)
{ }

{ Σ delta = 30 }

e4 (delta=2)
Split
Join
Baggage

e Events
{ Σ delta = 25 }

{ Σ delta = 20 } { Σ delta = 37 }

Figure 5: A sample execution aggregates a counter in the baggage, correctly computing the total even a�er events on
both sides of the split execution.

propagating baggage alongside executions that traverse multiple processes or applications. When one application sends
a message to a di�erent process or application, it sends a serialized representation of its baggage together with that
message. Our prototype speci�es its serialization format using Protocol Bu�ers [53]. Baggage is lazily serialized and
deserialized to minimize the overhead of propagating baggage through applications that do not actively participate in a
query; baggage is deserialized only when an application attempts to pack or unpack tuples. Serialization costs are only
incurred for modi�ed baggage at network or application boundaries.
Splits, Joins, and Versioning In order to preserve the happened-before relation, Pivot Tracing must correctly handle
executions that split and rejoin. When an execution branches, each branch must receive a copy of the execution’s current
baggage. Each branch now independently interacts with its own baggage. When several branches of an execution rejoin,
the baggage from each joining branch must be merged. Figure 5 illustrates an example of this. Values accumulated in the
baggage prior to the split must only be counted once during aggregation and upon merging.
To handle splits and joins, we implement a versioning scheme using interval tree clocks [29]. Each baggage instance

now also points to a “parent” baggage from which it split o�, and the thread-local variable references the bottom-most
(youngest) baggage instance. pack only puts values into the youngest baggage, while unpack iterates through the entire
chain, retrieving values stored in all versions. As a result, executions cannot modify any baggage inherited from a parent
thread.
We split baggage by dividing the interval tree ID of the youngest baggage into two new globally unique, non-

overlapping interval tree IDs [29]. We instantiate two new empty baggage instances, assign each one half of the divided
ID, set the parent of the fresh baggage to be the current active baggage, and then update the thread-local reference to
point to one of the new instances. split returns a reference to the other, so that manual instrumentation (described in
§4.1.2) can set it to propagate through the other half of the split.
Our initial prototype assumes the common case where a forked execution joins only with the other end of the fork.

With this assumption, we implement join by copying the contents of both youngest baggage instances into their shared
parent, and set the thread-local reference to back to that parent.�e interval tree IDs enforce this assumption. A future
prototype will fully integrate interval tree clocks to remove this assumption.
4.1.2 Instrumentation

Pivot Tracing relies on developers to implement Baggage propagation when a request crosses thread, process, or asyn-
chronous execution boundaries.
We instrumented a number of applications on the Hadoop stack including HDFS, MapReduce, Yarn. We discuss the

8

fruits of this instrumentation in Section §5, but here we describe the steps required to do so. Overall, instrumenting
these applications to support Baggage required less than 200 lines of code per system.
�read Boundaries Objects in Java can run in separate threads if they implement the Runnable interface. We used
AspectJ [61], an aspect-oriented programming language extension of Java, to intercept Runnable instances to automatically
inherit the split of the parent thread’s baggage, and save a copy of its baggage to be joined with later on. Here we provide
one of the aspects implementing this behavior:

1 p u b l i c a s p e c t In s t rumen tBaggage {
2 p r i v a t e i n t e r f a c e P i vo tT r a c i n gRunnab l e {
3 p u b l i c vo id s e t S t a r t B a g g a g e () ;
4 p u b l i c Baggage g e t S t a r t B a g g a g e () ;
5 p u b l i c vo id s e tEndBaggage () ;
6 p u b l i c Baggage ge tEndBaggage () ;
7 }
8
9 p r i v a t e Baggage P i vo tT r a c i ngRunnab l e . s t a r t B a g g a g e ;
10 p r i v a t e Baggage P i vo tT r a c i n gRunnab l e . endBaggage ;
11
12 p u b l i c vo id P i vo tT r a c i ngRunnab l e . s e t S t a r t B a g g a g e () {
13 t h i s . s t a r t B a g g a g e = P i v o t T r a c i n g . g e tB agg ag e () . s p l i t () ;
14 }
15 p u b l i c Baggage P i vo tT r a c i n gRunnab l e . g e t S t a r t B a g g a g e () {
16 r e t u r n t h i s . s t a r t B a g g a g e ;
17 }
18 p u b l i c vo id P i vo tT r a c i ngRunnab l e . s e tEndBaggage () {
19 t h i s . endBaggage = P i v o t T r a c i n g . g e tB agg ag e () ;
20 }
21 p u b l i c vo id P i vo tT r a c i ngRunnab l e . ge tEndBaggage () {
22 r e t u r n t h i s . endBaggage ;
23 }
24
25 d e c l a r e p a r e n t s : Runnable+ implements P i vo tT r a c i ngRunnab l e ;
26
27 b e f o r e (P i vo tT r a c i ngRunnab l e r) : t h i s (r) && ex e c u t i o n (vo id

P i vo tT r a c i ngRunnab l e + . run (. .)) {
28 }
29 a f t e r (P i vo tT r a c i n gRunnab l e r) : t h i s (r) && ex e c u t i o n (vo id

P i vo tT r a c i ngRunnab l e + . run (. .)) {
30 r . s e tEndBaggage () ;
31 }
32
33 vo id around (P i vo tT r a c i n gRunnab l e r) : t h i s (r) && c a l l (vo id

P i vo tT r a c i ngRunnab l e + . run (. .)) {
34 P i v o t T r a c i n g . s e t B a g g a g e (r . g e t S t a r t B a g g a g e ()) ;
35 proceed (r) ;
36 r . s e tEndBaggage () ;
37 }
38
39 vo id around (Thread t) : t a r g e t (t) && c a l l (vo id Thread + . j o i n (. .)) {
40 ThreadWrapper . j o i n (t) ;
41 p roceed (t) ;
42 }
43 }

In addition to these modi�cations, we also intercept Thread creation to call setStartBaggage on the target Runnable,
and call getEndBaggage to extract the end baggage from a joined Thread, as in line 40 of the above aspect.�e aspect
implementing this behavior is similarly concise.

�ese aspects correctly instrument the simple but common fork-join pattern. However, there are other patterns of
concurrent execution for which this instrumentation is either insu�cient or incorrect. In such cases, manual instrumen-

9

Thread 1 Thread 2 Thread 3 Thread 4 Thread 5

(a) �e shared execution merges and then distributes per-
execution baggage upon completion.

Thread 1 Thread 2 Thread 3 Thread 4 Thread 5

(b)�e shared execution starts its own baggage for the duration
of its own execution, then reverts to pre-execution baggage upon
completion.

Figure 6: Some distributed systems use shared execution patterns such as batching. In such cases, it is up to the system
instrumenter to develop the appropriate semantics for baggage propagation.

tation is required to ensure that the current baggage is not split.�is can be done by saving the current baggage, clearing
the thread-local baggage, and then restoring the thread-local baggage from the saved copy a�er thread creation. Our
implementation assumes that the created thread will not be joined with.
Background Tasks Background tasks are conceptually similar to user requests. Programs spawning background tasks
should not split their baggage. Instead, when a background task begins, it should be initialized with fresh baggage since
it is conceptually an independent execution.
Process Boundaries Instrumenting RPCs requires extending the target system’s protocol de�nitions to include a �eld
for storing serialized Baggage. Whenever an application invokes an RPC, it must also serialize the current baggage and
set the protocol bu�er’s baggage �eld. In our instrumentation, this required only a few additional tweaks: increasing the
maximum size of a protocol bu�er, and adding code to copy the current baggage into the relevant �eld of the protocol
bu�er. Each of these modi�cations required a single line of code each.
Asynchronous Boundaries If an execution is deferred via a queue, we must modify the enqueued object that represents
the deferred execution (e.g. an RPCServer.Call object in HDFS). We add a �eld to the object for storing the state of
the baggage when the object is enqueued. Later, when some other thread dequeues the object to resume its deferred
execution, that thread must immediately set its baggage to the baggage stored in the deferred execution context.
Shared Executions Some systems batch multiple concurrent requests to be handled by a single execution context. To
properly propagate baggage in such cases, threads must save a copy of their baggage in their batched request to restore it
upon returning from the batched request. However, the state of the baggage during the batched execution depends on
the application and thus requires manual instrumentation. Figure 6 explains two possibilities.
Callbacks To preserve baggage into a callback, we borrow techniques from continuation-local storage [76]. When an
execution registers a callback, it also registers a copy of its baggage to be restored when the callback is invoked. Callback
handlers save their baggage before invoking the callback, and restore it a�er returning from the callback.
4.1.3 Overheads

�e size of serialized baggage containing k keys and at most v values per key is O(kv), with an empty serialized size of 0
bytes. To estimate the latency of propagating baggage, we ran a series of both microbenchmarks and macrobenchmarks.
Figure 7 depicts the latency of performing the in-line baggage operations. Table 3 displays the normalized overheads of
propagating baggage containing 1 value and 60 values (≈ 1kB) respectively during benchmarks run on an instrumented
Hadoop system. To measure these overheads, we stress tested HDFS using requests derived from the HDFS NNBench
benchmark: Read8k reads 8kB from a �le; Open opens a �le for reading; Create creates a �le for writing; Rename
renames an existing �le. Read8kB is a DataNode operation and the others are NameNode operations. Open su�ers
the greatest performance hit, with baggage propagation of 60 values incurring 15.9% overhead. But since this is a short
CPU-bound request (involving a single read-only lookup), this is within reasonable expectations.
4.1.4 NarrowWaist

Baggage generalizes end-to-end metadata propagation techniques outlined in prior work such as X-Trace[52] and
Dapper[89].�is e�ciently implements happened-before join. However, it is unlikely that this is the only use of baggage.
Because the key/value store baggage provides is completely generic, applications instrumented to propagate baggage
with intent orthogonal to Pivot Tracing can nonetheless support Pivot Tracing.

10

0
0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

1 2 4 8 16 32 64 12
8
25
6

La
te

nc
y

(µ
s)

Number of values in baggage

(a) Packing a value

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

1 2 4 8 16 32 64 12
8
25
6

La
te

nc
y

(µ
s)

Number of values in baggage

(b) Unpacking all values

0
2
4
6
8
10
12
14

1 2 4 8 16 32 64 12
8
25
6

La
te

nc
y

(µ
s)

Number of values in baggage

(c) Serialize baggage

0

4

8

12

16

20

1 2 4 8 16 32 64 12
8
25
6

La
te

nc
y

(µ
s)

Number of values in baggage

(d) Deserialize baggage

Figure 7: Latency micro-benchmark results for packing, unpacking, serializing, and deserializing randomly-generated
8-byte values.

Read8k Open Create Rename
Unmodi�ed 0% 0% 0% 0%

Baggage – 1 Value 0.8% 0.4% 0.6% 0.8%
Baggage – 60 Values 0.82% 15.9% 8.6% 4.1%

Table 3: Latency overheads for HDFS stress test with baggage propagation enabled.

We liken this to devices implementing IP. IP, the so-called “narrow waist” of the internet, is the central layer of
the network stack; it is implemented by the link layer, and provides an abstraction with its generic packet payload
which encapsulates the transport layer protocols (e.g. TCP, UDP, etc.) that most application-level network protocols are
layered upon. Any device that understands IP can participate in a network serving higher-level applications, without
understanding what those applications are or even being aware of them.
Since it is generic, Baggage, like IP, could be a “narrow waist” for higher-level applications that require causality

tracking such as tracing, taint checking, or resource management. Applications implementing baggage automatically
support all other applications implementing and using baggage without understanding those applications or even being
aware they exist. We leave further study of the applications of baggage to future work.

4.2 Advice
Pivot Tracing queries compile to an intermediate representation called advice. Advice speci�es the operations to perform
at each tracepoint used in a query, and eventually materializes as monitoring code installed at those tracepoints (§4.3).
Advice has several operations for manipulating tuples through the tracepoint-exported variables, and evaluating � on
tuples produced by other advice at prior tracepoints in the execution.
Table 4 outlines the advice API. Observe creates a tuple from exported tracepoint variables. Unpack retrieves

tuples generated by other advice at other tracepoints prior in the execution. Unpacked tuples can be joined to the
observed tuple, i.e., if to is observed and tu1 and tu2 are unpacked, then the resulting tuples are to tu1 and to tu2. Tuples
created by this advice can be discarded (Filter), made available to advice at other tracepoints later in the execution
(Pack), or output for global aggregation (Emit). Both Pack and Emit can group tuples based on matching �elds, and
perform simple aggregations such as SUM and COUNT. Pack also has the following special cases: FIRST packs the �rst
tuple encountered and ignores subsequent tuples; RECENT packs only the most recent tuple, overwriting existing tuples.
FIRSTN and RECENTN generalize this to N tuples.�e advice API is expressive but restricted enough to provide some
safety guarantees. In particular, advice code has no jumps or recursion, so it is guaranteed to terminate, and does not
change the memory space of the instrumented system.

�is small set of operations comprises the core operations on tuples understood by Pivot Tracing, whereas the query
language provides convenience to system operators at the surface. To compile a query to advice, we instantiate one advice

Operation Description

Observe Construct a tuple from variables exported by a tracepoint
Unpack Retrieve one or more tuples from prior advice
Filter Evaluate a predicate on all tuples
Pack Make tuples available for use by later advice
Emit Output a tuple for global aggregation

Table 4: Primitive advice operations supported by Pivot Tracing to generate and aggregate tuples.

11

Figure 8: Advice generated for Q2 from §2: A1 observes and packs procName; A2 unpacks procName, observes delta, and
emits (procName, SUM(delta)).

speci�cation for a From clause and add an Observe operation for the tracepoint variables used in the query. For each
Join (�) clause, we add an Unpack operation for the variables that originate from the joined query. We recursively
generate advice for the joined query, and append a Pack operation at the end of its advice for the variables that we
unpacked. Where directly translates to a Filter operation. We add an Emit operation for the output variables of the
query, restricted according to any Select clause. Aggregate, GroupBy, and GroupByAggregate are all handled by Emit
and Pack.
For example, query Q2 in §2 compiles to advice A1 and A2 for Client Protocols and DataNodeMetrics respectively:

A1: OBSERVE procName A2: OBSERVE delta
PACK-FIRST procName UNPACK procName

EMIT procName, SUM(delta)

First, A1 observes and packs a single valued tuple containing the process name.�en, when execution reaches the
DataNodeMetrics tracepoint, A2 unpacks the process name, observes the value of delta, then emits a joined tuple.
Figure 8 shows how this advice and the tracepoints interact with the execution of requests in the system.
4.2.1 Implementation

We discuss our implementation of Observe and Filter in section §4.3. Pack and Unpack are built on top of the
baggage API, and are merely thin wrappers over pack and unpack. To Emit, advice instances send tuples to a process-local
aggregator, which collects all reported tuples and performs intermediate aggregation (implementing queries containing
Aggregate or GroupByAggregate) via a pub/sub server at a regular, con�gurable interval – by default, one second.
4.2.2 In Context

�e Advice API is quite concise, but nonetheless su�ces to satisfy many of Pivot Tracing’s design goals. Observe provides
an abstraction for monitoring a system, and due to its simplicity can be conveniently installed at runtime as outlined
in §4.3. Pack allows data claimed from events in one process to be propagated to another. Unpack allows a process to
determine what other events must have happened prior in the request’s execution.�is provides a simple implementation
of the happened-before join.
By layering Pack and Unpack on top of baggage, Pivot Tracing e�ciently evaluates happened-before joins in situ

during the execution of a request. Figure 9a depicts the naïve join evaluation strategy that collects events and joins them
globally. Figure 9b shows the optimized query evaluation strategy to evaluate joins in-place during request execution.
One metric to assess the cost of a Pivot Tracing query is the number of tuples emitted for global aggregation.�e

intermediate aggregation use in our Emit implementation substantially reduces tra�c for emitted tuples; Q2 from §2 is
reduced from approximately 600 tuples per second to 6 tuples per second from each DataNode.
A second cost metric for Pivot Tracing queries is the number of tuples packed during a request’s execution. Pivot

Tracing rewrites queries to minimize the number of tuples packed. Pivot Tracing pushes projection, selection, and
aggregation terms as close as possible to source tracepoints. In [51] the authors outlined query optimizations for merging
streams of tuples, enabled because projection, selection, and aggregation are distributive.�ese optimizations also
apply to Pivot Tracing and reduce the number of tuples emitted for global aggregation. To reduce the number of tuples
transported via Pack and Unpack, Pivot Tracing adds further optimizations for happened-before joins, outlined in
Table 5.

12

� ✁ � ✁

✂✄☎✆✝
✞✟✞✄✝✠

☎✞✡☛☞✌✍✎✂✄✞✏ ☎✞✡☛✑✆✞✡✒ ☞✞✡✓✞

� ✁ � ✁ � ✁ � ✁

✍✡✔✠✠☛✍✕✆✠✝✞✡✏ ☎✞✡☛✑✆✞✡✒ ☞✞✡✓✞✏

✖ ✗ ✖ ✗

✘✙✘✚✛✜✢✣✤

(a) Unoptimized query with � evaluated centrally for the whole
cluster.

� ✁
✂

✄☎✆✝✞
✟✠✟☎✞✡

✆✟☛☞✌✍✎✏✄☎✟ ✌✟☛✑✟

✎☛✒✡✡☞✎✓✝✡✞✟☛ ✌✟☛✑✟

✔✕✖✗✕✘✕✙✚✛✜✢✣

✤
✕✖✥✕✦✧✢✜✣

★
★ ★

� ✁
✂

� ✁
✂

✩ ✪

(b) Optimized query with inline evaluation of � ().

Figure 9: Optimization of � .�e optimized query o�en produces substantially less tuple tra�c than the unoptimized
form.

Query Optimized Query

Πp ,q(P � Q) Πp(P) � Πq(Q)
σp(P � Q) σp(P) � Q
σq(P � Q) P � σq(Q)
Ap(P � Q) Combinep(Ap(P) � Q)
GAp(P � Q) GpCombinep(GAp(P) � Q)
GAq(P � Q) GqCombinep(P � GAq(Q))
GpAq(P � Q) GpCombineq(Πp(P) � Aq(Q))
GqAp(P � Q) GqCombinep(Ap(P) � Πq(Q))

Table 5: Query rewrite rules to join queries P and Q. We push operators as close as possible to source tuples; this reduces
the number of tuples that must be propagated in the baggage from P to Q. Combine refers to an aggregator’s combiner
function (e.g., for Count, the combiner is Sum).

13

Weave

class GeneratedAdviceImpl {
 void Advise(Object... observed) {
 // Generated code for advice
 }
}

class DataNodeMetrics {
 void incrBytesRead(int delta) {

 PivotTracing.Advise("A2", delta);
 ...
 }
}

OBSERVE delta
UNPACK procName
EMIT procName, SUM(delta)

Advice A2

Class: DataNodeMetrics
Method: incrBytesRead
Exports: "delta" = delta

Tracepoint T1 class DataNodeMetrics {
 void incrBytesRead(int delta) {

 ...
 }
}

Figure 10: Advice for Q2 is woven at the DataNodeMetrics tracepoint. Variables exported by the tracepoint are passed
when the advice is invoked.

4.3 Dynamic Instrumentation
In this section we describe how our Java prototype installs code implementing advice, an act we call weaving3, into its
target system at runtime.
At a high level, Pivot Tracing weaves advice into tracepoints by: 1) loading code that implements the advice operations;

2) con�guring the tracepoint to execute that code and pass its exported variables; 3) activating the necessary tracepoint
at all locations in the system. Figure 10 depicts this process of weaving advice for A2.
4.3.1 Implementation

Agent A Pivot Tracing agent runs within every Pivot Tracing-enabled process and awaits instruction via a pub/sub
server to de�ne new tracepoints and advice, and weave advice into tracepoints. Users can specify new tracepoints, de�ne
new advice, instruct the agent to weave advice into a tracepoint, instruct the agent to forget about a tracepoint or advice,
and instruct the agent to unweave advice from a tracepoint. Pivot Tracing supports pattern matching for more complex
tracepoint de�nitions, for example, all methods of a class speci�ed by a particular interface.�is feature is modeled a�er
pointcuts from AspectJ [61]. Pivot Tracing also supports instrumenting privileged classes (e.g., FileInputStream in §2)
by providing an optional agent that can be placed on Java’s boot classpath.
Protocol Bu�ers Pivot Tracing represents tracepoints, advice, and weaves (state pairing woven advice with the woven
tracepoint) internally (and externally) using an abstract protocol bu�er [53] speci�cation. Tracepoints are identi�ed by a
query- or operator-supplied unique ID, a class name, method name, method signature, and weave location (e.g. method
entry, return, exceptional return, or a speci�c line number). Advice is identi�ed by a query- or operator-supplied unique
ID and the series of commands they perform. Weaves are speci�ed by an advice ID and a tracepoint ID. Our Pivot
Tracing agent tracks each of these structures within a map, using the ID as the key (or pair of IDs, in the case of weaves).
Materializing Advice Tracepoints with woven advice invoke the PivotTracing.Advise method (cf. Fig. 10), passing
tracepoint variables as arguments.�is method looks up the woven advice object and invokes each of its operations;
Observe constructs a tuple from the provided arguments. We implement Filter by inserting additional code based on
the woven advice’s speci�cation, inserting additional code that calls PivotTracing.Advise only if the desired conditions
are met.
Weaving Advice Our prototype weaves advice at runtime, providing dynamic instrumentation similar to that of
DTrace [38] andFay [51]. Java version 1.5 onwards supports dynamicmethod body rewriting via the java.lang.instrument
package.�e Pivot Tracing agent programmatically rewrites and reloads class bytecode from within the proces using
Javassist [44], which provides a convenient mechanism for compiling literal Java code to bytecode for insertion into a
method body. For example, when weaving advice to a tracepoint at a method entry, we invoke the
insertBefore("PivotTracing.Advise(...);")method on Javassist’s method representation, and then reload the entire
class using Javassist’s javassist.util.Hotswap class.4
However, Javassist does not provide a simple means to remove inserted bytecode from arbitrary locations in a method.

Providing a mechanism for removing queries is critical; otherwise Pivot Tracing is not truly dynamic. We resolve this
problem by acquiring a fresh copy of the original bytecode for a class and re-computing the woven state of that class each
time we weave. Javassist does provide a convenient means for doing this with its javassist.ClassPool. Classes pulled
from a fresh ClassPool instance contain the original, uninstrumented de�nitions of that class.

3We borrow this term from aspect-oriented programming [62]. Pivot Tracing and this programming paradigm both combine, i.e. weave, together a
component language (in the case of Pivot Tracing, the tracepoints of the target system) and an aspect language (our advice operations).

4�is class provides no way to reload only a single method.

14

�is leaves the step of determining which weaves must be re-weaved. To avoid additional space overhead, we do
not map class names to weaves but instead algorithmically determine which weaves to re-weave. We model classes,
tracepoints, advice, and weaves as a tripartite graph. One independent set of the graph is the set of advice; another is
the set of tracepoints; and the third is the set of classes Pivot Tracing knows about (via tracepoints). An edge exists
between an advice A and a tracepoint T if and only if there exists a weave specifying that A is woven into T . An edge
exists between a tracepoint T and a class C if and only if T is de�ned over a method of C. When weaving T , we follow its
edge to C and then reapply all weaves in the subtree rooted at C.�is procedure assumes that the ordering of multiple
advice woven into a single tracepoint does not matter. Advice only reads from an instrumented system’s address space,
so this assumption reduces to an assumption that each distinct advice woven to a tracepoint modi�es di�erent parts of
the baggage.�is assumption is reasonable under the expectation that each of those advice instances supports a distinct
query. Figure 11 shows an example of such a graph.

�e same procedure can be used to maintain the correct instrumentation state of all classes if an operator rede�nes a
tracepoint or advice instance at runtime.
Unweaving Advice Because of the above algorithm, Pivot Tracing unweaves advice by simply removing the appropriate
weaves from its internal data structures. When it recomputes the weave state of the a�ected classes, the target advice-
tracepoint pair will not be included.
4.3.2 Instrumentation

In contrast to baggage, almost no developer overhead whatsoever is required to enable Pivot Tracing to install queries
into an application.

1 p u b l i c c l a s s MyApp {
2 p u b l i c s t a t i c vo id main (S t r i n g [] a r g s) {
3 P i v o t T r a c i n g . i n i t i a l i z e () ;
4 . . .
5 }
6 }

�is starts the PivotTracing agent, which listens for queries via a pub/sub server.
We can use AspectJ [61] to generalize this to all main classes of a project:
1 p u b l i c a s p e c t S t a r t P i v o t T r a c i n g {
2 b e f o r e () : e x e c u t i o n (p u b l i c s t a t i c vo id main (S t r i n g [] a r g s) {
3 P i v o t T r a c i n g . i n i t i a l i z e () ;
4 }
5 }

4.3.3 Overheads

JVM HotSwap requires Java’s debugging mode to be enabled, which causes some compiler optimizations to be disabled.
For practical purposes, however, HotSpot JVM’s full-speed debugging is su�ciently optimized that it is possible to run
with debugging support always enabled [57]. Our HDFS throughput experiments above measured only a small overhead
between debugging enabled and disabled. Reloading a class with woven advice has a one-time cost of approximately
100ms, depending on the size of the class being reloaded.
Otherwise, Pivot Tracing only makes system modi�cations when advice is woven into a tracepoint, so inactive

tracepoints incur no overhead. Executions that do not trigger the tracepoint are una�ected by Pivot Tracing. Pivot
Tracing has a zero-probe [38] e�ect: methods are unmodi�ed by default, so tracepoints impose truly zero overhead until
advice is woven into them.

5 Pivot Tracing in Action
In this section we evaluate Pivot Tracing in the context of the Hadoop stack. We have instrumented four open-source
systems – HDFS, HBase, Hadoop MapReduce, and YARN – that are widely used in production today. We present several
case studies where we used Pivot Tracing to successfully diagnose root causes, including real-world issues we encountered
in our cluster and experiments presented in prior work [95, 66]. Our evaluation shows that Pivot Tracing addresses the
challenges in §2 when applied to these stack components. In particular, we show that Pivot Tracing:

• is dynamic and extensible to new kinds of analysis (§5.2)
• is scalable and has low developer and execution overhead (§5.3)

15

OBSERVE delta
UNPACK procName
EMIT procName, SUM(delta)

Advice A2
OBSERVE lat
UNPACK procName
EMIT procName, AVG(lat)

Advice A4
OBSERVE delta
UNPACK procName
EMIT procName, AVG(delta)

Advice A3
OBSERVE lat
UNPACK procName
EMIT procName, STDEV(lat)

Advice A5

Class: DataNodeMetrics
Method: incrBytesRead
Exports: "delta" = delta

Tracepoint T1

Class: DataNodeMetrics
Method: addHeartbeat
Exports: "lat" = latency

Tracepoint T2

Class: DataNodeMetrics
Method: addBlockReport
Exports: "lat" = latency

Tracepoint T3
Class: NameNodeMetrics
Method: addBlockReport
Exports: "lat" = latency

Tracepoint T5

Class: NameNodeMetrics
Method: addTransaction
Exports: "lat" = latency

Tracepoint T4

Tracepoint: T1
Advice: A2

Weave

Tracepoint: T1
Advice: A3

Weave

Class

NameNodeMetrics

Class

DataNodeMetrics

Tracepoint: T2
Advice: A4

Weave

Tracepoint: T3
Advice: A4

Weave

Tracepoint: T3
Advice: A5

Weave

Tracepoint: T5
Advice: A4

Weave

Tracepoint: T4
Advice: A4

Weave

class DataNodeMetrics {
 void incrBytesRead(int delta) {
 PivotTracing.Advise("A3", delta);
 ...
 }

 void addHeartbeat(long latency) {

 PivotTracing.Advise("A4", latency);
 ...
 }

 void addBlockReport(long latency) {
 PivotTracing.Advise("A4", latency);
 PivotTracing.Advise("A5", latency);
 ...
 }
}

Current

class DataNodeMetrics {
 void incrBytesRead(int delta) {
 ...
 }

 void addHeartbeat(long latency) {
 ...
 }

 void addBlockReport(long latency) {
 ...
 }
}

Original (from ClassPool)

class DataNodeMetrics {
 void incrBytesRead(int delta) {
 PivotTracing.Advise("A2", delta);
 PivotTracing.Advise("A3", delta);
 ...
 }

 void addHeartbeat(long latency) {

 PivotTracing.Advise("A4", latency);
 ...
 }

 void addBlockReport(long latency) {
 PivotTracing.Advise("A4", latency);
 PivotTracing.Advise("A5", latency);
 ...
 }
}

Resulting Class

Weave
Weaved class
Hotswap

Figure 11: Operators instruct Pivot Tracing to weave advice A2 into tracepoint T1 in a systemwith the depicted tracepoints,
advice (A1 from §4.2 omitted), and weaves. All advice in the cyan tree rooted at DataNodeMetricsmust be re-weaved.

16

Figure 12: Interactions between systems. Each system comprises several processes on potentially many machines. Typical
deployments o�en co-locate processes from several applications, e.g. DataNode, NodeManager, Task and RegionServer
processes.

• enables cross-tier analysis between any inter-operating applications (§2, §5.2)
• captures event causality to successfully diagnose root causes (§5.1, §5.2)
• enables insightful analysis with even a very small number of tracepoints (§5.1)

Hadoop Overview We �rst give a high-level overview of Hadoop, before describing the necessary modi�cations to
enable Pivot Tracing. Figure 12 shows the relevant components of the Hadoop stack.
HDFS [88] is a distributed �le system that consists of several DataNodes that store replicated �le blocks and a

NameNode that manages the �lesystem metadata.
HBase [56] is a non-relational database modeled a�er Google’s Bigtable [41] that runs on top of HDFS and comprises

a Master and several RegionServer processes.
HadoopMapReduce is an implementation of theMapReduce programmingmodel [49] for large-scale data processing,

that uses YARN containers to run map and reduce tasks. Each job runs an ApplicationMaster and several MapTask and
ReduceTask containers.
YARN [93] is a container manager to run user-provided processes across the cluster. NodeManager processes run

on each machine to manage local containers, and a centralized ResourceManager manages the overall cluster state and
requests from users.
Hadoop Instrumentation We modi�ed these systems to propagate baggage along the execution path of requests. As
described in §4.1.1 our prototype uses a thread-local variable to store baggage during execution, so the only required
system modi�cations are to set and unset baggage at execution boundaries, which we discussed in §4.1.2. Each system
only required between 50 and 200 lines of manual code modi�cation.
Our queries used tracepoints from both client and server RPC protocol implementations of the HDFS DataN-

ode DataTransferProtocol and NameNode ClientProtocol. We also used tracepoints for piggybacking o� existing
metric collection mechanisms in each instrumented system, such as DataNodeMetrics and RPCMetrics in HDFS and
MetricsRegionServer in HBase.

5.1 Case Study: HDFS Replica Selection Bug
In this section we describe our discovery of a replica selection bug in HDFS that resulted in uneven distribution of load
to replicas. A�er identifying the bug, we found that it had been recently reported and subsequently �xed in an upcoming
HDFS version [24].
HDFS provides �le redundancy by decomposing �les into blocks and replicating each block onto several machines

(typically 3). A client can read any replica of a block and does so by �rst contacting the NameNode to �nd replica hosts
(GetBlockLocations), then selecting the closest replica as follows: 1) read a local replica; 2) read a rack-local replica;
3) select a replica at random. We discovered a bug whereby rack-local replica selection always follows a global static
ordering due to two con�icting behaviors: the HDFS client does not randomly select between replicas; and the HDFS
NameNode does not randomize rack-local replicas returned to the client.�e bug results in heavy load on the some
hosts and near zero load on others.
In this scenario we ran 96 stress test clients on an HDFS cluster of 8 DataNodes and 1 NameNode. Each machine has

identical hardware speci�cations; 8 cores, 16GB RAM, and a 1Gbit network interface. On each host, we ran a process
called StressTest that used an HDFS client to perform closed-loop random 8kB reads from a dataset of 10,000 128MB
�les with a replication factor of 3.
Our investigation of the bug began when we noticed that the stress test clients on hosts A and D had consistently

lower request throughput than clients on other hosts, shown in Figure 13a, despite identical machine speci�cations

17

(a) Clients on Hosts A and D experience
reduced workload throughput.

M
ill

io
n

s

0

0.5

1

1.5

2

2.5

0 1 2 3 4 5

Host A Host B

Host C Host D

N
e
tw

o
rk

 T
ra

n
s
fe

r
[M

B
/s

]

Time [min]

(b) Network transfer is skewed across
machines.

Host G Host H

Host E Host F

Time [min]

D
a
ta

N
o
d
e
 T

h
ro

u
g
h
p
u
t [

o
p
s/

s] 200

150

100

50

0
0 1 2 3 4 5

(c) HDFS DataNode throughput is skewed
across machines.

(d) Observed HDFS �le read
distribution (row) per client

(col).

(e) Frequency each client
(row) sees each DataNode
(col) as a replica location.

(f) Frequency each client
(row) subsequently selects
each DataNode (col).

(g) Observed frequency of
choosing one replica host
(row) over another (col)

Figure 13: Pivot Tracing query results leading to our discovery of HDFS-6268 [24]. Faulty replica selection logic led
clients to prioritize the replicas hosted by particular DataNodes (§5.1).

18

and setup. We �rst checked machine level resource utilization on each host, which indicated substantial variation in
the network throughput (Figure 13b). We began our diagnosis with Pivot Tracing by �rst checking to see whether an
imbalance in HDFS load was causing the variation in network throughput.�e following query installs advice at a
DataNode tracepoint that is invoked by each incoming RPC:

Q3: From dnop In DN.DataTransferProtocol
GroupBy dnop.host
Select dnop.host, COUNT

Figure 13c plots the results of this query, showing the HDFS request throughput on each DataNode. It shows that
DataNodes on hosts A and D in particular have substantially higher request throughput than others – host A has on
average 150 ops/sec, while host H has only 25 ops/sec.�is behavior was unexpected given that our stress test clients are
supposedly reading �les uniformly at random. Our next query installs advice in the stress test clients and on the HDFS
NameNode, to correlate each read request with the client that issued it:

Q4: From getloc In NN.GetBlockLocations
Join st In StressTest.DoNextOp On st -> getloc
GroupBy st.host getloc.src
Select st.host, getloc.src, COUNT

�is query counts the number of times each client reads each �le. In Figure 13d we plot the distribution of counts over a 5
minute period for clients from each host.�e distributions all �t a normal distribution and indicate that all of the clients
are reading �les uniformly at random.�e distribution of reads from clients on A and D are skewed le�, consistent with
their overall lower read throughput.
Having con�rmed the expected behavior of our stress test clients, we next checked to see whether the skewed

datanode throughput was simply a result of skewed block placement across datanodes:
Q5: From getloc In NN.GetBlockLocations

Join st In StressTest.DoNextOp On st -> getloc
GroupBy st.host, getloc.replicas
Select st.host, getloc.replicas, COUNT

�is query measures the frequency that each DataNode is hosting a replica for �les being read. Figure 13e shows that, for
each client, replicas are near-uniformly distributed across DataNodes in the cluster.�ese results indicate that clients
have an equal opportunity to read replicas from each DataNode, yet, our measurements in 13c clearly show that they do
not. To gain more insight into this inconsistency, our next query relates the results from 13e and 13c:

Q6: From DNop In DN.DataTransferProtocol
Join st In StressTest.DoNextOp On st -> DNop
GroupBy st.host, DNop.host
Select st.host, DNop.host, COUNT

�is query measures the frequency that each client selects each DataNode for reading a replica. We plot the results in
Figure 13f and see that the clients are clearly favoring particular DataNodes.�e strong diagonal is consistent with HDFS
client preference for locally-hosted replicas (39% of the time in this case). However, the expected behavior when there is
not a local replica is to select a rack-local replica uniformly at random; clearly these results suggest that this was not
happening.
Our �nal diagnosis steps were as follows. First, we checked to see which replica was selected by HDFS clients from the

locations returned by the NameNode. We found that clients always selected the �rst location returned by the NameNode.
Second, we measured the conditional probabilities that DataNodes precede each other in the locations returned by the
NameNode. We issued the following query for the latter:

Q7: From DNop In DN.DataTransferProtocol
Join getloc In NN.GetBlockLocations

On getloc -> DNop
Join st In StressTest.DoNextOp On st -> getloc
Where st.host != DNop.host
GroupBy DNop.host, getloc.replicas
Select DNop.host, getloc.replicas, COUNT

�is query correlates the DataNode that is selected with the other DataNodes also hosting a replica. We remove the
interference from locally-hosted replicas by �ltering only the requests that do a non-local read. Figure 13g shows that host
A was always selected when it hosted a replica; host D was always selected except if host A was also a replica, and so on.
At this point in our analysis, we concluded that this behavior was quite likely to be a bug in HDFS. HDFS clients did

not randomly select between replicas, and the HDFS NameNode did not randomize the rack-local replicas. We checked
Apache’s issue tracker and found that the bug had been recently reported and �xed in an upcoming version of HDFS [24].

19

(a) HBase Request Latencies

0 60Latency [sec]

RS Queue

RS Process DN Transfer

DN Blocked

DN GC

Slow

Average

(b) Latency Decomposition

�✁✂✄ ☎ �✁✂✄ ✆
�✁✂✄ ✝ �✁✂✄ ✞
�✁✂✄ ✟ �✁✂✄ ✠
�✁✂✄ ✡ �✁✂✄ �

☛☞✌✍ ✎✌☞✏✑

✒
✓
✔✕
✖
✗✘
✙
✚
✛✜
✢
✣✔
✤✥
✦ ✧★★

✩★★

✪★★

✫★★

★
★ ✬ ✭★ ✭✬

(c) Per-Machine Network�roughput

Figure 14: (a) Observed request latencies for a closed-loop HBase workload experiencing occasional end-to-end latency
spikes; (b) Average time in each component on average (top), and for slow requests (bottom, end-to-end latency > 30s);
(c) Per-machine network throughput – a faulty network cable has downgraded Host B’s link speed to 100Mbit, a�ecting
entire cluster throughput.

5.2 Diagnosing End-to-End Latency
Pivot Tracing can express queries about the time spent by a request across the components it traverses using the built-in
time variable exported by each tracepoint. Advice can pack a timestamp at the start of a span of processing (e.g., a
function) and unpack it at the end of the span, represented in the following example query:

Q8: From end In Function_End
Join begin In MostRecent(Function_Begin)

On begin -> end
Select end.time − begin.time

A query can measure latency in several components and propagate measurements in the baggage, reminiscent of
transaction tracking in Timecard [83] and transactional pro�ling in Whodunit [39].
For example, during the development of Pivot Tracing we encountered an instance of network limplock [50, 66],

whereby a faulty network cable caused a network link downgrade from 1Gbit to 100Mbit. One HBase workload in
particular would experience latency spikes in the requests hitting this bottleneck link (Figure 14a). To diagnose the
issue, we decomposed requests into their per-component latency and compared anomalous requests (> 30s end-to-end
latency) to the average case (Figure 14b).�is enabled us to identify the bottleneck source as time spent blocked on the
network in the HDFS DataNode on Host B. We measured the latency and throughput experienced by all workloads at
this component and were able to identify the uncharacteristically low throughput of Host B’s network link (Figure 14c).
We have also replicated results in end-to-end latency diagnosis in the following other cases: to diagnose rogue

garbage collection in HBase RegionServers as described in [95]; and to diagnose an overloaded HDFS NameNode due to
exclusive write locking as described in [67].

5.3 Overheads of Pivot Tracing
Baggage By default, Pivot Tracing propagates an empty baggage with a serialized size of 0 bytes. In the worst case Pivot
Tracing may need to pack an unbounded number of tuples in the baggage, one for each tracepoint invoked. However, the
optimizations in §4.2.2 reduce the number of propagated tuples to 1 for Aggregate, 1 for Recent, n for GroupBy with
n groups, and N for RecentN. Of the queries in this paper, Q7 propagates the largest baggage containing the stress test
hostname and the location of all 3 �le replicas (4 tuples, ≈137 bytes per request).
Application-level Overhead To estimate the impact of Pivot Tracing on application-level throughput and latency, we ran
benchmarks from HiBench [59], YCSB [47], and HDFS DFSIO and NNBench benchmarks. Many of these benchmarks
bottleneck on network or disk and we noticed no signi�cant performance change with Pivot Tracing enabled.
To measure the impacts of our queries on CPU bound requests, we revisit the stress test described in §4.1.3, now

comparing the following against unmodi�ed HDFS: 1) HDFS with Pivot Tracing enabled; 2) HDFS instrumented with
advice from the queries in §5.1 installed; and 3) HDFS with the advice from the queries in §5.2 installed.
Table 6 shows that the application-level overhead with Pivot Tracing enabled is at most 0.3%.�is overhead includes

the costs of baggage propagation within HDFS, baggage serialization in RPC calls, and to run Java in debugging mode.
Again, we see the most noticeable overhead in Open and Create, very short CPU-bound requests comprising only a
single read-only lookup. Rename does not trigger any advice for the queries from §5.1, but does trigger advice for the
queries from §5.2. Overheads of 0.3% and 5.5% respectively re�ect this di�erence.

20

Read8k Open Create Rename
Unmodi�ed 0% 0% 0% 0%

PivotTracing Enabled 0.3% 0.3% <0.1% 0.2%
Queries – §5.1 1.5% 4.0% 6.0% 0.3%
Queries – §5.2 1.9% 14.3% 8.2% 5.5%

Table 6: Latency overheads for HDFS stress test with Pivot Tracing enabled and full queries enabled, as described in §5.3.

6 RelatedWork
In §2 we described the challenges with troubleshooting tools that Pivot Tracing addresses, and several previous systems.
We complement the discussion on related work here.
Pivot Tracing’s dynamic instrumentation is modeled a�er Aspect-Oriented Programming [62], and extends prior

dynamic instrumentation systems [51, 38, 80] with causal information that crosses process and system boundaries.
Pivot Tracing’s happened-before join is an example of a θ-join [82] (where the condition is happened-before), and as a
special case of path queries in graph databases [96]. Di�erently from o�ine queries in a pre-stored graph, Pivot Tracing
e�ciently evaluates � at runtime.
BeyondMetrics and Logs A variety of tools have been proposed in the research literature to complement or extend appli-
cation logs and performance counters.�ese include the use of machine learning [75, 97, 78, 60] and static analysis [100]
to extract better information from logs; automatic enrichment of existing log statements to ease troubleshooting [99];
end-to-end tracing systems to capture the happened-before relationship between events [52, 89]; state-monitoring
systems to track system-level resources and indicate the health of a cluster [70]; and aggregation systems to collect and
summarize application-level monitoring data [92, 64]. Wang et al. provide a comprehensive overview of datacenter
troubleshooting tools in [94].�ese tools su�er from the challenges of pre-de�ned information outlined in §2.
Troubleshooting and Root-Cause Diagnosis Several o�ine techniques have been proposed to infer execution models
from logs [34, 69, 45, 100] and diagnose performance problems [75, 87, 63]. End-to-end tracing frameworks exist
both in academia [33, 39, 52, 85, 90] and in industry [89, 58, 30, 91, 46] and have been used for a variety of purposes,
including diagnosing anomalous requests whose structure or timing deviate from the norm [33, 42, 87, 79]; diagnosing
steady-state problems problems that manifest across many requests [85, 90, 52, 89, 87]; identifying slow components
and functions [39, 89, 69]; and modelling workloads and resource usage [33, 69, 90]. Recent work has extended these
techniques to online pro�ling and analysis [101, 73, 74, 72, 55].

7 Discussion
Despite the advantages over logs and metrics for troubleshooting (§2), Pivot Tracing is not meant to replace all functions
of logs, such as security auditing, forensics, or debugging [77].
Dynamic instrumentation is not a requirement to utilize Pivot Tracing. By default, a system could hard-code a set

of prede�ned tracepoints. Without dynamic instrumentation the user is restricted to those tracepoints; adding new
tracepoints remains tied to the development and build cycles of the system. Inactive tracepoints would also incur at least
the cost of a conditional check, instead of our current zero cost.
A common criticism of systems that require causal propagation of metadata is the need to instrument the original

systems [45]. We argue that the bene�ts outweigh the costs of doing so (§5), especially for new systems. A system that
does not implement baggage can still utilize the other mechanisms of Pivot Tracing; in such a case the system resembles
DTrace [38] or Fay [51]. Kernel-level execution context propagation [36, 84, 40] can provide language-independent
access to baggage variables.
Even though we evaluated Pivot Tracing on an 8-node cluster in this paper, initial runs of the instrumented systems

on a 200-node cluster with constant-size baggage being propagated showed negligible performance impact. It is ongoing
work to evaluate the scalability of Pivot Tracing to larger clusters and more complex queries. Sampling at the advice level
is a further method of reducing overhead which we plan to investigate.
We opted to implement Pivot Tracing in Java in order to easily instrument several popular open-source distributed

systems written in this language. However, the components of Pivot Tracing generalize and are not restricted to Java. In
particular, it would be an interesting exercise to integrate the happened-before join with Fay or DTrace.
We motivated Pivot Tracing with system operators in mind, but it has several applications that could assist system

developers as well. User applications could be instrumented to allow developers to collect speci�c statistics in real

21

time that would assist with debugging the system and developing updates or new features. Applications with a slow
redeployment cycle would especially bene�t from dynamic instrumentation.

7.1 Misuse
Section §4.2 describes the simple algorithm for compiling queries to advice, and the simplicity of our advice operations;
section §5 demonstrates (albeit transitively) the power of those operations. While users are restricted to these primitives,
Pivot Tracing does not guarantee that its queries will be side-e�ect free, due to the way exported variables from trace-
points are currently de�ned. A comprehensive security analysis is beyond the scope of this paper, but we do note that
certain simple safeguards could be taken against misuse. Digital signatures might be used to enforce that only trusted
administrators can de�ne tracepoints, advice, and specify what to weave; tools in static analysis might be used to ensure
that injected code does not modify system state or risk unbounded recursion.

�e temporal �lters FIRST, RECENT, FIRSTN, and RECENTN all provide a mechanism for explicitly bounding the size
of the baggage. However, there is no inherent bound, and a poorly-constructed query would potentially accumulate a
new tuple for every tracepoint invocation. However, we liken this to database queries that inherently risk a full table scan
– our optimizations mean that in practice, this is an unlikely event. In our experience, even without the temporal �lters
queries only end up propagating aggregations, most-recent, or �rst tuples.
In cases where too many tuples are packed in the baggage, Pivot Tracing could revert to an alternative query plan,

where all tuples are emitted instead of packed, and the baggage size is kept constant by storing only enough information
to reconstruct the causality, a la X-Trace [52], Stardust [90], or Dapper [89]. To estimate the overhead of queries, Pivot
Tracing can execute a modi�ed version of the query to count tuples rather than aggregate them explicitly.�is would
provide live analysis similar to “explain” queries in the database domain.
It is likely the case that system operators do not need the full expressiveness that Pivot Tracing o�ers. User studies

conducted with Pivot Tracing in a contained, non-production cluster could help system developers learn what kinds
of queries operators need their applications to support. Support for those queries by default rather than dynamically
mitigates this security concern.

8 Conclusion
Pivot Tracing is the �rst monitoring system to combine dynamic instrumentation and causal tracing. Its novel happened-
before join operator fundamentally increases the expressive power of dynamic instrumentation and the applicability of
causal tracing. Pivot Tracing enables cross-tier analysis between any inter-operating applications, with low execution
overhead.Ultimately, its power lies in the uniform and ubiquitousway inwhich it integratesmonitoring of a heterogeneous
distributed system.

22

References
[1] Apache HBase Reference Guide. http://hbase.apache.org/book.html. [Online; accessed 25-Feb-2015].

[2] HADOOP-6599 Split RPC metrics into summary and detailed metrics. https://issues.apache.org/jira/
browse/HADOOP-6599. [Online; accessed 25-Feb-2015].

[3] HADOOP-6859 Introduce additional statistics to FileSystem. https://issues.apache.org/jira/browse/
HADOOP-6859. [Online; accessed 25-Feb-2015].

[4] HBASE-11559 Add dumping of DATA block usage to the BlockCache JSON report. https://issues.apache.
org/jira/browse/HBASE-11559. [Online; accessed 25-Feb-2015].

[5] HBASE-12364 API for query metrics. https://issues.apache.org/jira/browse/HBASE-12364. [Online;
accessed 25-Feb-2015].

[6] HBASE-12424 Finer grained logging and metrics for split transaction. https://issues.apache.org/jira/
browse/HBASE-12424. [Online; accessed 25-Feb-2015].

[7] HBASE-12477 Add a �ush failed metric. https://issues.apache.org/jira/browse/HBASE-12477. [Online;
accessed 25-Feb-2015].

[8] HBASE-12494 Add metrics for blocked updates and delayed �ushes. https://issues.apache.org/jira/
browse/HBASE-12494. [Online; accessed 25-Feb-2015].

[9] HBASE-12496 A blockedRequestsCount metric. https://issues.apache.org/jira/browse/HBASE-12496.
[Online; accessed 25-Feb-2015].

[10] HBASE-12574 Update replication metrics to not do so manymap look ups. https://issues.apache.org/jira/
browse/HBASE-12574. [Online; accessed 25-Feb-2015].

[11] HBASE-2257 [stargate] multiuser mode. https://issues.apache.org/jira/browse/HBASE-2257. [Online;
accessed 25-Feb-2015].

[12] HBASE-4038 Hot Region : Write Diagnosis. https://issues.apache.org/jira/browse/HBASE-4038. [On-
line; accessed 25-Feb-2015].

[13] HBASE-4145 Provide metrics for hbase client. https://issues.apache.org/jira/browse/HBASE-4145. [On-
line; accessed 25-Feb-2015].

[14] HBASE-4169 Add per-disk latency metrics to DataNode. https://issues.apache.org/jira/browse/
HDFS-4169. [Online; accessed 25-Feb-2015].

[15] HBASE-4219 Add Per-Column Family Metrics. https://issues.apache.org/jira/browse/HBASE-4219.
[Online; accessed 25-Feb-2015].

[16] HBASE-5253 Add requesting user’s name to PathBasedCacheEntry. https://issues.apache.org/jira/
browse/HDFS-5253. [Online; accessed 25-Feb-2015].

[17] HBASE-6093 Expose more caching information for debugging by users. https://issues.apache.org/jira/
browse/HDFS-6093. [Online; accessed 25-Feb-2015].

[18] HBASE-6292 Display HDFS per user and per group usage on webUI. https://issues.apache.org/jira/
browse/HDFS-6292. [Online; accessed 25-Feb-2015].

[19] HBASE-7390 Provide JMX metrics per storage type. https://issues.apache.org/jira/browse/HDFS-7390.
[Online; accessed 25-Feb-2015].

[20] HBASE-7958 Statistics per-column family per-region. https://issues.apache.org/jira/browse/
HBASE-7958. [Online; accessed 25-Feb-2015].

23

http://hbase.apache.org/book.html
https://issues.apache.org/jira/browse/HADOOP-6599
https://issues.apache.org/jira/browse/HADOOP-6599
https://issues.apache.org/jira/browse/HADOOP-6859
https://issues.apache.org/jira/browse/HADOOP-6859
https://issues.apache.org/jira/browse/HBASE-11559
https://issues.apache.org/jira/browse/HBASE-11559
https://issues.apache.org/jira/browse/HBASE-12364
https://issues.apache.org/jira/browse/HBASE-12424
https://issues.apache.org/jira/browse/HBASE-12424
https://issues.apache.org/jira/browse/HBASE-12477
https://issues.apache.org/jira/browse/HBASE-12494
https://issues.apache.org/jira/browse/HBASE-12494
https://issues.apache.org/jira/browse/HBASE-12496
https://issues.apache.org/jira/browse/HBASE-12574
https://issues.apache.org/jira/browse/HBASE-12574
https://issues.apache.org/jira/browse/HBASE-2257
https://issues.apache.org/jira/browse/HBASE-4038
https://issues.apache.org/jira/browse/HBASE-4145
https://issues.apache.org/jira/browse/HDFS-4169
https://issues.apache.org/jira/browse/HDFS-4169
https://issues.apache.org/jira/browse/HBASE-4219
https://issues.apache.org/jira/browse/HDFS-5253
https://issues.apache.org/jira/browse/HDFS-5253
https://issues.apache.org/jira/browse/HDFS-6093
https://issues.apache.org/jira/browse/HDFS-6093
https://issues.apache.org/jira/browse/HDFS-6292
https://issues.apache.org/jira/browse/HDFS-6292
https://issues.apache.org/jira/browse/HDFS-7390
https://issues.apache.org/jira/browse/HBASE-7958
https://issues.apache.org/jira/browse/HBASE-7958

[21] HBASE-8370 Report data block cache hit rates apart from aggregate cache hit rates. https://issues.apache.
org/jira/browse/HBASE-8370. [Online; accessed 25-Feb-2015].

[22] HBASE-8868 add metric to report client shortcircuit reads. https://issues.apache.org/jira/browse/
HBASE-8868. [Online; accessed 25-Feb-2015].

[23] HBASE-9722 need documentation to con�gure HBase to reduce metrics. https://issues.apache.org/jira/
browse/HBASE-9722. [Online; accessed 25-Feb-2015].

[24] HDFS-6268 Better sorting in NetworkTopology.pseudoSortByDistance when no local node is found. https:
//issues.apache.org/jira/browse/HDFS-6268. [Online; accessed 25-Feb-2015].

[25] MESOS-1949 All log messages from master, slave, executor, etc. should be collected on a per-task basis. https:
//issues.apache.org/jira/browse/MESOS-1949. [Online; accessed 25-Feb-2015].

[26] MESOS-2157 Add /master/slaves and /master/frameworks/{framework}/tasks/{task} endpoints. https://issues.
apache.org/jira/browse/MESOS-2157. [Online; accessed 25-Feb-2015].

[27] Apache accumulo. http://accumulo.apache.org/. Last accessed March 2015.

[28] Aguilera, M. K., Mogul, J. C., Wiener, J. L., Reynolds, P., andMuthitacharoen, A. Performance debugging
for distributed systems of black boxes. In Proc. SOSP ’03 (New York, NY, USA, 2003), ACM Press.

[29] Almeida, P. S., Baquero, C., and Fonte, V. Interval tree clocks: A logical clock for dynamic systems. In OPODIS
’08: Proceedings of the 12th International Conference on Principles of Distributed Systems (Berlin, Heidelberg, 2008),
Springer-Verlag, pp. 259–274.

[30] Appneta traceview. http://appneta.com. July, 2013.

[31] Attariyan, M., Chow, M., and Flinn, J. X-ray: Automating root-cause diagnosis of performance anomalies in
production so�ware. In OSDI (2012), pp. 307–320.

[32] Barham, P., Donnelly, A., Isaacs, R., andMortier, R. Using magpie for request extraction and workload
modelling. In OSDI (2004), vol. 4, pp. 18–18.

[33] Barham, P., Isaacs, R., Mortier, R., and Narayanan, D. Magpie: Online modelling and performance-aware
systems. In HotOS (2003), vol. 9.

[34] Beschastnikh, I., Brun, Y., Ernst, M. D., and Krishnamurthy, A. Inferring models of concurrent systems
from logs of their behavior with CSight. In ICSE’14, Proceedings of the 36th International Conference on So�ware

Engineering (Hyderabad, India, June 4–6, 2014), pp. 468–479.

[35] Bodik, P. Overview of the Workshop of Managing Large-Scale Systems via the Analysis of System Logs and the
Application of Machine Learning Techniques (SLAML’11). SIGOPS Operating Systems Review 45, 3 (2011), 20–22.

[36] Buch, I., and Park, R. Improve debugging and performance tuning with etw. MSDNMagazine,[Online],[Accessed:

01.01. 2012], Avaliable from: http://msdn. microso�. com/en-us/magazine/cc163437. aspx (2007).

[37] Cantrill, B. Hidden in plain sight. Queue 4, 1 (Feb. 2006), 26–36.

[38] Cantrill, B., Shapiro, M. W., Leventhal, A. H., et al. Dynamic instrumentation of production systems. In
USENIX Annual Technical Conference, General Track (2004), pp. 15–28.

[39] Chanda, A., Cox, A. L., and Zwaenepoel, W. Whodunit: Transactional pro�ling for multi-tier applications.
ACM SIGOPS Operating Systems Review 41, 3 (2007), 17–30.

[40] Chanda, A., Elmeleegy, K., Cox, A. L., and Zwaenepoel, W. Causeway: System support for controlling and
analyzing the execution of multi-tier applications. In Proc. Middleware 2005 (November 2005), pp. 42–59.

[41] Chang, F., Dean, J., Ghemawat, S., Hsieh, W. C., Wallach, D. A., Burrows, M., Chandra, T., Fikes, A., and
Gruber, R. E. Bigtable: A distributed storage system for structured data. ACM Transactions on Computer Systems

(TOCS) 26, 2 (2008), 4.

24

https://issues.apache.org/jira/browse/HBASE-8370
https://issues.apache.org/jira/browse/HBASE-8370
https://issues.apache.org/jira/browse/HBASE-8868
https://issues.apache.org/jira/browse/HBASE-8868
https://issues.apache.org/jira/browse/HBASE-9722
https://issues.apache.org/jira/browse/HBASE-9722
https://issues.apache.org/jira/browse/HDFS-6268
https://issues.apache.org/jira/browse/HDFS-6268
https://issues.apache.org/jira/browse/MESOS-1949
https://issues.apache.org/jira/browse/MESOS-1949
https://issues.apache.org/jira/browse/MESOS-2157
https://issues.apache.org/jira/browse/MESOS-2157
http://accumulo.apache.org/
http://appneta.com

[42] Chen, M. Y., Accardi, A., Kiciman, E., Patterson, D. A., Fox, A., and Brewer, E. A. Path-based failure and
evolution management. In NSDI (2004).

[43] Chen, M. Y., Kiciman, E., Fratkin, E., Fox, A., and Brewer, E. Pinpoint: Problem Determination in Large,
Dynamic Internet Services. In Proceedings of the 2002 International Conference on Dependable Systems and

Networks (Washington, DC, USA, 2002), DSN ’02, IEEE Computer Society, pp. 595–604.

[44] Chiba, S. Javassist: Java bytecode engineering made simple. Java DeveloperâĂŹs Journal 9, 1 (2004).

[45] Chow, M., Meisner, D., Flinn, J., Peek, D., andWenisch, T. F. �e mystery machine: End-to-end perfor-
mance analysis of large-scale internet services. In 11th USENIX Symposium on Operating Systems Design and

Implementation (OSDI 14) (Broom�eld, CO, Oct. 2014), USENIX Association, pp. 217–231.

[46] Compuware dynatrace purepath. http://www.compuware.com. Accessed July, 2013.

[47] Cooper, B. F., Silberstein, A., Tam, E., Ramakrishnan, R., and Sears, R. Benchmarking cloud serving systems
with ycsb. In Proceedings of the 1st ACM symposium on Cloud computing (2010), ACM, pp. 143–154.

[48] Couckuyt, J., Davies, P., and Cahill, J. Multiple chart user interface, June 14 2005. US Patent 6,906,717.

[49] Dean, J., and Ghemawat, S. Mapreduce: simpli�ed data processing on large clusters. Communications of the

ACM 51, 1 (2008), 107–113.

[50] Do, T., Hao, M., Leesatapornwongsa, T., Patana-anake, T., and Gunawi, H. S. Limplock: Understanding the
impact of limpware on scale-out cloud systems. In Proceedings of the 4th annual Symposium on Cloud Computing

(2013), ACM, p. 14.

[51] Erlingsson, Ú., Peinado, M., Peter, S., Budiu, M., andMainar-Ruiz, G. Fay: extensible distributed tracing
from kernels to clusters. ACM Transactions on Computer Systems (TOCS) 30, 4 (2012), 13.

[52] Fonseca, R., Porter, G., Katz, R. H., Shenker, S., and Stoica, I. X-trace: A pervasive network tracing
framework. In Proceedings of the 4th USENIX Conference on Networked Systems Design & Implementation

(Berkeley, CA, USA, 2007), NSDI’07, USENIX Association.

[53] Google Protocol Bu�ers. http://code.google.com/p/protobuf/.

[54] Gray, J., Chaudhuri, S., Bosworth, A., Layman, A., Reichart, D., Venkatrao, M., Pellow, F., and Pirahesh,
H. Data cube: A relational aggregation operator generalizing group-by, cross-tab, and sub-totals. Data Mining

and Knowledge Discovery 1, 1 (1997), 29–53.

[55] Guo, Z., Zhou, D., Lin, H., Yang, M., Long, F., Deng, C., Liu, C., and Zhou, L. G2: A graph processing system
for diagnosing distributed systems. In USENIX Annual Technical Conference (2011).

[56] HBase. http://hbase.apache.org.

[57] �e Java HotSpot Performance Engine Architecture. http://www.oracle.com/technetwork/java/
whitepaper-135217.html.

[58] Apache HTrace. http://htrace.incubator.apache.org/. Last accessed March 2015.

[59] Huang, S., Huang, J., Dai, J., Xie, T., and Huang, B. �e hibench benchmark suite: Characterization of the
mapreduce-based data analysis. InData EngineeringWorkshops (ICDEW), 2010 IEEE 26th International Conference

on (2010), IEEE, pp. 41–51.

[60] Kavulya, S. P., Daniels, S., Joshi, K., Hiltunen, M., Gandhi, R., and Narasimhan, P. Draco: Statistical
diagnosis of chronic problems in large distributed systems. In IEEE/IFIP Conference on Dependable Systems and

Networks (DSN) (June 2012).

[61] Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., and Griswold, W. G. An Overview of AspectJ.
In Proceedings of the 15th European Conference on Object-Oriented Programming (London, UK, UK, 2001), ECOOP
’01, Springer-Verlag, pp. 327–353.

25

http://www.compuware.com
http://code.google.com/p/protobuf/
http://hbase.apache.org
http://www.oracle.com/technetwork/java/whitepaper-135217.html
http://www.oracle.com/technetwork/java/whitepaper-135217.html
http://htrace.incubator.apache.org/

[62] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C. V., Loingtier, J.-M., and Irwin, J. Aspect-
Oriented Programming. In Proceedings of the European Conference on Object-Oriented Programming (ECOOP)

(June 1997), LNCS 1241, Springer-Verlag.

[63] Kim, M., Sumbaly, R., and Shah, S. Root cause detection in a service-oriented architecture. ACM SIGMETRICS

Performance Evaluation Review 41, 1 (2013), 93–104.

[64] Ko, S. Y., Yalagandula, P., Gupta, I., Talwar, V., Milojicic, D., and Iyer, S. Moara: �exible and scalable
group-based querying system. InMiddleware 2008. Springer, 2008, pp. 408–428.

[65] Lamport, L. Time, clocks, and the ordering of events in a distributed system. Communications of the ACM 21, 7
(1978), 558–565.

[66] Laub, B., Wang, C., Schwan, K., andHuneycutt, C. Towards combining online & o�ine management for big
data applications. In 11th International Conference on Autonomic Computing (ICAC 14) (Philadelphia, PA, June
2014), USENIX Association, pp. 121–127.

[67] Mace, J., Bodik, P., Musuvathi, M., and Fonseca, R. Retro: Targeted resource management in multi-tenant
distributed systems. In NSDI ’15: Proceedings of the 12th USENIX Symposium on Networked Systems Design and

Implementation (May 2015), USENIX Association.

[68] Mace, J., Roelke, R., and Fonseca, R. Pivot tracing: Dynamic causal monitoring for distributed systems.

[69] Mann, G., Sandler, M., Krushevskaja, D., Guha, S., and Even-Dar, E. Modeling the parallel execution of
black-box services. USENIX/HotCloud (2011).

[70] Massie, M. L., Chun, B. N., andCuller, D. E.�e ganglia distributedmonitoring system: design, implementation,
and experience. Parallel Computing 30, 7 (2004), 817–840.

[71] Meijer, E., Beckman, B., and Bierman, G. Linq: Reconciling object, relations and xml in the .net framework. In
Proceedings of the 2006 ACM SIGMOD International Conference on Management of Data (New York, NY, USA,
2006), SIGMOD ’06, ACM, pp. 706–706.

[72] Mi, H., Wang, H., Chen, Z., and Zhou, Y. Automatic detecting performance bugs in cloud computing systems via
learning latency speci�cation model. In Service Oriented System Engineering (SOSE), 2014 IEEE 8th International

Symposium on (2014), IEEE, pp. 302–307.

[73] Mi, H., Wang, H., Zhou, Y., Lyu, M. R., and Cai, H. Toward �ne-grained, unsupervised, scalable performance
diagnosis for production cloud computing systems. IEEE Transactions on Parallel and Distributed Systems 24, 6
(2013), 1245–1255.

[74] Mi, H., Wang, H., Zhou, Y., Lyu, M. R.-T., Cai, H., and Yin, G. An online service-oriented performance pro�ling
tool for cloud computing systems. Frontiers of Computer Science 7, 3 (2013), 431–445.

[75] Nagaraj, K., Killian, C. E., and Neville, J. Structured comparative analysis of systems logs to diagnose
performance problems. In NSDI (2012), pp. 353–366.

[76] Continuation-local storage. https://github.com/othiym23/node-continuation-local-storage. Last ac-
cessed March 2015.

[77] Oliner, A., Ganapathi, A., and Xu, W. Advances and challenges in log analysis. Communications of the ACM 55,
2 (2012), 55–61.

[78] Oliner, A., Kulkarni, A., and Aiken, A. Using correlated surprise to infer shared in�uence. In Dependable
Systems and Networks (DSN), 2010 IEEE/IFIP International Conference on (June 2010), pp. 191–200.

[79] Ostrowski, K., Mann, G., and Sandler, M. Diagnosing latency in multi-tier black-box services. In LADIS
(2011).

[80] Prasad, V., Cohen, W., Eigler, F. C., Hunt, M., Keniston, J., and Chen, B. Locating system problems using
dynamic instrumentation. In Ottawa Linux Symposium (OLS) (2005).

26

https://github.com/othiym23/node-continuation-local-storage

[81] Rabkin, A., and Katz, R. H. How hadoop clusters break. So�ware, IEEE 30, 4 (2013), 88–94.

[82] Ramakrishnan, R., and Gehrke, J. Database Management Systems, 2nd ed. Osborne/McGraw-Hill, Berkeley,
CA, USA, 2000.

[83] Ravindranath, L., Padhye, J., Mahajan, R., and Balakrishnan, H. Timecard: Controlling user-perceived
delays in server-based mobile applications. In Proceedings of the Twenty-Fourth ACM Symposium on Operating

Systems Principles (2013), ACM, pp. 85–100.

[84] Reumann, J., and Shin, K. G. Stateful distributed interposition. ACM Trans. Comput. Syst. 22, 1 (2004), 1–48.

[85] Reynolds, P., Killian, C.,Wiener, J. L., Mogul, J. C., Shah, M. A., andVahdat, A. Pip: detecting the unexpected
in distributed systems. In NSDI’06: Proceedings of the 3rd conference on 3rd Symposium on Networked Systems

Design & Implementation (Berkeley, CA, USA, 2006), USENIX Association.

[86] Sambasivan, R. R., Fonseca, R., Shafer, I., and Ganger, G. R. So, you want to trace your distributed system?
Key design insights from years of practical experience. Tech. Rep. CMU-PDL-14-102, Parallel Data Laboratory,
Carnegie Mellon University, Pittsburgh, PA 15213-3890, April 2014.

[87] Sambasivan, R. R., Zheng, A. X., De Rosa, M., Krevat, E., Whitman, S., Stroucken, M., Wang, W., Xu, L.,
and Ganger, G. R. Diagnosing performance changes by comparing request �ows. In NSDI (2011).

[88] Shvachko, K., Kuang, H., Radia, S., and Chansler, R. �e Hadoop distributed �le system. InMass Storage

Systems and Technologies (MSST), 2010 IEEE 26th Symposium on (2010), IEEE, pp. 1–10.

[89] Sigelman, B. H., Barroso, L. A., Burrows, M., Stephenson, P., Plakal, M., Beaver, D., Jaspan, S., and
Shanbhag, C. Dapper, a large-scale distributed systems tracing infrastructure. Google research (2010).

[90] Thereska, E., Salmon, B., Strunk, J., Wachs, M., Abd-El-Malek, M., Lopez, J., and Ganger, G. R. Stardust:
tracking activity in a distributed storage system. SIGMETRICS Perform. Eval. Rev. 34, 1 (2006), 3–14.

[91] Twitter Zipkin. http://twitter.github.io/zipkin/. Last accessed March 2015.

[92] Van Renesse, R., Birman, K. P., and Vogels, W. Astrolabe: A robust and scalable technology for distributed
system monitoring, management, and data mining. ACM Transactions on Computer Systems (TOCS) 21, 2 (2003),
164–206.

[93] Vavilapalli, V. K., Murthy, A. C., Douglas, C., Agarwal, S., Konar, M., Evans, R., Graves, T., Lowe, J., Shah,
H., Seth, S., Saha, B., Curino, C., O’Malley, O., Radia, S., Reed, B., and Baldeschwieler, E. Apache Hadoop
YARN: Yet Another Resource Negotiator. In Proceedings of the 4th Annual Symposium on Cloud Computing (New
York, NY, USA, 2013), SOCC ’13, ACM, pp. 5:1–5:16.

[94] Wang, C., Kavulya, S. P., Tan, J., Hu, L., Kutare, M., Kasick, M., Schwan, K., Narasimhan, P., and Gandhi,
R. Performance troubleshooting in data centers: an annotated bibliography? ACM SIGOPS Operating Systems

Review 47, 3 (2013), 50–62.

[95] Wang, C., Rayan, I. A., Eisenhauer, G., Schwan, K., Talwar, V., Wolf, M., and Huneycutt, C. Vscope:
middleware for troubleshooting time-sensitive data center applications. In Middleware 2012. Springer, 2012,
pp. 121–141.

[96] Wood, P. T. Query languages for graph databases. SIGMOD Rec. 41, 1 (Apr. 2012), 50–60.

[97] Xu, W., Huang, L., Fox, A., Patterson, D., and Jordan, M. I. Detecting large-scale system problems by mining
console logs. In SOSP ’09: Proceedings of the ACM SIGOPS 22nd symposium on Operating systems principles (New
York, NY, USA, 2009), ACM, pp. 117–132.

[98] Yin, Z., Ma, X., Zheng, J., Zhou, Y., Bairavasundaram, L. N., and Pasupathy, S. An empirical study on
con�guration errors in commercial and open source systems. In Proceedings of the Twenty-�ird ACM Symposium

on Operating Systems Principles (2011), ACM, pp. 159–172.

27

http://twitter.github.io/zipkin/

[99] Yuan, D., Zheng, J., Park, S., Zhou, Y., and Savage, S. Improving so�ware diagnosability via log enhancement.
In Proceedings of the International Conference on Architecture Support for Programming Languages and Operating

Systems (March 2011).

[100] Zhao, X., Zhang, Y., Lion, D., Faizan, M., Luo, Y., Yuan, D., and Stumm, M. lprof: A nonintrusive request
�ow pro�ler for distributed systems. In Proceedings of the 11th Symposium on Operating Systems Design and

Implementation (2014).

[101] Zhou, J., Chen, Z., Mi, H., andWang, J. Mtracer: a trace-oriented monitoring framework for medium-scale
distributed systems. In Service Oriented System Engineering (SOSE), 2014 IEEE 8th International Symposium on

(2014), IEEE, pp. 266–271.

28

	Introduction
	Motivation
	Pivot Tracing in Action: Preview
	Monitoring and Troubleshooting Challenges

	Design
	Pivot Tracing Fundamentals
	Baggage
	Implementation
	Instrumentation
	Overheads
	Narrow Waist

	Advice
	Implementation
	In Context

	Dynamic Instrumentation
	Implementation
	Instrumentation
	Overheads

	Pivot Tracing in Action
	Case Study: HDFS Replica Selection Bug
	Diagnosing End-to-End Latency
	Overheads of Pivot Tracing

	Related Work
	Discussion
	Misuse

	Conclusion

