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ABSTRACT

This study investigates the distinction between structural and func-
tional causal models in the context of robotic planning. We exam-
ine whether humans naturally construct different types of causal mod-
els when reasoning about physical systems and how these representa-
tions affect performance in assembly and troubleshooting tasks. Our
research compares three elicitation methods: a traditional intervention-
based approach, a graphical drawing method, and an integrated hier-
archical interface. Across diverse everyday objects (including bicycles,
lamps, and sinks), we found that different elicitation methods signifi-
cantly affect model fidelity, with the intervention-based approach con-
sistently yielding higher hit rates at the cost of increased false alarms.
When integrated into a Partially Observable Markov Decision Process
(POMDP) planning framework, our ground truth models confirm that
structural representations maximize assembly performance while func-
tional models excel in troubleshooting scenarios. However, participant-
elicited models frequently diverge from these theoretical expectations,
with significant performance gaps between expert-generated and user-
generated causal models in POMDP simulations. Despite these limita-
tions, we demonstrate that different causal conditions (structural and
functional) elicit statistically distinct causal representations, suggest-
ing inherent differences in reasoning frameworks. Our findings indicate
that adaptive robotic planning systems should maintain dual structural-
functional representations while recognizing the challenges in accurately
eliciting these models from human subjects. This work contributes to
both cognitive theory by clarifying how humans conceptualize causal
systems and practical robotics by highlighting important considerations
for human-aligned planning approaches.
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1 Introduction

1.1 Causal Reasoning: Theoretical Frameworks

Humans use causal reasoning to organize events into coherent narratives by inferring
mechanisms from observations (e.g., a car’s failure to start suggests a dead battery or
empty fuel tank) [8, 13, 11]. Formalizing this process, Causal Bayesian networks model
variables as nodes in a directed acyclic graph with probabilistic dependencies that sup-
port both qualitative insights and quantitative inference [20, 21]. In contrast, mental
models theory treats causal assertions as deterministic links, interpreting “A causes B as
an unequivocal relation [13, 14]. Although empirical studies demonstrate all-or-nothing
judgments under unspecified probabilities [9], this approach fails to capture real-world
uncertainty [18].

The force-dynamics framework conceptualizes causation as interactions (enabling, pre-
venting, resisting) that reflect nuanced distinctions in everyday language [23, 25, 12].
While functional causal models (e.g., Cheng’s causal power theory) quantify how causes
generate outcomes [7], no formal framework exists for structural causal models that cap-
ture component-level dependencies within physical systems. Existing elicitation methods
represent causal relationships as a single directed graph, conflating structural and func-
tional aspects and leaving this critical distinction unexplored [10].

1.2 Causal Reasoning: Robotic Applications

In robotics, distinguishing structural from functional knowledge is essential for robust
decision-making under uncertainty. Early systems encoded causal rules for assembly and
diagnosis, enabling error detection and recovery through probing component connections
[5]. Subsequent research introduced adaptive models that update causal beliefs through
intervention [19], demonstrated on platforms like Baxter where robots experimentally
learn tool affordances and functional relations [6]. Logic-based planners further integrated
both structural and functional constraints to support coordinated multi-robot tasks [17].

Recent advances in deep causal learning and counterfactual reasoning now allow sys-
tems to infer latent mechanisms from high-dimensional inputs and simulate hypothetical
outcomes [22, 16]. Incorporating human-derived causal models into a POMDP framework
has significantly improved assembly efficiency and interpretability [1, 2, 4, 3]. However,
it remains unclear whether human reasoning adaptively shifts between structural and
functional abstractions based on task context.

This distinction has profound practical implications: robots aligned with human
causal intuitions can better anticipate errors, guide interventions, and collaborate effec-
tively. Our work investigates whether different physical systems naturally elicit structural
versus functional causal insights, and how these variations influence robotic planning and
troubleshooting performance.

1.3 Study Overview

This study examines the structure of human causal reasoning in physical systems, focus-
ing specifically on whether individuals spontaneously construct distinct structural mod-
els (emphasizing physical interconnections) and functional models (highlighting goal-
directed mechanisms) independent of elicitation method. Motivated by challenges in
robotic assembly and adaptive planning, we analyze how variations in elicited causal
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structures relate to ground-truth models and influence performance when integrated into
a Partially Observable Markov Decision Process (POMDP) framework.

We systematically compare two elicitation approaches: a traditional intervention-
based method grounded in counterfactual reasoning, and a drawing-based graphical method.
While intervention-based techniques typically yield higher-fidelity models, they are vul-
nerable to participant fatigue. Drawing-based methods offer greater scalability but po-
tentially compromise structural richness. To address these limitations, we introduce a
novel hierarchical elicitation interface that integrates graphical clustering with targeted
counterfactual refinement, capturing structured causal representations while minimizing
cognitive load.

Building on our previous work [1, 2, 4, 3], we integrate participant-elicited causal mod-
els into a POMDP-based planner to evaluate their effectiveness in robotic troubleshooting
and assembly tasks. Specifically, we assess how causal representation fidelity shaped by
reasoning mode and elicitation format influences task success rates under uncertainty.
By connecting cognitive theory, elicitation methodology, and computational implementa-
tion, this study advances our understanding of how human causal abstraction can enhance
autonomous robotic planning.

2 Causal Elicitation Methods

2.1 Prior Work

Note: The complete details of this work are presented in [24]. We provide only a brief
summary of our methods and findings below.

In our work, we developed and compared two distinct approaches for eliciting causal
structure from participants analyzing everyday physical artifacts. We evaluated how
different elicitation procedures affect the completeness, granularity, and accuracy of the
resulting causal models: the Interventional Method and the Graphical (Drawing) Method.

The Interventional Method decomposes an object into its constituent parts and presents
participants with systematic counterfactual questions (e.g., If one removed [X part] from
[object], would [Y part] still perform its function?”). Grounded in the make-a-difference
view of causality, this method requires exhaustive, pairwise evaluation of all potential
causal links. Participants view an object diagram alongside functional descriptions of
each component, then evaluate every possible pairing. While this comprehensive ap-
proach yields more reported causal links including some false positives, it produces higher
hit rates (HR, also known as true positive rates) and improved overall discriminability
(d’) between genuine and spurious causal relations.

The Graphical/Drawing Method employs an online interface (Loopy) where partic-
ipants construct causal graphs by drawing directed arrows between nodes representing
object parts. This approach allows participants to indicate causal relationships in a sin-
gle, global step rather than through systematic pairwise queries. Though more intuitive
and scalable, particularly for objects with numerous components, it yields lower HRs by
not enforcing exhaustive consideration of every potential connection.

Our experiments provide compelling evidence for these trade-offs. In Experiment 1,
which examined four light-producing objects (desk lamp, flashlight, kerosene lamp, and
wall lamp), the Interventional Method significantly outperformed the Drawing Method
in hit rates. The desk lamp’s HR increased from 0.61 (Drawing) to 0.78 (Intervention),
with similar improvements across all objects (see Table 1 and Table) 2. Although the In-
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tervention condition produced somewhat higher false alarm rates (FAR), signal detection
analysis confirmed superior overall discriminability (d’) under the Interventional Method.

Experiment 2 extended these findings to a more diverse set of 10 objects (including
a bicycle, cannon, electric mixer, hand mixer, paddle boat, pistol, scooter, sink, toilet,
and tricycle), with component counts ranging from 5 to 12. Participants were randomly
assigned 3 of the 10 objects, with average HR and FAR scores computed across these
objects. Results again demonstrated a robust advantage for the Interventional Method:
the average HR (true positive rate) was 0.54 compared to 0.29 in the Drawing condition,
while the average FAR was 0.23 versus 0.09, respectively. Signal detection measures
confirmed higher discriminability (d’) and lower bias (c) in the Intervention condition,
indicating that participants in this condition not only reported more causal links overall
but also more accurately differentiated true causal relations from erroneous ones.

Tables 1 and 2 summarize the key findings from both experiments, illustrating per-
formance differences across the full range of tested objects.

Table 1: Experiment 1: Means (with standard errors) for hit rates (HR) and false alarm
rates (FAR) for four light-producing objects under the Intervention and Drawing condi-
tions.

Object HR (Intervention) HR (Drawing) FAR (Intervention) / (Drawing)

Desk lamp 0.78 (0.02) 0.61 (0.02) 0.14 (0.01) / 0.08 (0.01)
Flashlight 0.91 (0.02) 0.71 (0.03) 0.12 (0.02) / 0.10 (0.01)
Kerosene lamp 0.61 (0.02) 0.29 (0.02) 0.30 (0.01) / 0.17 (0.01)
Wall lamp 0.73 (0.02) 0.54 (0.02) 0.14 (0.01) / 0.15 (0.01)

Table 2: Experiment 2: Means (with standard errors) for hit rates (HR) and false alarm
rates (FAR) for 10 objects under the Intervention and Drawing conditions.

Object HR (Drawing) FAR (Drawing) HR (Intervention) FAR (Intervention)

Bicycle 0.25 (0.05) 0.07 (0.01) 0.56 (0.02) 0.26 (0.02)
Cannon 0.26 (0.02) 0.10 (0.00) 0.50 (0.02) 0.30 (0.03)
Electric mixer 0.26 (0.02) 0.09 (0.00) 0.45 (0.03) 0.26 (0.03)
Hand mixer 0.42 (0.03) 0.13 (0.01) 0.56 (0.03) 0.25 (0.02)
Paddle boat 0.32 (0.04) 0.09 (0.01) 0.60 (0.03) 0.16 (0.01)
Pistol 0.25 (0.03) 0.06 (0.01) 0.52 (0.02) 0.20 (0.02)
Scooter 0.15 (0.03) 0.12 (0.01) 0.52 (0.03) 0.17 (0.02)
Sink 0.57 (0.07) 0.06 (0.01) 0.68 (0.03) 0.22 (0.02)
Toilet 0.24 (0.03) 0.07 (0.01) 0.50 (0.02) 0.23 (0.02)
Tricycle 0.18 (0.04) 0.12 (0.01) 0.47 (0.04) 0.26 (0.02)

Both experiments demonstrate that the Interventional Method elicits not only more
reported causal relations but also yields more accurate and discriminating models, despite
the increased false alarms, compared to the Graphical Method. These findings highlight
a fundamental trade-off in causal elicitation: the systematic, counterfactual approach of
the Interventional Method offers higher fidelity in capturing causal structure but faces
scalability limitations due to its exhaustive requirements. Conversely, the Graphical
Method, with its intuitive and efficient design, may be preferable for rapid, large-scale
elicitation scenarios, even if some causal nuances remain uncaptured.
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3 Hierarchical Causal Elicitation: An Integrated Ap-

proach

To address limitations in previous elicitation methods, we introduce a hierarchical frame-
work that integrates the structured rigor of intervention-based techniques with the usabil-
ity of graphical interfaces. Rather than treating these approaches as mutually exclusive,
our method guides participants through sequential stages of causal reasoning, beginning
with intuitive graphical mapping followed by targeted counterfactual prompts that refine
and validate key connections.

This hybrid design aims to minimize cognitive overload by avoiding exhaustive pair-
wise queries upfront, focusing instead on areas of ambiguity or uncertainty. By stream-
lining the elicitation process, the framework preserves the discriminative benefits of inter-
ventional methods while enhancing engagement and scalability comparable to graphical
approaches.

Implemented as an online interface, the system enables users to construct initial causal
graphs and then interactively refine their models through context-sensitive prompts. This
iterative structure improves both the accuracy and richness of elicited representations
while providing a practical pathway for collecting structured causal knowledge in large-
scale or real-time settings.

3.1 Methodology

This study examines whether a hierarchical elicitation interface can reduce cognitive
demands typically associated with exhaustive causal questioning while still yielding ac-
curate and interpretable causal models. Our primary research questions are: (1) Can
a hierarchical interface produce causal graphs of comparable quality to those generated
through traditional survey-based methods? and (2) Can complex objects be decomposed
into hierarchical clusters to facilitate more efficient causal elicitation?

We implemented a controlled experimental design with quantitative evaluation met-
rics. The stimuli consisted of three mechanically distinct everyday objects (a bicycle, a
sink, and a toilet) selected for their structural complexity and general familiarity. We
recruited 300 participants, with each object assessed by 10 participants per condition.
Participants were randomly assigned to one of three condition conditions: structural,
functional, or causal (control), designed to subtly influence how they interpreted and
grouped object components without introducing explicit bias.

Participants used the hierarchical interface to construct causal models for their as-
signed object. The interface guided them through a staged process of mapping com-
ponent relationships, beginning with higher-level groupings and progressively refining
connections through targeted prompts.

We evaluated the quality of elicited causal models using quantitative metrics, including
hit rate (true positive rate) and false alarm rate (false positive rate), measured against
expert ground truth graphs to assess both sensitivity and specificity.

3.2 System Implementation and User Interface

The elicitation system was implemented with React for the frontend and Python Flask
for the backend. The core feature is an interactive graph editor that enables participants
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to construct causal models by clustering object parts and drawing directional causal con-
nections. Participants organize components by drawing freehand boundaries that render
as smooth elliptical shapes, with dynamic visual feedback provided through gradient fills,
Bezier curves, and shadow effects.

The system continuously captures interaction data throughout the process. Every
action, from clustering decisions to connection arrows, is recorded automatically. These
data are processed to compute statistical measures such as hit rates, false alarm rates, and
z-scores, and compared against expert benchmarks in post-experiment analysis. A per-
sistent sidebar implemented via Material-UI’s Drawer dynamically displays stage-specific
instructions, contextual help, and supplementary visual aids to guide users during the
experiment.

Figures 1(a)–(d) provide a visual overview of the system components, illustrating the
editor help interface, initial counterfactual clustering demo, cluster-connection demo, and
a sample causal map respectively. Figures 2(a)–(d) showcase the complete workflow from
task entry introducing the interface, contextual help, and counterfactual questionnaire
guidance/resources. For more detailed versions of these images see Appendix 8.

(a) Editor help panel showing keyboard
shortcuts, bicycle-parts list, and an instruc-
tions sidebar.

(b) Initial clustering demonstration on the
bicycle model.

(c) Cluster-to-cluster connection tutorial
on the bicycle model.

(d) Completed causal map displaying intra-
and inter-cluster relationships.

Figure 1: Visual overview of the application’s workflow and interfaces: (a) Editor help
and shortcuts, (b) Bicycle clustering demo, (c) Cluster-connection tutorial, (d) Full
causal map with intra-/inter-cluster links.
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(a) Entry page introducing the interface and
counterfactual reasoning task.

(b) Clustering interface with embedded video
tutorial.

(c) Help popup with guidance text and re-
source links for causality.

(d) Help popup illustrating a mechanical pen-
cil causal-map example.

Figure 2: Detailed screenshots of the counterfactual reasoning module: (a) Task entry
page, (b) Clustering with video support, (c) Contextual help and resource links, (d)
Example popup for a sample object - mechanical pencil.
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3.3 Stage-wise Experimental Workflow and Question Types

Our experimental protocol comprised five sequential stages that methodically guided par-
ticipants through causal model construction while minimizing cognitive burden. Table 3
presents this progression from orientation to final submission.

Table 3: Five-stage causal model elicitation workflow.

Stage Task Description

General Instructions Overview of study methodology and counterfac-
tual reasoning examples

Clustering Organization of object components based on
condition-specific criteria

Cluster Arrows Assessment of inter-cluster causal dependencies
Node Arrows Evaluation of component-level relationships within

clusters
Final Review Validation and submission of the complete causal

graph

In the General Instructions stage, participants received comprehensive orienta-
tion to both the interface mechanics and the conceptual foundations of counterfactual
reasoning, establishing the cognitive framework for subsequent tasks.

The Clustering stage required participants to organize object components through
freehand boundary-drawing, guided by condition-specific criteria: functional clusters em-
phasized components collaborating toward specific tasks; structural clusters prioritized
physical cohesion and spatial arrangement; and causal clusters highlighted joint contri-
bution toward particular outcomes, serving as a general causal effect control condition
without specific structural or functional emphasis.

During the Cluster Arrows stage, participants evaluated inter-cluster dependencies
through systematically varied counterfactual prompts:

• Structural : “If we remove [Cluster X], would [Cluster Y] maintain its structural
integrity?”

• Functional : “If we remove [Cluster X], would [Cluster Y] still [perform its specific
function]?” (with custom function descriptions)

• Causal : “If we remove [Cluster X], would [Cluster Y] still produce its effect?”

TheNode Arrows stage then narrowed focus to component-level relationships within
established clusters, employing parallel question structures across conditions:

• Structural : “If we remove [Part X], would [Part Y] maintain its structural in-
tegrity?”

• Functional : “If we remove [Part X], would [Part Y] still [perform its function]?”
(tailored to each component)

• Causal : “If we remove [Part X], would [Part Y] still produce its effect?”
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In both stages, negative responses generated directed arrows representing dependen-
cies within the causal graph.

Each question type is formulated to evoke distinct cognitive frameworks: functional
prompts highlight goal-oriented utility and purpose; structural prompts emphasize phys-
ical support relationships; and causal prompts target mechanisms through which compo-
nents influence outcomes. The causal condition serves as our control baseline, enabling
direct comparison with more specialized reasoning modes while maintaining consistent
counterfactual structure.

This dual-level approach, applying parallel reasoning at both cluster and component
levels, aims to create an effective cognitive scaffold. By first addressing abstract, higher-
order relationships between clusters before examining granular component interactions,
we seek to facilitate more coherent mental model construction. This hierarchical progres-
sion aligns with established principles from the learning sciences, where complex systems
comprehension improves when learners begin with macro-level conceptual anchors before
transitioning to micro-level analysis. The approach also aims to reduce cognitive load
by compartmentalizing the reasoning task, potentially enabling participants to construct
more consistent and structured system representations.

3.4 Hierarchical Algorithm for Constructing Causal Graphs

Traditional causal inference approaches often rely on labor-intensive methods involving
exhaustive pairwise comparisons or extensive counterfactual queries. While theoretically
robust, such approaches are cognitively demanding and frequently lead to participant
fatigue and response inconsistencies. We propose a novel hierarchical algorithm that
minimizes user burden while maximizing meaningful causal structure extraction from
minimal inputs.

The algorithm assumes complex systems can be decomposed into semantically mean-
ingful substructures or clusters representing functional component groupings. By utilizing
predefined templates, the algorithm constructs a two-tiered representation: intra-cluster
dependencies capture causal relationships within subsystems, while inter-cluster depen-
dencies reflect interactions between subsystems.

Each cluster forms a directed acyclic graph (DAG) with nodes representing com-
ponents and arrows indicating causal influence. Arrows within clusters culminate at
terminal nodes, typically the final output of that subsystem. Inter-cluster connections
link terminal nodes of one cluster to initiating nodes of another, forming a higher-order
DAG encoding the overall causal architecture.
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Figure 3: A high-level view of hierarchical causal graph construction. Each cluster con-
tains internal directed flows culminating in a terminal node. Inter-cluster arrows define
system-wide causal dependencies based on convergence and initiation points across clus-
ters.

In the interface, participants begin by creating their own clusters, grouping nodes
according to their system understanding. Once clusters are defined, they answer counter-
factual questions to elicit pairwise causal dependencies between clusters. These generate
directed relationships across all cluster pairs. Participants then evaluate pairwise causal
relations between individual nodes across and within clusters.

Based on these responses, the algorithm constructs a candidate causal graph incor-
porating all confirmed intra-cluster and inter-cluster causal links. Unlike systems relying
on predefined templates, this method leverages participant intuition to define structure
from the bottom up. The final phase synthesizes all validated node-level and cluster-
level connections into a unified hierarchical causal graph encoding both micro-level and
macro-level causal dependencies.

Algorithm 1 Hierarchical Causal Graph Construction

Require: Object type O, component list C, participant responses R
1: Match O to template T with predefined clusters C
2: for each cluster ci ∈ C do
3: Initialize DAG Gi = (Vi, Ei) for components in ci
4: Add all possible intra-cluster edges to Ei

5: end for
6: Initialize inter-cluster edge set Einter

7: for each participant response (u, v, label) ∈ R do
8: Update edge direction or weight between nodes u and v
9: If u ∈ ci and v ∈ cj with i ̸= j, update Einter

10: end for
11: Refine Einter based on cluster terminal and initiating nodes
12: Combine all Gi and Einter into final graph G = (V,E)
13: return G =0

By reducing reliance on direct counterfactual questions and inferring connections from
structured object decompositions, this algorithm aims to yield robust and user-friendly
causal graphs that effectively integrate automated inference with targeted user input.
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3.5 Findings and Comparative Insights

Hit rate (HR) and false alarm rate (FAR) values were computed by comparing par-
ticipants’ responses against expert-derived causal models, ensuring performance metrics
reflected conceptually meaningful dependencies rather than superficial co-occurrences.

Across all three objects, participant performance under the causal and functional
conditions followed similar trends in both HR and FAR. This similarity has theoretical
grounding: both conditions emphasize goal-directed interactions among components. In
mechanical systems, functional roles frequently align with causal relationships; a bicycle
pedal’s function to rotate the gear is also its causal effect, suggesting conceptual overlap
between these reasoning modes.

The structural mode demonstrated greater variability, revealing distinct reasoning
patterns focused on spatial arrangement and physical adjacency rather than dynamic
interactions. Participants reasoning structurally often identified physically adjacent com-
ponents correctly but also misattributed relevance to parts with no functional or causal
role, resulting in higher false alarm rates.

These results suggest structural reasoning facilitates recognition of physical relation-
ships but may obscure dynamic dependencies emphasized in causal and functional mod-
els. The convergence between causal and functional reasoning indicates that learners
frequently conflate these modes, likely due to their alignment in many mechanical con-
texts.

Table 4: Means and standard deviations for hit rate (HR, true positive rate) and false
alarm rate (FAR) per object and reasoning mode.

Object Mode HR Mean HR SD FAR Mean FAR SD

Bicycle Structural 0.362 0.155 0.100 0.044
Causal 0.286 0.137 0.182 0.111
Functional 0.314 0.123 0.139 0.079
All Modes 0.325 0.148 0.139 0.087

Sink Structural 0.487 0.250 0.172 0.069
Causal 0.309 0.215 0.165 0.080
Functional 0.349 0.241 0.164 0.093
All Modes 0.382 0.241 0.167 0.081

Toilet Structural 0.378 0.170 0.168 0.113
Causal 0.368 0.139 0.206 0.120
Functional 0.407 0.155 0.197 0.113
All Modes 0.383 0.157 0.190 0.115

To evaluate how interaction modalities affect causal understanding, we compared our
hierarchical interface with the Drawing and Intervention conditions from Experiment 2,
benchmarking all against expert causal models.

Across all objects, the hierarchical interface achieved intermediate perfor-
mance, higher than the unguided Drawing condition but lower than the Intervention
condition. For the Bicycle, hit rates progressed from 0.25 (Drawing) to 0.325 (Hier-
archical) to 0.56 (Intervention), indicating consistent stepwise improvement in causal
identification. This trend replicated across all objects.
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False alarm rates followed a parallel pattern. The Drawing condition yielded the
lowest FARs (e.g., 0.06 for Sink) but with compromised sensitivity, missing many valid
connections. The Intervention condition maximized hit rates but introduced more false
alarms (e.g., 0.26 for Bicycle), likely due to overgeneralization from explicit cues. The
hierarchical interface provided a balanced middle ground without imposing fixed causal
schemas.

These results suggest the hierarchical interface scaffolds causal reasoning more effec-
tively than freeform drawing while avoiding pitfalls of direct instructional intervention.
By aligning with natural conceptual hierarchies, part-whole structures and flow-based
dependencies, it enables coherent mental model construction without constraining ex-
ploratory reasoning. However, hit rates below 0.5 across all objects raise concerns about
reliability for accurate model elicitation, questioning scalability to domains with greater
abstraction or latent causal structures.

Table 5: Comparison of mean hit rates (HR) and false alarm rates (FAR) for three
objects under three interfaces: Hierarchical (current study), Drawing, and Intervention
(Experiment 2).

Object HR (Hier) HR (Draw) HR (Interv) FAR (Hier) FAR (Draw) FAR (Interv)

Bicycle 0.325 0.25 0.56 0.139 0.07 0.26
Sink 0.382 0.57 0.68 0.167 0.06 0.22
Toilet 0.383 0.24 0.50 0.190 0.07 0.23

Figure 4: Side-by-side comparison of hit rate (left) and false alarm rate (right) across
three interfaces. The hierarchical interface consistently falls between the Drawing and
Intervention conditions. See Table 6 for corresponding numerical values.

Given that the Intervention method consistently achieved higher hit rates (HRs), and
prior studies demonstrate a significant correlation between higher HRs and better rewards
in POMDPs for both troubleshooting and assembly tasks [3, 2, 1, 4], we replicated the
counterfactual condition from the Hierarchical interface in the Intervention condition.
Participants were asked the same mode-specific counterfactual questions, allowing direct
comparison between methods while isolating the effect of reasoning mode on performance.
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To understand how reasoning mode interacts with interface type, we compared HR
and FAR across Structural, Causal, and Functional conditions for both Hierarchical and
Intervention methods (Table 6).

Across all reasoning modes, the Intervention method produced significantly higher
HRs. Under causal reasoning with the sink object, HR was 0.783 with Intervention,
more than double the 0.309 observed with the Hierarchical interface. Similar patterns
emerged in other modes, suggesting that direct feedback and mode-specific condition
enhance correct link identification and support robust causal reasoning.

This benefit comes with trade-offs. FARs under the Intervention method were substan-
tially higher. In the bicycle-causal condition, FAR increased from 0.182 (Hierarchical)
to 0.407 (Intervention), indicating liberal response patterns likely driven by overconfi-
dence under guided conditions. These findings reinforce that interventions prioritizing
performance gains may sacrifice precision.

The Hierarchical interface, emphasizing structured exploration and layered decision-
making, promoted more conservative model construction. Though HRs were lower, FARs
remained moderate, suggesting participants exercised greater caution when identifying
links, valuing model accuracy over completeness.

These findings support the conclusion that the Intervention method is more effective
for eliciting detailed, actionable causal models for robotic troubleshooting and assembly.
While it introduces higher false positive risk, the increased identification of correct links
may outweigh this cost in applications where reward maximization depends on successful
link recognition, as will be explored in Section 5.

Table 6: Comparison of means and standard deviations for hit rate (HR, true positive
rate) and false alarm rate (FAR) per object and reasoning mode between Hierarchical
and Intervention interfaces.

Object Mode Method HR Mean HR SD FAR Mean FAR SD

Bicycle Structural Hierarchical 0.362 0.155 0.100 0.044
Structural Intervention 0.546 0.154 0.288 0.137
Causal Hierarchical 0.286 0.137 0.182 0.111
Causal Intervention 0.514 0.248 0.407 0.193
Functional Hierarchical 0.314 0.123 0.139 0.079
Functional Intervention 0.521 0.159 0.297 0.084
All Modes Hierarchical 0.325 0.148 0.139 0.087
All Modes Intervention 0.527 0.189 0.329 0.152

Sink Structural Hierarchical 0.487 0.250 0.172 0.069
Structural Intervention 0.506 0.161 0.397 0.148
Causal Hierarchical 0.309 0.215 0.165 0.080
Causal Intervention 0.783 0.161 0.329 0.094
Functional Hierarchical 0.349 0.241 0.164 0.093
Functional Intervention 0.796 0.125 0.339 0.084
All Modes Hierarchical 0.382 0.241 0.167 0.081
All Modes Intervention 0.695 0.200 0.355 0.115

Toilet Structural Hierarchical 0.378 0.170 0.168 0.113
Structural Intervention 0.573 0.147 0.300 0.117
Causal Hierarchical 0.368 0.139 0.206 0.120
Causal Intervention 0.605 0.102 0.336 0.100
Functional Hierarchical 0.407 0.155 0.197 0.113
Functional Intervention 0.590 0.127 0.317 0.104
All Modes Hierarchical 0.383 0.157 0.190 0.115
All Modes Intervention 0.589 0.126 0.317 0.107
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4 Evaluating Distinct Causal Reasoning Modes: Struc-

tural vs Functional Causal Models

In previous sections, we investigated techniques to minimize exhaustive questioning while
still capturing meaningful causal distinctions, hierarchical object decomposition for com-
plex systems, and the comparative quality of hierarchical versus traditional elicitation
approaches. Our findings indicated that the hierarchical method, while efficiently scal-
able and producing fewer false alarms than intervention-based approaches, still faced
challenges in overall accuracy.

We now address a different set of questions: How do participants form clusters and
causal links when explicitly prompted to consider structural versus functional relation-
ships? Do different prompt framings influence the resulting causal maps, or do partici-
pants ultimately converge on similar representations regardless of phrasing?

4.1 Methodology

To investigate these questions, we compared the hierarchical interface with a modified
intervention-based approach. This revised intervention method incorporated structured
condition to guide participants toward reasoning in structural, functional, or unspecified
causal terms.

We evaluated the resulting causal graphs across three experimental conditions (struc-
tural, functional, and unspecified prompting), focusing on whether graphs created within
the same condition demonstrated greater similarity to each other than to graphs from
different conditions. Our analysis employed four complementary graph comparison met-
rics:

• Hamming Distance: Measures the number of differing edges between graphs.
High values indicate divergent causal attributions at the edge level, while low scores
suggest convergence in specific causal links.

• Jaccard Similarity: Calculates the ratio of shared edges to the union of all edges,
providing a normalized measure especially sensitive to sparse graph structures.

• Spectral Distance: Compares eigenvalue spectra of graph adjacency matrices,
capturing global structural patterns including connectivity and clustering. This
metric reveals whether participants formed similarly organized causal models be-
yond specific edge configurations.

• Deltacon [15]: Measures overall graph similarity using node affinity matrices, bal-
ancing sensitivity to both local and global structural changes. This metric partic-
ularly captures perceptual similarity as experienced by humans.

For each metric, we calculated average within-group similarity (comparing graphs from
the same experimental condition) versus between-group similarity (comparing graphs
from different conditions), using permutation tests to determine statistical significance.
Significant differences would indicate that prompt framing systematically influences causal
conceptualization strategies. Together, these metrics provide comprehensive assessment
at both individual causal link and overall structural organization levels. Statistically sig-
nificant differences would support the hypothesis that causal reasoning about physical
systems can be decomposed into distinct structural and functional modes.
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4.2 Hierarchical Interface Method

Across three systems (Bicycle, Sink, and Toilet), participants’ graph constructions var-
ied based on their assigned reasoning condition. Through hierarchical node clustering
followed by counterfactual questioning both within and across clusters, we observed how
participants both grouped components and inferred dependencies between them. The
Sink object demonstrated the most pronounced differentiation, with significant differ-
ences across nearly all pairwise comparisons. In contrast, the Bicycle showed weaker
differentiation, while the Toilet exhibited selective divergence primarily between struc-
tural and causal modes.

Table 7: Permutation Test p-values for Pairwise Mode Comparisons Across Metrics and
Objects (Hierarchical Interface)

Object Comparison Hamming Jaccard Spectral DeltaCon

Sink Structural vs Functional 0.012 0.001 0.594 0.003
Functional vs Causal 0.006 0.189 0.044 0.011
Structural vs Causal 0.002 0.001 0.124 0.000

Bicycle Structural vs Functional 0.521 0.087 0.264 0.208
Functional vs Causal 0.702 0.785 0.648 0.578
Structural vs Causal 0.682 0.072 0.713 0.447

Toilet Structural vs Functional 0.258 0.169 0.406 0.258
Functional vs Causal 0.080 0.859 0.617 0.130
Structural vs Causal 0.227 0.070 0.140 0.126

Our results provide tentative evidence that structural, functional, and causal reason-
ing frames potentially reflect distinct inferential strategies corresponding to different types
of causal reasoning. This pattern was most evident in the Sink object, where all three
pairwise comparisons showed statistically significant differences in at least one metric.
The structural versus causal comparison yielded significant Jaccard similarity difference
(p = 0.001) and DeltaCon difference (p = 0.000), while functional versus causal differed
significantly in spectral distance (p = 0.044). The consistent divergence between struc-
tural and functional reasoning (Jaccard p = 0.001) further supports that these frames
lead to distinguishable system representations.

However, this separation was not uniformly observed across all objects. The Bicycle
task showed no significant differences across any pairwise comparison, while the Toilet ob-
ject exhibited only marginal trends, particularly between structural and causal reasoning
(Jaccard p = 0.070). This variability suggests that the expression of distinct reason-
ing strategies may depend on object-specific features such as complexity, familiarity, or
component role ambiguity.

These mixed findings complicate straightforward interpretation. Rather than a gen-
eralizable distinction among reasoning frames, the results point toward context-sensitive
differences emerging under specific conditions. The Sink object, with its ambiguous affor-
dances (such as the tailpiece being both spatially adjacent and functionally instrumental),
may have encouraged broader variation in causal interpretation.

The task design itself may have contributed to these effects. The hierarchical interface
requirement to first group components before reasoning about counterfactual changes may
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have amplified or restricted certain reasoning strategies. Participants in structural and
functional conditions might have anchored more rigidly to initial groupings, while those
in the causal condition reasoned more fluidly across clusters. For complex objects like
the Bicycle or Toilet, this interface could have introduced unnecessary cognitive load,
potentially diminishing differences between conditions.

While the Sink results suggest that different reasoning frames can yield meaningfully
distinct representations, this interpretation requires caution. The inconsistent effects
across domains raise the possibility that they reflect task design artifacts rather than
genuine causal ontology differences. Features of the hierarchical interface such as forced
clustering sequence or spatial layout mechanics may have subtly influenced representa-
tional structure.

4.3 Intervention Method

Complex Objects

To disentangle potential confounds mentioned previously, we employed the intervention
method as a complementary approach. By reexamining participants’ representations
through this alternative methodology, we aimed to determine whether distinctions among
reasoning frames were robust or merely artifacts of the original interface design.

Across all three complex systems, participants’ mental representations were system-
atically shaped by their assigned reasoning frame. As shown in Table 8, permutation
tests yielded statistically significant differences (p < 0.05) for nearly all pairwise compar-
isons, especially when contrasting causal reasoning with structural or functional reason-
ing. These effects suggest that reasoning prompts elicit distinct representational strategies
rather than merely influencing superficial graph features.

Table 8: Permutation Test p-values for Pairwise Mode Comparisons Across Metrics and
Objects (Intervention Method)

Object Comparison Hamming Jaccard Spectral DeltaCon

Sink Structural vs Functional 0.000 0.000 0.009 0.000
Functional vs Causal 0.097 0.035 0.606 0.103
Structural vs Causal 0.000 0.000 0.061 0.000

Bicycle Structural vs Functional 0.033 0.000 0.186 0.004
Functional vs Causal 0.003 0.000 0.006 0.001
Structural vs Causal 0.008 0.003 0.020 0.003

Toilet Structural vs Functional 0.001 0.000 0.001 0.000
Functional vs Causal 0.000 0.000 0.003 0.001
Structural vs Causal 0.000 0.000 0.000 0.000

Causal reasoning yielded the most consistent and pronounced divergence. For the
Toilet object, the structural versus causal comparison yielded a Spectral Distance of 3.095
(within-structural) and 3.007 (within-causal), with a between-group mean of 3.353 and
an observed difference of 0.302 (p = 0.000). DeltaCon Similarity showed a corresponding
pattern: 0.640 (structural), 0.622 (causal), and 0.620 between groups (p = 0.000). These
results indicate that causal reasoning induced not only local changes in edge configuration
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(reflected in Hamming and Jaccard) but also large-scale reorganization of graph topology,
suggesting a shift toward representing dynamic processes and influence propagation.

This shift appears to reflect a qualitatively different cognitive process. While struc-
tural reasoning emphasizes spatial arrangement and component adjacency, and functional
reasoning focuses on utility or goal-directed activity, causal reasoning promotes abstrac-
tion over temporal dependencies and inferred mechanisms. Participants engaged in causal
reasoning appear to build models structured around latent, propagative relationships, re-
defining not just what connects to what, but why components matter to the system
holistically.

Though more similar to each other than to causal reasoning, structural and functional
reasoning also showed meaningful differences. In the Bicycle dataset, the structural
versus functional comparison yielded a Hamming Distance of 0.280 (structural), 0.239
(functional), with a between-group mean of 0.269 and an observed difference of 0.007 (p =
0.030). DeltaCon Similarity for the same pair was 0.611 (structural), 0.625 (functional),
and 0.610 between groups (p = 0.004). These results suggest that while both reasoning
types may draw on observable features, their inferential emphases diverge: structural
reasoning grounds itself in compositional integrity and containment, whereas functional
reasoning directs attention toward interactive affordances and task-related mechanisms.

The Toilet object revealed strong and consistent separability among all three reasoning
modes. For structural versus causal, the Jaccard Similarity was 0.269 (structural) versus
0.356 (causal), with a between-group mean of 0.283 and an observed difference of 0.030
(p = 0.000). This high separability may reflect the system’s complexity or interpretive
ambiguity, which likely increased reliance on the framing condition. When component
functions are opaque or highly interdependent, participants appear especially sensitive to
prompt guidance.

Spectral Distance and DeltaCon metrics were particularly informative in highlighting
global topological effects. While Hamming and Jaccard captured edge-level discrepan-
cies, Spectral Distance revealed shifts in graph modularity and connectivity, and Delta-
Con reflected changes in perceived paths of information flow. The consistent elevation of
Spectral Distance in structural versus causal comparisons (e.g., Sink, p = 0.061 and Bicy-
cle, p = 0.020) supports the claim that causal reasoning leads to restructured conceptual
models oriented around dependency chains and modular influence.

These results demonstrate that structural, functional, and causal reasoning modes
all lead to significantly distinct graph representations, with causal reasoning exerting
a particularly transformative influence on system modeling. These distinctions reflect
different inferential commitments and mental modeling strategies prompted by each rea-
soning frame.

Extension: Lamp Objects

To assess whether reasoning frame effects generalize beyond large, complex systems, we
extended our study to include four smaller-scale, more familiar household objects: desk
lamp, wall lamp, kerosene lamp, and flashlight. These objects vary in complexity, internal
mechanism visibility, and functional ambiguity, offering a valuable testbed for evaluating
the robustness of frame-induced differences.

Across all four objects, participants’ graph representations remained sensitive to as-
signed reasoning frames. Crucially, the same core pattern persisted: unspecified causal
reasoning consistently produced graphs topologically distinct from both structural and
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Table 9: Permutation Test p-values for Pairwise Mode Comparisons Across Metrics and
Lamp Objects

Object Comparison Hamming Jaccard Spectral DeltaCon

Desk Lamp Structural vs Functional 0.000 0.000 0.000 0.000
Functional vs Causal 0.001 0.000 0.012 0.000
Structural vs Causal 0.000 0.000 0.000 0.000

Wall Lamp Structural vs Functional 0.000 0.000 0.676 0.000
Functional vs Causal 0.011 0.004 0.382 0.007
Structural vs Causal 0.000 0.000 0.051 0.000

Kerosene Lamp Structural vs Functional 0.000 0.000 0.070 0.000
Functional vs Causal 0.069 0.051 0.447 0.050
Structural vs Causal 0.000 0.000 0.011 0.000

Flashlight Structural vs Functional 0.000 0.000 0.037 0.000
Functional vs Causal 0.000 0.000 0.000 0.000
Structural vs Causal 0.000 0.000 0.000 0.000

functional reasoning. However, new insights emerged regarding the relative separability
of structural and functional reasoning, especially in simpler systems.

In less mechanically complex objects such as the desk lamp and flashlight, structural
and functional reasoning led to significantly different graph structures across all metrics
(p < 0.001). This highlights that differences between structural and functional represen-
tations are not merely a byproduct of task complexity but reflect fundamental differences
in the inferential lens through which participants interpret systems.

Interestingly, object-specific patterns suggest interaction effects between object trans-
parency and reasoning frame. For the wall lamp and kerosene lamp (objects with poten-
tially hidden mechanisms), Spectral Distance did not significantly differ between struc-
tural and functional groups (e.g., Wall Lamp, p = 0.676). However, local differences
captured by Hamming and Jaccard remained robust, indicating that even when global
topology appears similar, fine-grained edge-level interpretations diverge based on prompt
framing.

The causal condition again yielded the most pronounced reorganization. In the
Desk Lamp dataset, the Spectral Distance between structural and causal groups showed
striking contrast (0.992 vs. 1.971 within-group means; between-group mean = 2.036;
p = 0.000), while DeltaCon reflected major shifts in perceived influence pathways. These
patterns reiterate that causal reasoning reshapes mental models along abstract, dynamic
dimensions, not simply by adding or removing connections but by altering how informa-
tion and effects are expected to flow through the system.

The lamp object findings confirm and extend our previous results. Reasoning frames
consistently shape mental representations across systems of all sizes, with even closely
related modes (structural and functional) producing distinct graph structures. These
effects persist even for intuitively graspable objects, highlighting framing’s importance
in shaping cognition. Notably, structural versus functional differences appear more pro-
nounced in lamp objects, likely because these simpler mechanical systems have clearer
gravitational influences, making structural relationships more easily distinguishable from
functional processes.
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5 Causally Informed Planning under Uncertainty for

Object Assembly and Troubleshooting

We have seen evidence that conditioning users to think more structurally, functionally, or
causally leads to different types of causal models, but are these models useful for robotic
assembly and troubleshooting?

5.1 Baseline Evaluation with Expert Ground Truth Models

We begin by feeding our two expert ground truth models, structural and functional,
directly into the POMDP to establish an empirical baseline against which all subsequent
embedding-based experiments can be compared. Specifically, we instantiate two instances
of the POMDP simulator, each configured with the complete list of true connections and a
confidence parameter of 0.9. This baseline setup yields the maximum achievable planning
returns and isolates the impact of model uncertainty.

In assembly, the agent views the object as a set of N parts with
(
N
2

)
possible con-

nections, of which E are true edges. Each probe incurs a cost of −1 (and −10 for any
repeated probe), and upon discovering all E true edges the agent receives a completion
bonus of +

(
N
2

)
. If the expert ground truth proposes a set P of connections, we define

HR =

∣∣P ∩ T
∣∣

E
, FP =

∣∣P \ T
∣∣ ,

where T is the true edge set. Since the total probes required is E + FP, the assembly
reward is

Rassembly =

(
N

2

)
−

(
E + FP

)
,

so that higher hit rate (i.e., smaller FP) increases reward linearly.
In troubleshooting, a known set of Ee erroneous connections Te is injected; each flip of

a connection costs −1 (and −10 if re-flipping), and a bonus of +
(
N
2

)
is awarded once all

Ee errors have been corrected. If the model identifies a set Pe of flips, we define

HRe =

∣∣Pe ∩ Te

∣∣
Ee

, FPe =
∣∣Pe \ Te

∣∣ .
Since the total flips is Ee + FPe, the troubleshooting reward is

Rtroubleshoot =

(
N

2

)
−

(
Ee + FPe

)
,

so that higher hit rate (i.e., larger HRe and smaller FPe) yields proportionally higher
returns.

Figure 5 shows that the structural ground truth attains near-perfect assembly per-
formance—100.0% on Wall and Flash, 93.3% on Kero, 92.0% on Desk, 84.3% on Sink,
86.4% on Toilet, and 83.8% on Bicycle—for an overall mean of 91.4%. In contrast, the
functional ground truth omits non-causal links and thus probes extra edges, yielding only
100.0% on Wall, but dropping to 50.5% on Flash, 28.3% on Kero, 42.5% on Desk, 84.4%
on Sink, 19.1% on Toilet, and 19.2% on Bicycle, for a mean of 49.1%.

As seen in Figure 6a, the functional ground truth generally outperforms the structural
in troubleshooting by precisely targeting causal failures: it achieves 86.2% vs. 68.5% on
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Wall, 72.0% vs. 61.8% on Flash, 74.8% vs. 63.4% on Kero, 81.1% vs. 63.8% on Desk,
and 86.9% vs. 81.6% on Sink, for an average of 78.6% compared to 71.6% for the struc-
tural ground truth. Notably, Toilet and Bicycle reverse this trend (69.7% vs. 81.4%,
and 79.8% vs. 80.5%, respectively) because our error-location annotation included cer-
tain structurally plausible links—such as valve assemblies in the toilet and chain-pedal
interactions on the bicycle—that were omitted from the purely causal model.

Figure 6b succinctly confirms that the structural ground truth maximizes assembly
returns (91.4% vs. 49.1%), while the functional ground truth maximizes troubleshooting
returns (78.6% vs. 71.6%). Occasional object-specific reversals reflect the interplay be-
tween physical plausibility and causal relevance in our unbiased error-location process,
suggesting similar exceptions in participant models.

Figure 5: Normalized assembly rewards (% of maximum) under structural vs. functional
expert ground truths.
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(a) Normalized troubleshooting rewards (% of maximum) under structural vs. functional expert
ground truths.

(b) Average rewards by category (% of maximum) for structural vs. functional expert ground
truths.

Figure 6: Expert ground-truth performance for (a) troubleshooting and (b) average re-
ward comparisons.
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5.2 Assembly

Statistical Analysis of Reasoning Conditions Across Objects

The reward distributions under different reasoning conditions are illustrated in Figure 7.
This heatmap compares normalized task-completion rewards across seven object cate-
gories (Wall, Flash, Kero, Desk, Sink, Toilet, and Bicycle) for each of the three conditions
(Structural, Functional, and Causal), alongside the expert benchmark and the average
user performance from a prior, control iteration.

Figure 7: Normalized rewards for each object under different reasoning conditions com-
pared to expert benchmarks and prior user averages. Higher values indicate better task
performance.

Several patterns emerge. For complex, goal-directed objects, causal framing yields the
largest gains. For example, the Toilet under the Causal condition (18.1) exceeds both the
Structural (15.2) and Functional (14.9) conditions. Similarly, for the Sink, Causal (44.8)
and Functional (44.7) both outperform Structural (35.8), suggesting that understanding
component functions or causes aids troubleshooting of fluid systems.

In contrast, objects with more familiar, physical-assembly demands exhibit different
trends. For the Desk, the Causal condition (28.2) substantially outperforms both Struc-
tural (18.1) and Functional (17.5), reflecting that causal insight drives efficient assembly
of simple furniture. Meanwhile, the Wall shows the strongest benefit from Functional
(60.8) over Structural (24.8) and Causal (35.0), indicating that component-affordance
reasoning best supports wall-mount tasks.

Finally, the Bicycle, the most intricate object, yields low rewards across all modes
(Structural: 19.3; Functional: 12.0; Causal: 10.4), with a modest advantage for Struc-
tural, reflecting reliance on physical part mapping when confronting novel mechanical

24



assemblies. Across all objects, expert rewards (scaled to 100) provide an upper-bound
reference.

5.3 Pairwise Post-hoc Comparisons

To test these observations formally, we ran Kruskal–Wallis H tests for each object (α =
0.05). Significant omnibus effects were found for Bicycle (p < 0.0001), Wall (p = 0.0001),
Sink (p = 0.0364), and Desk (p = 0.0002), while Toilet (p = 0.3631), Kero (p = 0.0799),
and Flash (p = 0.0823) showed no overall differences. We then performed Bonferroni-
corrected Dunn’s pairwise tests to locate specific contrasts. The most pronounced pair-
wise effects are summarized in Table 10. Notably:

• Bicycle: Structural differs from both Functional (p = 0.0126) and Causal (p <
0.0001), confirming that part-structure framing uniquely boosts this complex as-
sembly.

• Wall: Functional exceeds Structural (p = 0.0001) and Causal (p = 0.0205), reflect-
ing the advantage of component-affordance reasoning.

• Desk: Causal outperforms Functional (p = 0.0002) and Structural (p = 0.0007),
aligning with the highest rewards under causal framing.

• Sink: Although the omnibus test is significant, no pairwise contrast survives cor-
rection, suggesting only marginal differences.

• Toilet,Kero, Flash: No significant pairwise differences, indicating reasoning mode
had little effect.

Table 10: Bonferroni-corrected Dunn’s Test p-values for Pairwise Mode Comparisons

Object Structural vs Functional Functional vs Causal Structural vs Causal

Bicycle 0.0126 n.s. < 0.0001
Toilet n.s. n.s. n.s. (p = 0.3631)
Sink n.s. n.s. n.s.
Flash n.s. n.s. n.s. (p = 0.0823)
Desk n.s. 0.0002 0.0007
Wall 0.0001 0.0205 n.s.
Kero n.s. n.s. n.s. (p = 0.0799)

Structural yielded significantly higher rewards than functional for the Bicycle (p =
0.0126), indicating a clear structural advantage, whereas functional outperformed struc-
tural for the Wall (p = 0.0001). For the remaining objects (i.e., Desk, Sink, Toilet, Flash,
and Kero), the structural versus functional comparisons were non-significant.

Alignment of Subject Rewards with Expert Ground Truths

To assess whether participants’ elicited rewards under functional and structural conditions
approach the corresponding expert benchmarks (Figure 5), we directly compare the mean
normalized rewards Rfunc and Rstruct against the functional and structural expert values.
Because reward is driven by hit rate (HR), each condition should yield Rfunc nearer the
functional-GT values and Rstruct nearer the structural-GT values.
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Table 11: Per-artifact means of hit rate (HR), false positives (FP), false negatives (FN),
and normalized reward under functional vs. structural conditions (N = 60 per condition).
The ∆R column has been omitted to focus on each condition’s absolute alignment with
its ground truth.

Object HRfunc HRstruct FPfunc FPstruct FNfunc FNstruct Rfunc Rstruct

Bicycle 0.613 0.721 29.800 29.133 5.033 3.633 0.120 0.193
Desk 0.733 0.274 5.167 4.148 1.333 3.630 0.175 0.181
Flash 0.800 0.556 1.467 2.778 0.800 1.778 0.524 0.393
Kero 0.700 0.602 5.567 4.111 1.200 1.593 0.206 0.282
Sink 0.614 0.562 9.900 10.933 2.700 3.067 0.447 0.358
Toilet 0.655 0.639 23.833 21.367 3.800 3.967 0.149 0.152
Wall 0.862 0.530 3.172 2.818 0.414 1.409 0.608 0.248

Across the seven artifacts, we observe:

• For Bicycle, Rstruct = 0.193 ≪ 0.838 (structural-GT) and Rfunc = 0.120 ≪
0.192 (functional-GT), but the ordering 0.193 > 0.120 matches the expert ordering
(83.8 > 19.2).

• For Desk, 0.181 ≪ 0.920 vs. 0.175 ≪ 0.425, with 0.181 > 0.175 mirroring 92.0 >
42.5.

• For Kero, 0.282 ≪ 0.933 vs. 0.206 ≪ 0.283, again 0.282 > 0.206 as 93.3 > 28.3.

• For Sink, 0.358 ≪ 0.843 vs. 0.447 ≪ 0.844, and 0.358 < 0.447 follows 84.3 < 84.4.

• For Toilet, 0.152 ≪ 0.864 vs. 0.149 ≪ 0.191, with 0.152 > 0.149 matching 86.4 >
19.1.

• For Flash, however, Rstruct = 0.393 and Rfunc = 0.524 invert the expert ordering
(100 > 50.5), so structural underperforms.

• For Wall, 0.248 vs. 0.608 likewise contradicts the equal expert returns (100 = 100),
as functional dominates.

Further, every elicited reward is a small fraction of its expert benchmark (e.g., 0.282
vs. 0.933), reflecting that the subject hit rates (0.274–0.862) remain well below perfect link
recovery. In sum, our user models generally align with the correct ordering expected in
comparison to the expert ground truths for five of seven objects (though not all differences
are statistically significant) but fail to approach expert performance and produce clear
reversals for Flash and Wall.

5.4 Troubleshooting

To assess the impact of the different causal reasoning conditions on troubleshooting tasks,
we analyzed participants’ performance across three condition conditions (i.e., structural,
functional, and causal) using normalized reward scores for each object, with participants’
embeddings used as priors. Normalization was performed relative to each object’s maxi-
mum achievable reward (e.g., 77 for Bicycle, 20 for Desk, and 9 for both Wall and Flash).
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The results were visualized in a heatmap (Figure 8) and evaluated using Kruskal-Wallis
tests followed by Bonferroni-corrected Dunn’s post-hoc tests for pairwise mode compar-
isons (Table 12).

Figure 8: Heatmap of Average Normalized Reward (% of Maximum) Across Objects and
Condition Conditions.

Table 12: Bonferroni-corrected Dunn’s Test p-values for Pairwise Mode Comparisons
(Structural, Functional, Causal). Non-significant comparisons are marked “n.s.“

Object Structural vs Functional Functional vs Causal Structural vs Causal

Desk 6.78× 10−8 7.73× 10−1 5.01× 10−7

Flash 1.47× 10−6 2.77× 10−1 1.24× 10−8

Wall 7.93× 10−8 9.52× 10−1 2.28× 10−5

Sink 1.94× 10−4 n.s. (p = 1.00) 2.34× 10−4

Toilet 1.57× 10−3 n.s. (p = 1.00) 3.40× 10−5

Kero n.s. (p = 0.0708) n.s. n.s.
Bicycle n.s. (p = 0.4578) n.s. n.s.

The results indicate that condition had a statistically significant effect for five of the
seven objects (Desk, Flash, Wall, Sink, and Toilet). In each of these cases, structural
condition yielded significantly lower normalized rewards compared to both functional
and causal condition, suggesting that when participants were guided by purely struc-
tural framing, they omitted critical dependencies needed for efficient troubleshooting.
By contrast, functional and causal condition produced comparable performance (all
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functional vs. causal comparisons were non-significant), implying overlapping cognitive
representations or flexible strategy shifts between these schemas.

For the Desk task, average normalized rewards were 52.6% (structural), 68.9% (func-
tional), and 66.6% (causal), with highly significant differences between structural vs.
functional (p = 6.78 × 10−8) and structural vs. causal (p = 5.01 × 10−7). Similarly,
in the Flash condition, structural condition led to 54.5% reward compared to 66.6%
and 69.8% under functional and causal modes, respectively (structural vs. functional
p = 1.47× 10−6; structural vs. causal p = 1.24× 10−8), underscoring the importance of
functional dependencies in circuit-style reasoning.

In contrast, Kerosene and Bicycle did not exhibit significant differences across condi-
tion conditions (Kruskal-Wallis p = 0.0708 and p = 0.4578, respectively). Although the
descriptive mean reward for Bicycle under structural condition was higher (∆R = 7.3;
see Table 13), this did not reach statistical significance, indicating that the observed gain
likely reflects sampling variability rather than a systematic effect of the structural prior.

Finally, expert solutions achieved normalized rewards between 69.7% (Toilet) and
86.9% (Sink), substantially outperforming all participant conditions. Conversely, the
no-condition baseline consistently produced the lowest scores (e.g., Desk 45.7%, Flash
52.7%), confirming the overall benefit of any structured cognitive scaffold over an un-
framed approach.

Alignment of Troubleshooting Rewards with Expert Ground Truths

Similar to how we compared our user models to the expert ground truth baselines for
assembly, we directly compare the mean normalized rewards Rfunc and Rstruct against
the functional and structural expert ground truth returns for the troubleshooting task.
Because reward is driven by hit rates, each condition should yield a normalized reward
closer to its matching ground truth.

Table 13: Per-artifact means of hit rate (HR), false positive (FP), false negative (FN), and
normalized reward under functional vs. structural condition (troubleshooting; N = 60
per condition).

Object HRfunc HRstruct FPfunc FPstruct FNfunc FNstruct Rfunc Rstruct ∆R

Bicycle 0.613 0.721 29.800 29.133 5.033 3.633 12.0% 19.3% +7.3%
Desk 0.733 0.274 5.167 4.148 1.333 3.630 17.5% 18.1% +0.6%
Flash 0.800 0.556 1.467 2.778 0.800 1.778 52.4% 39.3% −13.1%
Kero 0.700 0.602 5.567 4.111 1.200 1.593 20.6% 28.2% +7.6%
Sink 0.614 0.562 9.900 10.933 2.700 3.067 44.7% 35.8% −8.9%
Toilet 0.655 0.639 23.833 21.367 3.800 3.967 14.9% 15.2% +0.3%
Wall 0.862 0.530 3.172 2.818 0.414 1.409 60.8% 24.8% −36.0%

As shown in Table 13, structural versus functional condition yields mixed results across
the seven artifacts. Four artifacts show better performance with structural condition:
Bicycle (19.3% > 12.0%), Desk (18.1% > 17.5%), Kerosene (28.2% > 20.6%), and Toilet
(15.2% > 14.9%). However, three artifacts show better performance with functional
condition: Flash (52.4% > 39.3%), Sink (44.7% > 35.8%), and Wall (60.8% > 24.8%).
The mixed pattern suggests that the effectiveness of each condition approach may be
highly dependent on the specific characteristics of individual artifacts.
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6 Discussion

Our research investigated whether humans construct distinct types of causal models
(specifically structural and functional) when reasoning about physical systems, and how
these different models influence performance in assembly and troubleshooting tasks. The
results offer insights into causal reasoning and its applications in robotics, while revealing
methodological challenges in eliciting accurate structural causal models.

6.1 Evidence for Distinct Causal Reasoning Modes

Our graph similarity analyses suggest that the way we frame counterfactual questions sig-
nificantly affects the topology of elicited causal models. Using multiple graph-theoretic
metrics (Hamming distance, Jaccard similarity, spectral distance, and DeltaCon), we ob-
served that participants presented with structural, functional, or general causal reasoning
frames constructed topologically different causal models of the same physical systems.
The differences in graph structure were most pronounced when using the intervention-
based elicitation method across the tested objects.

For simpler objects (desk lamps, flashlights), pairwise comparisons between the three
conditions (structural, functional, and general causal) showed notable differences across
multiple metrics. For more complex systems (bicycle, sink, toilet), we observed separation
particularly between structural and general causal conditions, while functional condition
responses sometimes resembled those from the general causal condition. These patterns
suggest that counterfactual question framing may tap into potentially distinct modes of
system conceptualization, though further research is needed to establish whether these
represent fundamentally different cognitive processes rather than variations induced by
our experimental framing.

The systematically different graph topologies across conditions point to the possibility
that humans may possess multiple frameworks for reasoning about causal relationships
in physical systems. However, we must interpret these differences cautiously, as they may
also reflect methodological artifacts arising from our specific question formulations rather
than inherent cognitive distinctions.

6.2 Methodological Limitations in Structural Model Elicitation

A critical limitation of our study lies in the formulation of counterfactual questions for
structural reasoning. Our approach asking ”If I remove part X, would part Y maintain its
structural integrity?” inadvertently produced sparse structural models because physical
parts often maintain integrity even when causally connected parts are removed. For
example, removing a bicycle’s chain doesn’t compromise the structural integrity of the
pedals, yet there exists a clear functional and assembly-relevant relationship between
these components. This limitation is evidenced by the lower hit rates for most of the
objects compared to the ground truth.

The bicycle showed less pronounced differences despite this limitation because its as-
sembly process inherently emphasizes structural dependencies that align with our ques-
tion framing. Many bicycle components genuinely do lose structural integrity when di-
rectly connected supporting elements are removed, making our structural counterfactual
questions more effective for this particular object.

This limitation manifests in the consistently lower hit rates for structural models in
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assembly tasks. For the bicycle task, although the structural condition yielded a higher
hit rate (0.721) than the functional condition (0.613), it still fell far short of the ground-
truth structural model, which captured 83.8% of the maximum possible reward compared
to only 19.3% achieved by participant-elicited structural models. For the desk lamp,
the structural condition hit rate was just 0.274, substantially lower than the functional
condition hit rate of 0.733, despite the ground-truth structural model outperforming the
functional model (92.0% vs. 42.5% of maximum reward).

This discrepancy suggests that our structural counterfactual questions failed to cap-
ture important connections critical for assembly that don’t involve immediate structural
integrity. The issue is compounded by the implicit presence of extraneous variables such
as gravity. Removing a support might not compromise a part’s integrity if it can rest on
a surface, yet the connection remains essential for assembly.

6.3 Refined Approaches to Structural Model Elicitation

To address these limitations, we propose several methodological refinements for eliciting
structural causal models.

Assembly-focused counterfactuals could be more effective, such as asking ”If I remove
part X during assembly, would this prevent part Y from being correctly positioned in the
final assembled object?” This formulation directs attention to assembly relevance rather
than immediate structural consequences.

Positional framing may prove beneficial: ”If part X were missing or misaligned, would
this necessitate repositioning part Y?” This approach avoids confounds from external
supports by focusing explicitly on relative positioning.

Hierarchical decomposition presents a compelling alternative approach where partici-
pants first identify meaningful component clusters before establishing causal connections
between them. This method more closely aligns with natural human conceptualization of
complex systems. By applying our updated counterfactual questions to this hierarchical
interface, we could assess whether it enhances the accuracy of user-generated structural
causal models.

Future work should systematically compare these alternative formulations to deter-
mine which most effectively captures assembly-relevant structural causal knowledge while
maintaining clear distinction from functional reasoning. Hybrid approaches combining
multiple question types might yield more comprehensive structural models that better
support robotic assembly planning.

6.4 Task-Dependent Utility of Causal Models

Despite methodological limitations, our findings support the hypothesis that different
causal models exhibit differential effectiveness across task contexts. Our POMDP simu-
lations demonstrated that ground-truth structural models significantly outperform func-
tional models in assembly tasks (91.4% vs. 49.1% of maximum reward), while func-
tional/causal models generally excel in troubleshooting scenarios (78.6% vs. 71.6%).

The gap between ground-truth performance and participant-elicited models suggests
not that structural reasoning is inherently less useful for assembly, but rather that our
elicitation method failed to capture the relevant structural dependencies. This interpre-
tation is supported by the fact that for objects where structural dependencies are more
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salient (such as the bicycle), structural condition still showed advantages over functional
condition in assembly tasks (p = 0.0126).

6.5 Object-Specific Effects and Context Sensitivity

Our results reveal significant context-sensitivity in causal reasoning effectiveness across
different physical systems, linked to the inherent properties and complexity of each object.
For assembly tasks, structural condition significantly outperformed functional condition
for the bicycle (p = 0.0126), suggesting that mechanically complex objects with visible
linkages naturally evoke structural-spatial reasoning. Conversely, functional condition
dramatically outperformed structural condition for the wall lamp (p = 0.0001), indi-
cating that simpler systems with clear input-output relationships may better align with
functional reasoning.

Particularly noteworthy, for the desk lamp, causal condition yielded the highest re-
wards, outperforming both functional (p = 0.0002) and structural (p = 0.0007) modes.
This demonstrates that neutral causal framing can be optimal when an object’s causal
structure involves both structural dependencies and functional relationships that must
be integrated for successful assembly.

These object-specific effects likely reflect inherent differences in how people conceptu-
alize different systems. Objects with clear mechanical linkages (bicycles) naturally evoke
structural thinking, while objects with less visible mechanisms but clear input-output re-
lationships (lamps) better align with functional or causal reasoning. Understanding these
object-specific tendencies could help tailor elicitation methods to particular domains.

6.6 Implications for Robotic Planning

Our findings have direct implications for robotic planning in assembly and troubleshooting
contexts. Robots should maintain dual representations: structural for assembly and
functional for troubleshooting, rather than relying on a single causal model. Furthermore,
elicitation methods for capturing human causal knowledge must be carefully designed to
match the specific reasoning mode being targeted.

For assembly tasks, robots might benefit from structural models that capture posi-
tional and sequential dependencies rather than simple integrity relationships. The consis-
tent gap between human-elicited and ground-truth performance suggests robots should
combine human input with structured domain knowledge and learning from interaction
to build more comprehensive causal representations.

6.7 Limitations and Future Directions

Despite limitations in our structural counterfactual question framing, our results demon-
strate the powerful effect of reasoning frames on causal model construction. The clear
differentiation between causal (control), structural, and functional models confirms that
question framing fundamentally shapes how people conceptualize system relationships.
This is most apparent in the lamp objects study, where all three reasoning modes pro-
duced statistically distinct graph representations across multiple metrics, regardless of
elicitation method.

The fact that even our control condition (general causal reasoning) yielded distinct
representations from both structural and functional framings for most objects suggests
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people possess flexible cognitive frameworks that can be selectively activated through
appropriate prompting. This presents significant opportunities for tailored elicitation
strategies in human-robot interaction. Through carefully crafted questions, we could po-
tentially guide users toward the most task-appropriate reasoning mode without requiring
explicit training in causal modeling.

Several directions for future research emerge. First, domain generalization should
be explored by investigating how structural and functional reasoning modes manifest in
domains with hidden components, abstract causal relationships, or emergent properties
(software systems, ecological networks, financial markets). Second, alternative structural
elicitation methods warrant systematic comparison, particularly question formulations
targeting assembly relevance, positional relationships, or temporal sequences to better
capture assembly-relevant causal knowledge. Third, longitudinal studies examining how
causal models evolve with repeated interaction could yield insights into learning dynamics
and expertise development. Novices might initially rely on structural representations
based on visible spatial relationships, gradually developing more sophisticated functional
or hybrid models through experience.

6.8 Conclusion

Our results provide empirical evidence that structural and functional reasoning frames
elicit distinct causal representations, with each showing task-specific advantages. The
intervention method demonstrated particular promise in eliciting high-fidelity models,
though all methods revealed sensitivity to prompt framing. While our ground truth
models confirmed theoretical expectations that structural representations should maxi-
mize assembly performance and functional models excel in troubleshooting, the actual
participant-elicited models frequently diverged from these theoretical expectations. The
significant performance gaps between expert-generated and user-generated causal models
in POMDP simulations highlight the challenges in effectively eliciting these conceptual
distinctions from human subjects. Despite these limitations, we demonstrated that dif-
ferent causal conditions through counterfactual questions can indeed elicit statistically
distinct causal representations, suggesting inherent differences in reasoning frameworks.
Future work should focus on developing more precise definitions of structural and func-
tional reasoning and refining elicitation techniques to better align with cognitive pre-
dispositions. These improvements will help us more effectively harness human causal
insights for adaptive, transparent robotic planning systems.
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8 Appendix

Figure 9: Editor Help & Shortcuts menu showing Quick Navigation, Canvas Interactions,
for clustering task. Includes instructions for nodes, clusters, and counterfactual questions.

Figure 10: Example demonstration of clustering using a bicycle.
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Figure 11: Example demonstration of cluster connections using a bicycle. Shows answer-
ing of counterfactual questions.

Figure 12: Example demonstration of complete causal map (intra/inter-cluster connec-
tions) for bicycle.
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Figure 13: Entry page for participants to give an overview of counterfactual reasoning.
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Figure 14: Clustering task interface with video tutorial on how to interact with the user
interface.

Figure 15: Help Available popup providing updated guidance to users.
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Figure 16: Help Available popup providing updated guidance to users with mechanical
pencil example.
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