
Sidarth Raman
Machine Learning CSCI 1420
04/27/2023

Real-Estate Price Prediction Model
GitHub Repository

Problem:

Main Objective: The problem I attempted to solve was to create an accurate real estate pricing
prediction model using linear regression. To solve this problem I used data from the State
Department of Revenue (DOR) publication of data to the Somerville Board of Assessor database.
The data provided was real-estate data on Somerville, Massachusetts, a suburban city with a
population of just over 80,000 people. The dataset contained 107,900 unique data points each
with 71 columns of information pertaining to the house. I will use this data to create a model, and
then train the model on my data, and eventually test my model. My hope is that with the given
data, I can accurately predict the price of the houses in Somerville, within a given threshold
percentage. I also will use this model to draw more conclusions about the real estate market.

Secondary Objectives
1. What influences house prices the most? I also plan on doing some further investigation

into the greatest influences on house prices. As the area, to an extent, is held constant, it
will be interesting to see the resulting coefficients on the variables I choose, as they will
indicate the correlation between them and house prices.

2. Can real-estate pricing be classified in a linear way? I plan on doing an analysis of the
model itself as well. If it can be classified linearly the difference between a house exactly
half the size, bedrooms, square footage, etc. of another will be exactly half.

3. What changed over time? Since I have data from before 2000 to 2020, I can see if there
what differences there are in the model if trained on different time periods.

Approach:

To solve my problem, and create the model, I will utilize Machine Learning, specifically
TensorFlow and Keras’ Linear Regression.

Preprocessing: During my initial approach, I began with heavy pre-processing which was
necessary to only select information that was useful and pertinent to the problem. Of the 71
columns only a few proved to be helpful. I selected the following to be used in my model.

Column Description

LAND VAL Value of the land that the house is built on.

https://github.com/sidarth-raman/Real-Estate-Predictor

IMPROVE VAL The value an assessor places on the property. (the structures, the
streets, the sewer connection, etc.)

SQFT Square footage of the house.

ROOMS The total number of rooms.

BEDROOM The total number of bedrooms.

BATH The total number of bathrooms.

LIVING AREA Total finished living area. Not to include open porches, balconies,
terraces carports, or garages.

GROSS AREA The total area includes common circulation areas, such as corridors,
balconies, etc.

YEAR The year the home was built.

PERCENT GOOD A grade given by the property owner to describe the state of the house.

STORIES The total number of stories in the house.

Note: I decided not to use “Parcel Val” as Parcel Val is the sum of the land value and the house price, and therefore
would be too closely correlated to the actual label.

Data Removed: I went ahead and removed any
house with “Sale Price” that was under
$100,000. This is because many of the
databases were insignificant areas of land that
should not be under the category of real estate. I
also used “SALE DATE” between 2010 and
2015, as this was the most common data, and if
I created a time interval too large then the linear
regression wouldn’t be fitting for the entire
period. (See graph for details). I also,
obviously, removed ‘null’ and ‘0’ values in my
dataset as this would throw off the linear
regression.

Model:

Initially, I created a very basic model with not many features, upon running the program I was
able to make fixes to improve the model.

1) I began by adding more dense layers, as
the data had many fields it was learning
for, adding three more dense layers helped
fit the complexity of my data.

2) I then added ReLu activation instead of
sigmoid activation as there are lots of
studies showing the convergence of ReLu
is far better than that of Sigmoid. It is
important to note that almost any
activation function does take away from
the linearity of the model.

3) I then increased my model to 10000
epochs as the loss was not converging on
just 1000 epochs.

4) To counter overfitting I added a kernel and
bias regularizer with L2 regularization.

5) I played around with hyper-parameters and increased the learning rate as the learning was
still converging even after increasing the epochs.

Initial Model (Keras Linear Regression):

❖ Single Dense Layer
➢ Sigmoid activation

❖ MSE loss
❖ Stochastic Gradient Descent (Learning

Rate of 0.01)
❖ Accuracy (Within 20% of the actual

price)
❖ 100 epochs
❖ 80/20 split on training and testing data

Final Model (Keras Linear Regression):

❖ Four Dense Layer
➢ ReLu activation
➢ (128, 64, 32, 1 units)
➢ Kernel Regulizer (L2

Regularization with a
coefficient of 0.01 on the Final
Dense Layer)

➢ Bias Regulizer (L2
Regularization with a
coefficient of 0.01 on the Final
Dense Layer)

❖ MSE loss
❖ Stochastic Gradient Descent (Learning

Rate of 0.02)
❖ Accuracy (Within 20% of the actual

price)
❖ 10000 epochs
❖ 70/30 split on training and testing data

Results:

Training Accuracy: 86.19%
Testing Accuracy: 77.53%

Results Summary

The results of the model were
based on a 5-year range between
2010 and 2015. This is because
the largest 5-year subset for the
dataset was between these years. I
also kept the threshold at 0.2.
This is because, between 2010
and 2015, there was
approximately a 20% difference
between the median of the 5-years
and the highest and lowest
quarters of the 5-year span.1 The
graph on the right is the accuracy
of the testing dataset with
different thresholds.

Actual vs. Predicted Values

Here is the scatter plot of the predicted versus actual value. On the left, you can see the entire
dataset, and on the right is the zoomed-in graph at the origin. You can see that the data is fit fairly
well and there are a few outliers, but not many. We can also see that as homes become more
expensive, it becomes less linear and the model seems to underestimate the value of the homes,
which can show that the model isn’t very linear. The blue line here shows a linear line of best fit
for the data and we can see that it is shifted a little off the origin, and therefore the slope is also
adjusted slightly.

1 https://fred.stlouisfed.org/series/ASPUS

Correlation Coefficients

One other thing I wanted to
test was the correlation
between the features and the
Sale Price. It was interesting
to see that none of the
features, on its own, was
very highly correlated with
the Sale Price, but they still
combined to give effective
data. This is probably due to
the fact that by adding
feature sets, there could be
linear and non-linear
combinations of these
features. We initially expand
the units to 128 with a ReLu
activation which means we
are, in a way, adding
dimensions to the feature set.

Note on Non-Linearity

The reason I was able to achieve this accuracy was because of the additional non-linear features I
added. When I tried removing any non-linear activation function (removed ReLu), I was
surprised to see a 28.59% and 21.22% drop in training and testing accuracy respectively. This is
because then the model would just be a linear combination of the inputs, none of which have a
very high correlation with the Sale Price.

Future Implementation:

If I was able to improve this project further, one thing I would change is the scope of my model.
I would scrape Realtor.com for data on all houses in the United States and have a more general
model for all houses in America, and while accuracy would be sacrificed, I would have a better
idea of the housing market in the United States. I would also be able to create smaller
sub-models to see patterns in certain large cities. Comparing the coefficients of the variables in
New York, NY, and Henderson, NV might show general trends on what drives up prices in
different areas of the country. This analysis would be interesting on a larger scale.

I would also attempt to solve the same problem using different models. I think a simple Neural
Network Model would fare very well with this problem as it has been very accurate in other
prediction models. Although the data isn’t very complex, it will still be useful as it can learn
non-linear relationships very well.

