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Abstract

Wildfires pose a significant threat to ecosystems, human
lives, and infrastructure. Early detection and accurate pre-
diction of wildfire risks are crucial for effective firefighting
and mitigation strategies and are valuable metrics used in
analyzing the effects of the climate crisis. In recent years,
deep learning techniques, particularly Convolutional Neural
Networks (CNNs), have demonstrated remarkable success
in various computer vision tasks. Our project focuses on
leveraging CNNs to detect and assess wildfire risks based
on satellite imagery. The proposed methodology involves the
development of a CNN-based model capable of analyzing
satellite images to identify regions at high risk of wildfires.
The model is trained to incorporate information such as veg-
etation density and land cover types. Our dataset combines
a pre-existing Canadian collection of satellite images, and
we have augmented it by collecting satellite imagery across
the US of locations that have experienced wildfires in 2023.
By extracting meaningful geospatial features from the input
data, the CNN learns to recognize patterns indicative of
potential fire-prone areas.

1. Introduction

Climate change has driven a global increase in wildfires.
2020 was a record-setting year for wildfires in California,
with almost 10,000 fires burning over 4 million acres of land.
Wildfires present a substantial danger to ecosystems, human
lives, and infrastructure. Our interest in wildfire risk pre-
diction stems from an investment in combating the climate
crisis: we hope to critically consider Al tools that enable ef-
forts in preventing, mitigating, and managing wildfires more
effectively.

The impact of wildfire risk assessment tools like ours
is significant. Human intervention continues to cause sig-
nificant changes to landscapes around the world. Wildfire
predictions based on historical data fail to consider the ways
that areas might rapidly change due to deforestation, urban
development, and climate change. The ability to infer the
risk of wildfires based on the latest landscape conditions and

alterations is critical in protecting ecosystems, wildlife, and
human lives from the consequences of climate change.

Wildfire prediction is complex. They occur in vast areas
and exhibit complex spatial and temporal dynamics. Predict-
ing the behavior and spread of wildfires requires capturing
and analyzing fine-grained details about the landscape, in-
cluding wind patterns, fuel moisture content, and terrain
characteristics. In addition, wildfires can range from small
localized incidents to large, rapidly-spreading disasters. In-
tegrating and analyzing diverse data sources with varying
formats and quality presents a significant challenge.

We focused on performing risk assessment purely through
landscape analysis. While more complete risk-assessment
algorithms incorporate many non-image-based factors, we
sought to explore and maximize the accuracy of purely
image-based prediction systems. Our model and process
would fit very well serving as the landscape-analysis com-
ponent in a future fully-featured wildfire risk assessment
tool.

2. Related Work

Kaggle We used a pre-labelled existing dataset of about 44
thousand satellite images from Canada to train our wild-
fire risk model. Roughly 50% of images were sampled
from locations where a wildfire has occurred and the
other 50% sampled from locations with no history of
wildfire. [1]

National Interagency Fire Center The National Intera-
gency Fire Center stores geographical data on wildfires
from 2014 to 2023. We used the 2023 data, filtering on
fire-reported incidents, to augment the Kaggle dataset
with imagery from the US. [2]

Google Earth Engine Google Earth Engine is a geospatial
processing service that allows users to query for satellite
imagery given latitude and longitude. We used its API
to augment our model’s training and testing data given
coordinates of prior wildfire incidents in 2023. [3]

Mapbox Mapbox API is another geospatial processing ser-
vice that also allows users to query for satellite im-



agery given latitude and longitude. We used its API to
download more than 50 thousand square kilometers of
satellite imagery of Oregon to make wildfire risk pre-
dictions across the state (images fed into model). We
switched from Google Earth Engine because of issues
with corrupted satellite data initially experienced when
working with GEE. We also used Mapbox to generate
the heatmap visualizations of our results. [4]

United States Forest Service We referenced the 2018 visu-
alization of "Burn Probability” generated by the United
States Forest Service as a point of comparison for our
own wildfire risk heat map. [5]

3. Method

Our project was completed in 4 general steps. We first
augmented an existing dataset of Canadian satellite imagery
with our own American satellite images of places that experi-
enced wildfires in 2023. We then built a convolutional neural
network that evaluates wildfire risk given an RGB satellite
image of dimensions 224 x 224, and trained it on the aug-
mented dataset. Next, we downloaded images covering the
state of Oregon to be later used for wildfire risk assessment.
Finally, we ran the Oregon-based images through our model
and constructed a heat map visualization representing our
assessment of wildfire risk in the state of Oregon.

3.1. Data Augmentation

The pre-labelled dataset is comprised exclusively of satel-
lite imagery from Canada. To make our model more robust
to geographical variety and non-Canadian landscapes, we
augmented the dataset with satellite imagery from the US
to introduce diversity in vegetation and development. We
first consulted the Natinoal Interagency Fire Center for spe-
cific latitudes and longitudes of 2023 American wildfires,
and used Google Earth Engine to download images of these
locations. We then split the downloaded data among test
and train data for the model evenly. Collecting images of
locations with the absence of a history of wildfire is far more
complex, and is outside of the scope of the augmentation
we performed. Figure | contains a visualization of the data
augmentation pipeline.
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Figure 1. Data Augmentation Pipeline

3.2. Model Architecture

Our CNN Binary Image Classifier consists of 5 convolu-
tion blocks, a Flatten layer, and 2 Dense layers. Our model

performs Stochastic Gradient Descent with momentum on
917,655 total trainable parameters. We chose SGD as our
optimizer for its efficiency, scalability, and convergence rate.
SGD is computationally efficient, making it well-suited for
a large dataset. SGD is scalable, because it can handle a
large number of input features, including images with many
pixels. Ultimately, SGD converges to a good solution in a
short amount of time, reducing the computational resources
required to train our model. Using general observation to se-
lect our training hyperparameters, we trained for 15 epochs
with a learning rate of 0.001 and momentum of 0.01. See
figure 2 for a visualization of our model’s architecture.

Each convolution block contains a 2D Convolution layer
with Leaky Relu activation directly followed by a Max-
Pooling layer. We chose to use an ascending number of
filters in each convolution layer: the first 2D convolution
layer employs 16 filters, the second employs 32 filters, and
the following three layers employ 64 filters.Increasing the
number of filters increases the number of abstractions our
network is able to extract from image data. Our images cap-
ture the color, density, and distribution of both vegetation
and urban infrastructure. The raw data from any given image
may contain noise that we do not want our model to learn as
a classifying feature. Our first convolution layer has the least
number of filters so that we can extract the most relevant,
primitive features from the raw pixel data directly from an
input image. Once the first convolution layer extracts these
features from the input image, our network uses an ascend-
ing number of filters to increase the depth of the feature
space and learn more complex interactions between global
abstract features. Shrinking the feature space before feeding
it to the dense layers of our network helps the dense layers
more easily learn to map the reduced feature space to the
output labels, improving model performance through better
classification accuracy and diminishing risk of overfitting.

Each 2D convolution layer employs a Leaky ReLU ac-
tivation function. This nonlinear activation function helps
address the vanishing gradient problem that can occur with
traditional ReL.U activation. With the introduction of a small
non-zero slope, gradients may still flow through the network
for negative input values, improving our model’s ability to
learn and generalize complex features.

We follow the 2D convolution layer in each block with a
Max Pooling layer using a stride of size 2. This reduces the
dimensions of the input feature map from the previous layer
by one fourth. Downsampling the feature map decreases the
number of parameters, decreases likelihood for overfitting,
and increases our model’s computational efficiency. Max
pooling enables better learning of high-level features, such
as trees or mountains in our images. In addition, max pooling
provides local translation invariance, meaning the model can
learn features regardless of their location in the image. This
proves especially useful for our images of natural scenes,



Figure 2. Model architecture

since patterns in vegetation appear in different positions and
orientations.

We chose to include two dropout layers with a 20%
dropout rate following the third and fifth convolution block.
The dropout layers choose random neurons to “drop out”
of the network by setting their weights to zero, keeping
the model from relying heavily on any specific neuron, or
feature, in the network. Regularization through dropout in-
creases model performance by making it more robust to new,
unseen data.

After performing our convolution, we flatten the 2D out-
put into a 1D vector, enabling our fully-connected dense
layers to classify the extracted features. We use two dense
layers in our final stages of training. Each dense layer per-
forms matrix multiplication in order to preserve the weights
from the previous neurons while decreasing the dimension
of the vector. Our first dense layer has a size of 512, which
decreases the dimension of our 1D feature vector to 512.
Since our classifier is binary, we use a sigmoid activation
function that will output one value in the range of O to 1 in
our final dense layer.

3.3. Oregon Data Collection

In order to assess the risk of wildfire in the state of Oregon,
we needed to collect satellite image data spanning the entire
landmass of the state. The general approach was to collect a
list of points (longitude and latitude), then download images
of those points to be later fed into the model.

3.3.1 Sampling Points

In an ideal world, we would have sampled points every
”X” kilometers as we traversed the area of the state and
downloaded images of appropriate dimensions so that we
would have 100% image coverage of the state. In reality, we
were limited by the download cap of satellite images from
our chosen API, where we were restricted to downloading a
total of 50,000 images before being charged. Therefore, we
needed to generate an even and representative distribution
of points in order to achieve the best assessment of wildfire
risk across the entire state.

We generated points using Poisson-disc sampling, allow-
ing us to define a minimum distance between points and
fine-tune our data set for an even distribution. However, a

challenge we faced while applying this method was with the
geographic scale with latitude. Due to the Earth’s spherical
shape, the same difference in longitude represents different
actual distances depending on the latitude of a given point.
This variation requires us to convert our minimum distance
from meters to degrees for Poisson-disc sampling using the
Haversine formula, factoring in the latitude of the points we
sampled. Figure 3 shows the results of a single iteration of
sampling.

We tried different distributions and disc-radii to keep
within the limitations of our download cap. Our final highest-
density result consisted of 5,518 points distributed across
Oregon. We later discuss the differences in sampling density
(Look ahead to Figure 7).
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Figure 3. Generate points using Poisson-disc sampling

3.3.2 Downloading Image Clusters

After generating a set of points distributed across the state
of Oregon, we iterated over each of these points in order to
download images of these locations. Instead of just down-
loading a single image per point, we download 9 1x1km
images arranged in a square matrix centered around the
point. This gives us a more accurate representation of the
surrounding area making our predictions more robust to
noise and false-positives/negatives. Each set of images for a
given point is associated with the sampled latitude/longitude,
and the predictions of the model across all 9 of those images
contribute to the wildfire risk score of the given point. Fig-
ure 4 shows the cluster download process. For the densest
sampling we did with 5,518 points, we downloaded a total
of 49,662 images.
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Figure 4. For each point, 9x9 set of images is downloaded, centered
around the point and grouped together by the central point.



3.4. Risk Assessment Visualization

After collecting all of the image clusters for all of the
points, we ran each cluster of images through our CNN. The
number of “wildfire-positive” votes out of 9 was calculated
for each point, resulting in an output .geojson file predicting
wildfire risk across the entirety of the sampled space. Using
the .geojson output file, we constructed a heatmap where
each point contributes an “intensity” to the heatmap propor-
tional to the number of wildfire-positive votes it received
from the model.

Figure 5 shows how each of the point image clusters
contributed to the final visualization of wildfire risk.
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Figure 5. Pipeline: Point Image Cluster to Visualization

4. Results

We can analyze our results in two ways: Quantitatively
by evaluating of our underlying CNN, and qualitatively com-
paring our predictions with existing predictions made by
external sources.

4.1. Model Performance

Our model was trained using a learning rate of 0.01 and
a momentum of 0.0001. The learning rate determines the
step size at which the model updates its parameters during
training, while momentum helps accelerate the optimization
process by adding a fraction of the previous parameter up-
date. These values were chosen to strike a balance between
learning efficiency and stability during training.

Our model achieved 96.4% accuracy over 15 epochs.
Table | contains more granular results obtained from our
model’s performance evaluation. It provides a comprehen-
sive overview of the model’s accuracy and loss values across
15 epochs. We exclude above epoch 15 because we did not
see an improvement in performance after the 15th epoch,
and exclude intermediate epochs for brevity.

To evaluate the performance of our model, we utilized
two metrics: binary accuracy and loss as measured by binary
cross-entropy. Binary accuracy measures the proportion of
correctly classified samples, providing an indication of the
model’s overall prediction accuracy. On the other hand, bi-
nary cross-entropy loss quantifies the dissimilarity between
predicted probabilities and true labels, allowing us to assess
the model’s training progress and generalization capabilities.

H Epoch 1 2 3 10 15 H

Accuracy 0904 0922 0943 0955 0.964
Loss 0.259 0.202 0.157 0.128 0.105

Table 1. Results: accuracy and loss measured across 15 epochs.
Both accuracy and loss continuously improve with time.

4.2. Oregon Wildfire Analysis

Figure 6. Our assessment of wildfire risk in the state of Oregon. Pink
dots represent the 5,518 sampled locations. Redder color indicates
areas with a higher degree of wildfire risk. Each point contributes
an “intensity” to the heatmap proportional to the number of wildfire-
positive votes it received from the model.

Figure 6 represents the cumulative wildfire risk assess-
ment we produced for the entire state of Oregon. Figure 7
shows our predictions in comparison to a Burn Probability
Map created in 2018 by the United States Forest Service.

Our results were somewhat similar to predictions made
by the U.S. Forest Service, with a few notable discrepancies.
Figure 7 shows a visual representation of areas of high/low
correspondence between our predictions. In essence, we
concur with most areas deemed high risk” by the USFS,
but disagree in some areas that are labeled “low risk” by the
USFS (mainly the coast of Oregon). We discuss our theories
for these discrepancies in the next section.

4.3. Technical Discussion

It is important to note that the United States Forest Ser-
vice used more than just landscape analysis to generate their
predictions. Historical and meteorological analysis play a
large part in fully-fledged wildfire prediction algorithms. We
expect that the discrepancies in the visualization, for ex-
ample the high-risk we predict in the coastal region, stem
from the lack of consideration for non-image based data (i.e.
extremely high average annual precipitation in the coastal



Figure 7. Left: Our assessment of wildfire risk in the state of Oregon. Right: A 2018 visualization of "Burn Probability” generated by the

United States Forest Service.

region). Figure 9 demonstrates this perfectly- if you were to
use the precipitation map of Oregon to alter our predictions
(dampening areas with high precipitation), our outputs are
strikingly similar to predictions made by the USFS. Consid-
ering the fact that we excluded all other non-image-based
factors, we were pleased to generate impressively similar
results based on image data alone.

As mentioned previously, wildfire risk assessment is
highly complex, and fully-fledged algorithms account for
many non-image based factors including weather, vegetation
and human activity. Because our model is trained only on
satellite imagery, it cannot consider non-image based factors
when predicting wildfire risk. Given more time, we would
have liked to incorporate weather statistics (mainly tempera-
ture, humidity, and wind speed) acquired via Python weather
APIs into a larger deep learning model to supplement our
satellite imagery computer vision model.

Additionally, we chose to limit our wildfire analysis to
North America, where terrain is categorically comparable.
We chose to analyze Oregon specifically due to its history
of wildfires and smaller area compared to other wildfire-
prone states, such that fewer samples would yield a more
representative result. Its geometry is close to rectangular,
which simplified the process of defining borders for our
sampling purposes.

The area of the state of Oregon is roughly 250,000 square
kilometers in area. In our first iteration, we sampled 734
(Poisson disc radius 11 kilometers) points across the entire
state, which produced a dataset of 6,606 images at 2.5% cov-
erage. The heat map visualization generated by this sparse
point set yielded a spotty visualization. This made it difficult
to recognize patterns and draw conclusions because of the
large amount of interpolation in area between the sampled
points. The apparence of this difference is visible in Figure 8.
We then decreased the disc radius to four kilometers to gen-
erate a total of 5,518 points, which yielded 49,662 images at
about 20% landmass coverage.

With this modification, we saw areas of high risk emerge

in the resultant heat map. The increase in data produced a
much more legible risk map that had comparable results to
the risk map generated by the United States Forest Service
(see 8). However, our image queries were limited by the
number of requests we could make to the image download
API (which was capped at 50,000 free requests per account).

4.4. Socially-responsible Computing Discussion via
Proposal Swap

Our group gathered data from wildfire satellite imagery in
the United States. We then augmented the Canadian dataset
in order to include more pictures of predicted American
wildfires. Next, we trained and tested the model on the aug-
mented dataset so the model was more robust to geographical
changes in the environment. In addition, we also augmented
the data in our preprocessing through shifting the images,
flipping the orientation, and changing the scale. The augmen-
tation of the dataset in our model attempted to counteract the
dependency the neural network may have on just Canadian
geography. Unfortunately we did run into issues that the Ore-
gon dataset had different geographical properties, especially
with more mountainous regions, than the augmented dataset
we trained on. In the future, we would work to add more
diverse geographical images in our dataset so that the model
is robust to all different geographical areas.

Adding in extra data about the population density and
fire safety access would make the model more robust to real-
life predictions of wildfires. The proximity of a fire depart-
ment shows how quickly a wildfire could be extinguished,
therefore decreasing the likelihood of a massive wildfire. In
addition, the population density correlates to the risk of dam-
age within that region. With a higher population density the
wildfire will have a greater direct impact on people’s lives,
causing the wildfire to be much more dangerous. Overall,
it is true that both these properties do not directly impact
the risk of a wildfire within a certain region. Instead, they
give additional context to the harm a wildfire may possess
if it’s nearby a large town (impacting lives) and/or far from



close-match (green) and discrepancies (red). If you overlay the precipitation of Oregon onto the predictions we made, the predictions are far
more similar, emphasizing the importance of non-image based factors in more complete prediction algorithms.

fire safety access (can spread more easily). This information
will be used less for predicting the likelihood of a wildfire,
but instead more towards interpreting the results a wildfire
would have on that specific region.

The augmented dataset provides greater context to predic-
tion of wildfires in North America. Since the model is trained
and tested specifically on the combined dataset of Canadian
and United States predicted wildfires, it has the highest ac-
curacy in detecting predicted wildfire in these regions. With
a greater bandwidth of resources in this project, we would
have liked to further augment the dataset to include other
regions as well. Time-permitting, we would have included
other regions across the globe so that this model could be
generalized to predict wildfires worldwide. We decided to
use the augmented dataset in Canada and the United States
in order to ensure our model was working on a small scale
before expanding it to generalize it to other regions. Our
American dataset was found by taking images using Google
Satellite Imagery of locations of previous wildfires. In this
dataset, we did not focus on American areas with no-wildfire.
Thus, we agree there is some bias within our model to de-
tect Canadian wildfire/no-wildfire regions the best, followed
closely by the American regions, and then finally globally.
In the future, we would work to include a larger dataset with
greater global data augmentation so that the model can be

applied more broadly.

5. Conclusion

Wildfires present a notable danger to ecosystems, human
lives, and infrastructure. Detecting and predicting wildfire
risks at an early stage is vital for effective firefighting and
mitigation strategies. In recent times, deep learning meth-
ods, specifically convolutional neural networks, have shown
remarkable achievements in diverse computer vision appli-
cations. Our project aimed to utilize CNNss to identify and
evaluate wildfire risks. Our assessment of wildfire risk based
on our model’s predictions was comparable to the 2018 visu-
alization of burn probability generated by the United States
Forest Service, even though our model only accounts for
geospatial features.

Such a model for wildfire risk detection can greatly as-
sist firefighting efforts, especially in the Western US, by
providing valuable insights and actionable information. For
example, a model trained to detect wildfire risks can analyze
high-resolution satellite images in near real-time, identifying
areas with a high likelihood of wildfires. By providing early
detection, the model enables firefighting agencies to respond
promptly and allocate resources effectively, increasing the
chances of containment before fires become uncontrollable.



Furthermore, our model can help prioritize resource alloca-
tion. Firefighting agencies could focus their efforts on re-
gions flagged as high-risk by the model, ensuring that limited
resources such as firefighters, equipment, and aircraft are de-
ployed strategically to the areas most in need. Beyond image
data, a full fledged wildfire risk model could also incorporate
data such as building records and infrastructure details, to
assess the vulnerability of structures within wildfire-prone
areas. By identifying buildings or critical infrastructure at
higher risk, firefighters can prioritize protection efforts and
allocate resources accordingly, potentially reducing property
damage and saving lives.

By leveraging the capabilities of a CNN-based wildfire
risk detection system, firefighting efforts in North America
can become more proactive, efficient, and targeted. This
technology provides crucial insights into identifying at-risk
areas, prioritizing resources, monitoring fire behavior, and
protecting communities and infrastructure. Ultimately, it can
help mitigate the devastating impacts of wildfires, safeguard
lives, and minimize property loss.
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Appendix

Team contributions

Anna and David are captioning. Capstone contributions
revolve around the wildfire risk analysis of Oregon as well
as its visualization.

Anna (Capstoning) Helped David construct North Ameri-
can wildfire dataset, and worked with them to visualize
our model’s wildfire risk analysis of Oregon. Wrote
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