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Capstone Overview

For my capstone I took CS1430, Computer Vision, taught
by professor Srinath Sridhar. The course involved working
on projects on image filtering, feature matching, camera
geometry, scene classification and convolutional neural net-
works. Throughout these assignments, I completed supple-
mentary tasks for the purposes of the capstone. Some ex-
amples of extra work include, creating a lower dimensional
descriptor for feature matching and utilizing GMM instead
of K-Means when classifying scenes. For the final project,
I put in more work to fulfill the capstone requirement. The
rest of this report highlights the final project.

Abstract

This paper presents an approach to address the chal-
lenge of text extraction from images for translation purposes.
Leveraging Convolutional Neural Networks (CNNs) and Re-
current Neural Networks (RNNs) along with Connectionist
Temporal Classification (CTC) loss, the proposed model
helps in better understanding transcribing handwritten text.
Through experimentation with the IAM dataset [5] con-
sisting of handwritten text images, the model demonstrates
approximately 67% validation accuracy in text prediction.
The model holds the potential for a wide array of applica-
tions. There is also a focus on segmenting input images into
individual words, such that the images can be passed along
to the model. The two mechanisms are the foundation for
developing an image text translation pipeline. The findings
of this study contribute to the understanding of technology,
which closes the gap between handwritten and digital text,
paving the way for enhanced communication, accessibility,
and efficiency.

1. Introduction

Handwritten text recognition serves multiple use cases,
such as digitizing historical documents, enhancing accessi-
bility for visually impaired individuals, and improving data

entry processes across various industries. Though current
implementations exist, this project seeks to understand
the underlying mechanisms of text extraction better,
focusing on the challenges posed by the variable nature of
handwritten documents. Recognizing text from handwritten
sources presents unique difficulties due to the diverse
handwriting styles, including cursive and print, as well as
each individual’s unique styles.

To build a successful model given these issues, the [AM
dataset [5], a diverse collection of handwritten samples
from over 600 writers, is utilized. This dataset offers a wide
range of handwriting styles, making it suitable for training
our model. Building upon research done in CNN-RNN
BASED HANDWRITTEN TEXT RECOGNITION [2],
our model architecture integrates Convolutional Neural
Networks (CNNs) and Recurrent Neural Networks (RNNs)
with a Connectionist Temporal Classification (CTC) loss
function. These components allow the model to extract text
from handwritten images effectively, which in turn aids
translation into a given language.

By addressing the challenges of the variation in hand-
writing, this paper aims to study the effectiveness of our
proposed model in extracting text from handwritten images.
Furthermore, by capturing the underlying patterns of the
English language, our model holds the potential to predict
words accurately, even with a dataset that does not contain
all possible words.

This paper discusses dataset selection, data preprocessing
techniques, model architecture, loss function, experimental
results, challenges, and next steps. Through this research, the
aim is to contribute to the understanding of text extraction
from handwritten images. This enhances accessibility
and efficiency across various domains, such as document
digitization, assistive technology for the visually impaired,
and streamlining data entry processes in a wide range of
industries.



2. Related Work

The primary resource for this project is the article, CNN-
RNN BASED HANDWRITTEN TEXT RECOGNITION [2].
This article discusses how the IAM dataset [5] can be lever-
aged to generate a text extraction model. This paper dis-
cusses the general preprocessing and architecture to achieve
a 98% accuracy. More research into the CTC loss was re-
quired, thus the article Sequence Modeling With CTC [3]
was used to gain a better understanding. The implementation
of the CTC loss function was also unclear, thus an example
of audio recognition, Automatic Speech Recognition using
CTC [!], was studied to get a better understanding of the
syntax. The OpenCV package is used for line and word seg-
mentation, and the documentation was accessed to better
understand the functionality. Namely, research on Otsu’s
algorithm [4] was done to gain an understanding of various
approaches to finding line and word boundaries. The Python
packages spellchecker and googletrans were installed for
auto-correction and translation.

3. Method

Building on the ideas from the reference paper [2], this
project is structured into two parts. Initially, the focus is on
training the model, which involves preprocessing images
and optimizing the model architecture. We then integrate
the model into a pipeline for translating input images. The
first part consists of preparing the dataset and training a
model capable of extracting word text from an image. This
involves preprocessing images to standardize their format
and developing a model architecture that can effectively
learn from the dataset. We leverage the referenced paper
to help guide the approach. In the second phase, we utilize
the trained model to create a pipeline for translating text
from input images. This involves integrating the model into
an end-to-end system that can process images and generate
accurate translations.

3.1. Model Training
3.1.1 Dataset and Preprocessing

The IAM dataset [5] contains 115320 words and serves
as the data for training our model. To ensure data quality,
the 96456 images labeled as valid by the dataset were used,
while the 18864 images labeled as erroneous were ignored.
Given the extensive volume of valid data, manually verifying
the erroneous label’s accuracy was deemed unnecessary. All
unique characters in the dataset were extracted and stored as
a string shown in Figure 1. The longest possible string, 21
characters, was also calculated to serve as a vital part of the
label encoding.

Preprocessing begins with converting the image to
grayscale and resizing to a standardized shape of (32, 128)

while preserving the aspect ratio. If necessary, padding or
reshaping is performed to maintain consistent dimensions in
all images. Additional preprocessing steps involve normaliz-
ing pixel values to be between [-1,1] and encoding the labels
into numerical representations by mapping each character to
its location in the string shown in Figure 1.

"IVH8()*+,-10123456789:; 2ABCDEF GHIJKLMNOPQRSTUYWXY Zabcdefghilkimnopgrstuvwiyz"

Figure 1. String containing all unique characters in the dataset

3.1.2 CNN Layers

CNN layers play an important role in extracting spatial
features which are required for effective text recognition
from handwritten text images. The CNN component con-
sists of five grouped layers, each comprising of Conv2d,
batch normalization, and max-pooling layers, with ReLU
activation. Filter sizes progressively increase as follows: [32,
64, 128, 128, 256], and the kernel sizes were 5 for the first
two groupings and 3 for the remaining three. These layers
produce an output that can be reshaped to (32, 256), as sug-
gested in the paper. This output will be passed along to the
RNN Ilayer.

3.1.3 RNN Layers

The Recurrent Neural Network (RNN) component of the
model serves its purpose by capturing sequential patterns
within words. When paired with the spatial features extracted
by the CNN layers, it provides a far more robust model. Two
bidirectional LSTM layers, each with 256 units, are used
to capture sequential patterns within words. Bidirectional
LSTM enhances contextual understanding in both directions,
which is beneficial for words, where each letter is dependent
on the surrounding characters. The output shape is adjusted
to (32, 79) using a Dense layer. The 79 represents the num-
ber of unique characters in the dataset, 78 characters, along
with an extra “blank” character used for CTC loss calccu-
lation. [3]. RNN layers play a crucial role in capturing se-
quential patterns within handwritten text, complementing the
spatial features extracted by the CNN layers. By analyzing
the relationships between characters, the RNN contributes to
the accurate prediction of text from handwritten text images.

3.1.4 Loss Function: CTC

After comprehensive research, the CTC loss function was
selected for its ability to effectively handle the unpredictable
nature of word length. Unlike categorical loss functions,
CTC loss permits flexibility in input and output lengths,
considering all valid label permutations during training.
CTC loss allows the model to handle variable-length output
sequences by introducing “blank” labels and collapsed



Layer (type) Output Shape Paran #

input_1 (InputLayer) [(None, 32, 128, 1)] 0

(None, 32, 128, 32) 832

atchNormalization) (None, 32, 128, 32) 128

xPooling2D) (None, 16, 64, 32) o

) (None, 16, 64, 64) 51264
ation 1 (Batchornalization)  (None, 16, 64, 64) 256
nax_pooling2d_1 (MaxPooling20) (None, 8, 32, 64) 0
conv2d 2 (Conv2d) (None, 8, 32, 128) 73856

malization_2 (BatchNornalization)  (None, 8, 32, 128) 512

ng2d_2 (MaxPooling2) (Nore, 8, 16, 128) °
(None, 8, 15, 128) 147584
n_3 (BatchNormalization)  (None, 8, 16, 128) 512
o0ling20) (None, 8, 8, 128) 0
(None, 8, 8, 256) 205168
n_4 (BatchNormalization)  (None, 8, 8, 256) 1024
max_pooling2d_4 (MaxPooling2D) (None, 8, 4, 256) °
reshape (Reshape) (None, 32, 256) 0
onal (Bidirectional) (None, 32, 512) 1050624
onal_1 (Bidirectional) (None, 32, 512) 1574912

(bense) (None, 32, 79) 40527

bidire

Figure 2. The layers of the model

repeated labels. [3]. The CTC loss function is paired with
an Adam optimizer which allows the model to train leading
efficient word prediction.

This model’s approach leverages both spatial and sequen-
tial information, enabling the model to effectively extract text
from handwritten images while accommodating the inherent
variability in handwriting styles. The CTC loss function is
important, as it enables effective training and accurate text
recognition from images. By handling variable-length output
sequences and exploring all possible alignments between
input and output sequences, CTC loss enhances the model’s
ability to accurately predict text. [3]

3.2. Image Translation Pipeline

Once the model trains, it is added into a pipeline to facili-
tate the translation of text in images. The pipeline consists of
several steps aimed at segmenting the image into lines, then
words, extracting text, spell-checking, combining words into
a phrase, and finally translating the text. The steps for ex-
tracting lines and words are similar, with the only difference
being the scale at which the features are extracted.

3.2.1 Line and Word Segmentation

The first step involves determining the boundaries of
the line or word. To accomplish this, the image is initially
converted into a binary format using Otsu’s thresholding
algorithm. [4] This algorithm dynamically calculates the
threshold value to separate text from the background and
any noise. The result can be viewed in Figure 3.

Car\ O L S ee?

Figure 3. Threshold Image

Next, a structuring element is defined to identify

boundaries within the threshold image. This step helps in
finding the boundaries of lines and words. However, due to
potential variability in image shapes, a generalized formula
for the structuring element may not suffice for all scenarios.

Following this, the binary image is dilated to enhance
the visibility of key elements, such as words. Dilation
expands the boundaries of the text, making them more
distinguishable as seen in Figure 4.
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Figure 4. Dilated Image

Contour detection is then applied to identify the bounding
regions of individual lines or words within the image. This
process utilizes the dilated image to extract contours, which
represent the boundaries of a given feature. The dilation
enhances the key features of the image, which helps bet-
ter identify such boundaries. Although not explicitly drawn
when the image runs through the pipeline, the bounding
boxes are shown in Figure 5.
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Figure 5. Image with contours visualized

3.2.2 Text Extraction and Spell Checking

Once the contours for the words are identified, the cor-
responding regions are extracted and passed through the
trained model to extract text. However, due to potential inac-
curacies in the extracted text, a spell-check package is used
to fix any minor issues. Although this is an efficient approach
to fixing small errors, there are potential pitfalls which will
be discussed later.

3.2.3 Translation and Display

After extracting the words, they are grouped into a single
phrase. The extracted text is then translated into the desired
language using the Googletrans package. The most com-
mon pixel value (which typically is the background color)
is used to cover the original text. The translated text is then
displayed on the original image, replacing the original text.
This process is repeated for all lines found within the image,
effectively translating the text.



4. Results
4.1. Model Training
4.1.1 Training Computation

The model underwent training for 100 epochs with a
batch size of 500, which took approximately 18 hours. The
duration shows the computational complexity of the model,
which was further emphasized by the large dataset. Through-
out the training, intermediate models were saved based on
the best validation loss, training loss, and validation accu-
racy. The training and validation accuracy/loss are shown in
Figure 6.

4.1.2 Training Results

During training, the model’s training loss stabilized
around 0.15, while the validation loss stabilized around 3.7.
This large gap between the two values suggests a degree of
overfitting. Similarly, the training accuracy plateaued at ap-
proximately 93%, while the validation accuracy stabilized at
around 67%. Significant drops in validation accuracy during
training also indicated overfitting issues. The best loss and
accuracy for both training and validation are shown in Table
1. Given these results, the trained model is used to attempt
to predict handwritten text in images. The experiments ex-
plored later will showcase not only the success of the model,
but also its limitations.

Table 1. Training and Validation Metrics

Best Loss  Best Accuracy
Training 0.13 0.94
Validation 2.92 0.68

4.1.3 Word Segmentation

The line and word segmentation section of the pipeline
proved to be successful. Given varying inputs (multi-line,
single word), the program can successfully extract the words
to be passed along into the model. The high-level steps of
the extraction are visualized in Figure 7.

4.1.4 Model Performance

To determine the performance of the model, experiments
were run with hand-made text blocks. Various versions of
experiments were run to determine the model’s performance
and limitations.

Multi Line Input: Figure 8 is an example in which
multiple lines are inputted to showcase the pipeline’s
ability to segment words, extract text, and translate. In this
experiment, the model can accurately extract the correct

word, and thus the phrase is correctly translated.

Overfitting: As discussed in 4.1.2 the model’s results
showed that that the model had likely overfit. This is high-
lighted when the text ’hi” is passed into the model. The
model struggles to predict a seemingly simple word as it
predicts the word to be "his” as shown in Figure 9.

Upon further investigation, the dataset consisted of a
significant number of three-letter words starting with “hi_”
and lacked the word “hi”. Therefore, the overfit model will
expect a third letter causing this issue.

Long String Performance The previous experiments
focused on shorter-length words however, the model is
capable of extracting longer strings with varying success.
The model was able to extract “disturbance” without any
issue (Figure 10) but struggled with the word pineapple”
as it predicted the word to be “’picepple” (Figure 11). This
error was minor as the spell checker could fix it, however,
there were other cases where the prediction was not able to
be fixed by a spell checker.

Varying writing style: The last experiment focused on
seeing how the same model handles the same word, ”my” in
different handwriting styles. The results are showcased in
Figure 12.

It is observed that the two lowercase print "my”’ images
were able to be accurately predicted. The cursive version
of "my”” was incorrectly predicted but was close enough to
be fixed with a spell checker. When observing the cursive
image, the model expecting the letter ’e” is not egregious as
there is some semblance of the letter within the image. The
model struggled with the all capital "MY” as it predicted
the text to be ’sry” which is not able to be accurately fixed
with the spell checker. This is again due to the model being
overfit. The lack of words that are all capitalized in the
dataset made the model struggle to determine this word.
There were successful cases of text prediction, however, the
incorrect predictions highlighted the sensitive nature of this
model.

As seen from the various experiments, the over-trained
nature of the model is highlighted which was expected given
the loss and accuracy results from model training. However,
there are cases where the model successfully predicts the
text in the image. This sensitivity makes the model difficult
to use in some scenarios and is an issue to be discussed in
the next steps.
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Extracted: disturbance
Auto-Corrected: disturbance

picepple
Auto—Corrected: pineapple
ranslated(src=en, dest=de, text=Ananas,
ranslated: Ananas
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Figure 11. "pineapple” extracted as “picepple”
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(ul\ you s\eaf
17/4 7 my my mein
Die Tilr ist offen /\/\ y sry say sagen
Bill a8 Essen m &j my my mein

Kannst du schlafen

W mey my mein

Figure 12. "my” with different handwriting

Figure 8. All lines are correctly extracted and translated

4.2. Technical Discussion

T —m————_
. e 4.2.1 Tradeoffs
Auto-Corrected: his ‘
\ U ELDE S fy ST [ The significant time required to train the model raises
questions about the trade-offs between dataset size,
Figure 9. *hi” being incorrectly labeled as *his” computational resources, and training efficiency. While

utilizing a larger and more comprehensive dataset improved
the model’s performance, it came at the cost of prolonged
training times. Despite the model achieving stability in



terms of accuracy and loss, the extended training made
it difficult to tweak the model for further improvements.
Additionally, the issue of overtraining highlights the need
for other approaches to be considered.

The reliance on an external auto-correction package to
fix minor inaccuracies in text extraction introduces potential
trade-offs in translation accuracy and reliability. While auto-
correction effectively handles small deviations in extracted
words, it may introduce errors by incorrectly fixing a mistake
which will lead to mistranslations. For example, if the word
”sick” is mispredicted to sich”, it can be autocorrected to
”such” instead of “’sick”. This will change the context of the
phrase and in turn, cause the text to be mistranslated. This
issue is concerning when considering the social implications
of mistranslated text.

4.2.2 Changes

To address the challenges posed by prolonged training
times and overfitting, exploring techniques to optimize the
training process is vital for future success. This may involve
fine-tuning hyperparameters, implementing early stopping
mechanisms, or utilizing more efficient model architectures.
Additionally, leveraging techniques such as transfer learning
or data augmentation could enhance model performance
while reducing training time.

Given the limitations of auto-correction, using context-
aware autocorrection mechanisms is a potential solution.
Context-aware autocorrection algorithms could analyze sur-
rounding text to determine the correct word in cases where
multiple changes are valid, improving the accuracy of cor-
rections and by default, translations. Although not perfect,
these mechanisms can increase the reliability of the pipeline.

5. Challenges

The initial phase of the project encountered significant
challenges related to dataset selection and model training.
Attempts with datasets such as the II'T Sk-word dataset and
a subset of synthetically generated words were ineffective,
with models struggling to learn. This led to extensive time
and computational resources being used in preprocessing
datasets and tweaking model architectures. These issues
were exacerbated by the computationally expensive nature
of training with these datasets.

Various preprocessing techniques and model layer-
s/parameters were explored in an attempt to improve
performance. However, the lengthy training times made it
difficult to conduct thorough experimentation to determine
optimal parameters. To mitigate this issue, a smaller subset
of the IAM dataset was utilized for preliminary experimen-

tation, providing insights into model performance without
exhausting computational resources. This is not an ideal
scenario as a model performing well on a small dataset does
not necessarily transfer over to a larger dataset, however, it
was an attempt to find the optimal layers/parameters.

6. Next Steps

Improving the model’s generalization capabilities by mit-
igating overfitting should be prioritized. Exploring various
model architectures, regularization techniques, and hyperpa-
rameters can help achieve a better balance between model
complexity and performance. If this is successful, the extrac-
tion of entire phrases from images may be worth exploring.
Expanding the model’s capabilities to encompass languages
beyond English presents an exciting opportunity for future
research. Particularly, languages with non-Latin characters
pose unique challenges and opportunities for innovation.
Adapting the model to handle diverse linguistic structures
and character sets can broaden its applicability and impact.

7. Socio-Historical Impact

One of the most significant social impacts lies in
the potential for cultural misrepresentation and erasure.
Inaccurate text extraction and translation may lead to the
distortion or loss of cultural nuances, identities, and histories
existing within handwritten texts. This can emphasize
stereotypes and misconceptions of certain communities,
which harms the efforts toward cultural understanding and
appreciation.

Inaccurate translations resulting from incorrect text
extraction can also cause linguistic discrimination. Lan-
guages spoken by underrepresented communities may
be particularly vulnerable to misinterpretation or neglect.
This can exaggerate existing inequalities and contribute
to the demise of linguistic diversity, cultural heritage, and
indigenous knowledge systems.

Misinterpreted texts, especially in legal or official
documents, can cause significant harm. Many of these
scenarios carry significant legal ramifications and mistakes
can lead to large financial losses. In social situations,
mistranslations can lead to misunderstandings, conflicts, and
increased tensions, hindering meaningful communication
and collaboration.

Given these socio-historical implications, stakeholders,
especially those who develop such algorithms must carry
the ethical responsibilities to mitigate the risks associated
with inaccurate text extraction and translation. This requires
rigorous validation, quality assurance, and accountability



measures throughout the development and deployment of
text extraction systems. Collaboration with all stakeholders,
including language experts, cultural representatives, and
impacted communities, is vital to ensure responsible Al
development.

8. Conclusion

To solve the issue of text extraction within images for
translation, multiple approaches were considered. However,
after some research and thoughtful consideration, combin-
ing CNNs/RNNs with CTC loss provided the best solution.
Paired with a comprehensive dataset of handwritten texts, a
model that can extract text with around 67% accuracy was
generated. Although imperfect, this lays the foundation for
transcribing handwritten text to a digital format. This system
can digitize documents, serve as assistive technology for the
visually impaired, or streamline processes in a wide range
of industries. The application to this program is endless and
can be leveraged in varying contexts. While further refine-
ment and optimization are necessary to improve accuracy
and performance, the development of this text extraction and
translation system showcases a significant advancement in
digital communication and information accessibility.
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