
CSCI 1430 Final Project Report:
Text-to-Image Synthesis By Separating “Verbal” From “Nonverbal” Information

Using Residual Auto-Encoder

Homemade DALL·E: Koyena Pal, Luke West
Brown University

Abstract

Text-to-image synthesis is the idea of expressing a scene
in text format and having a program generate an image
based on the text description. Many text-to-image generation
models utilize a huge dataset, a lot of computation power
and time to train and generate good images. We illustrate an
approach that uses significantly less resource and is able to
generate decent images from our custom Shapes data.

1. Introduction

Our project idea stems from an initial curiosity of un-
derstanding how to generate an image based on a natural
language text caption given to the program. For instance, if
we say, “there is a room with a window above the sofa,” is
it possible to generate an image of a sofa with the window
on top of it and the surrounding image having a wall? This
led us to a research community that uses machine learning
approaches to text-to-image generation. One of the current
most talked about models within this domain is Ramesh et
al’s model, DALL·E 2 [10], which is a new AI framework
that can create realistic pictures from a description in natural
language. It is a two-stage model: the first stage generates
a CLIP [9] embedding given a text caption and the second
stage decodes the outputted image embedding and generates
the resulting image. To train its encoder-decoder arrange-
ment, it takes about 900M images (around 650M for training
its encoder and 250M for training its decoder). Its decoder
architecture uses 3.5 Billion parameters. The predecessor of
this model, Ramesh et. al’s model, DALL·E [11], uses 10
Billion parameters in its training architecture.

Since these models have huge parameter and dataset sizes,
we looked into other models that are more cost-saving. One
such model is Zhou et al’s framework, LAFITE [16]. It is a
zero-shot text-to-image generation that has about 1% model
size and training data size relative to the large DALL·E
model. Upon comparing the model, we noticed a weak-
ness in LAFITE’s generated outputs. As shown in Figure 1,

LAFITE’s output for a triangle object looks more like a circle
unlike DALL·E’s output, which is clearly a set of triangu-
lar items. However, the former’s output still had the color
and object accurate. Hence, we decided to focus on training
a text-to-image generation for shapes by creating our own
shapes dataset and designing our architecture that has fewer
parameters to train so that it can be feasible to run in our
Google Cloud accounts. We believe that if our model does
not test well on shapes, then it would not be able to produce
a decent output for more complicated scenes. Hence, in this
project, we worked on creating a model that can generate
images for shape-related text captions. To summarize, our
contributions are as follows:

• Created a Shapes Dataset ranging from squares to stars
with different fill colors, positions, and background
colors (size: about 2500).

• Designed and implemented a text-to-image shape gen-
erator model that uses 10M parameters, which is 99.9
% smaller than the large DALL·E model.

2. Related Work
With respect to text-to-image generation, there have

been previous works on training GANs [3] on public im-
age captioning datasets to produce text-conditional images
[12, 13, 14, 15, 17]. Another approach is by adapting VQ-
VAE [7] to train autoregressive transformers on text token
sequences and then on image tokens [11, 2, 1]. Other works
have applied diffusion models, either training in the con-
tinuous form [6] or discrete form [4] with text encoders to
handle text captions.

Related to this task is the creation of newer datasets that
aims to aid in further research of such topics. Generally,
MS-COCO [5] is a popular choice of data. Point-Tuset et
al. recently created a Localized Narratives dataset [8]. It
has image annotations with verbal descriptions and mouse
tracking. This allows for controlled image captioning which
can be helpful to create text-to-video generation.

1



Figure 1. Generated Images for text caption: “a triangle black clock. a black clock in the shape of a triangle” Left: DALL·E Right: LAFITE

Figure 2. Subset of the Custom Shapes Dataset

3. Method
In this section, we first go over how we created our shapes

dataset and move on to describing our model architecture.

3.1. Shapes Dataset Creation

To generate different shapes, we used different fill col-
ors, background colors, size and orientations of the shapes in
question. The shapes considered ranges from squares to stars.
There are about 2500 of them and they have been generated
with the help of members of the following GitHub Reposi-
tory: 2DGeometricShapesGenerator. Figure 2 showcases the
subset of Shapes that we generated.

3.2. Model Architecture

Many images can be captioned the same, and the same
caption describes many images. Directly training a model
pipeline to create images from text embeddings therefore
seemed less feasible - we would want many captions for
each image, and many images for each caption, which is
not easy to find in real-world datasets. Additionally, such a
model would not be inherently stochastic - the same caption
would always lead to the same output image. In other words,
the true underlying relation from captions to images is not a
function, and so it seemed misguided to try to train a function
on captions to imitate that relation. Instead, we realized we
could force this relation to look more like a function by addi-
tionally parameterizing it with an abstract characterization
of the image that captures everything about it that a verbal
caption ignores. So, this characterization would encode ev-
erything about the image that a human would not mention

in a caption. Together, the characterization, or “nonverbal”
information, referred to as a latent image, along with the “ver-
bal” sentence embedding, should map to an approximately
unique output image. The latent image is created by a se-
ries of image convolutions that produce a 1024-dimensional
vector, only a fraction of the size of the input image. This
is concatenated with a text embedding to produce a vector
that (hopefully!) fully characterizes the input image Figure 3
illustrates what our full model looks like. In the bottleneck
of this architecture, just before the text embedding is added,
the model is ideally too narrow to learn both “verbal” and
“nonverbal” content. Hence, the auto-encoder should learn
to rely on the supplied sentence embedding to recreate the
image.

Once training is complete, the leftmost column (“en-
coder”) of the architecture shown in 3 is thrown away. To
produce novel images, we pass text to the text embedding
model, and input a randomized 1024-element latent image
vector. The hope is that any possible latent image corre-
sponds to some abstract characterization of an image de-
scribed by the given caption. This hope is somewhat inspired
by linear algebra — if the 1024 dimensions of the latent im-
age vector are just enough to capture every possible abstract
image layout associated with an arbitrary caption, then the
components of the latent image should be akin to a vector
space basis, in which every possible linear combination of
those components produces a unique valid element of that
space.

3.3. Training Regime

On our Shapes dataset, we initially used a slightly down-
sized version of the model shown in 3, where the latent image
vector was only of size 54. This was because any image in
the shapes dataset could be characterized with far, far less
information than a real-world photo. In fact the number 54
was based on an estimation of the number of bits represented
by any Shapes image — 28 = 256 bits for each channel
of the background and foreground colors, ≈ 27 bits for the
x and y coordinates of the shape, ≈ 27 bits for the size of
the shape, and perhaps a few extra bits for its rotation, for
a total of around 72 bits. We then chose to round down to
54 elements because each element is not actually a bit, but
only approximates one with certain activation functions and
normalization layers, e.g. sigmoid activations.

We also used a vastly simplified text embedding model,
using only the words “Circle, Star, Triangle, Square, Pen-
tagon, Hexagon, Heptagon, Octagon, Nonagon”, and map-

https://github.com/elkorchi/2DGeometricShapesGenerator


Figure 3. Architecture Overview

Figure 4. Augmented Training Pair

ping these to a 4-element vector. Each image was passed to
the model both as an input and a desired output, and loss was
measured with Mean Squared Error. We considered using
a Generative Adversarial Network model, with an adversar-
ial discriminator serving as the loss function, but decided
against it given our time constraints. We also realized that the
latent image should be able to encode perturbations like ro-
tations, zooms, skews, etc., and thus an adversarial network
might not theoretically be necessary even when training on
a real-world photo dataset.

After our first few rounds of results, we augmented our
training regime by generating shapes images in pairs, with
the figure depicted being identical in every way (size, color,
rotation, etc.) saved for its actual shape. An example of such
a training pair is shown in 4.

All training was performed on a GCP VM instance using
a single NVIDIA Tesla T4 GPU.

4. Results
Figure 5 illustrates the generated images from our model

that was trained using our Shapes dataset. While testing our
model, our input image was downsized to 54 pixels. We
were still able to replicate what the actual image looked like,
so the model at least performed decently as an autoencoder.
However, when tasked with generating new images, by ran-

Figure 5. Generated Results On Matching Latent Image/Caption
Pairs

Figure 6. Generated Results on Randomized Latent Images (caption
inputs from left: “Square”, “Hexagon”)

domizing the latent image, it definitely failed. For the most
part, we just got formless blobs.

Training this model took about 1.5 hours for 500 epochs
in total. We attempted to expand the use of this model fur-
ther by using the MS-COCO dataset. We replaced our text
embedding framework with a (pre-trained BERT model) to
take advantage of transfer learning. Due to time constraints,
we were not able to get this model to produce a decent out-
put (500 epochs would have taken 2-4 days). Nevertheless,
this experience led us to think of a way to train our models
even better. After a few epochs on the COCO dataset, we
noticed that the model was consistently ignoring all input
from the embedding — on a given latent image, a mean-
ingful embedding produced identical input to a randomized
one.

On further reflection, we realized that on both the shapes
dataset and the COCO dataset, the model’s path towards
minimizing MSE only led it to functioning as a poor autoen-
coder, and it was not learning to take information from the
caption embedding. So, it was not sufficient to just restrict
the latent image space and hope the model would take in-
formation from the embedding to improve its output — to
see good results, we would need to force it to forget certain
information from the latent image, only to regain it from the
caption embedding.

This line of thought led to a new training regime, pre-
viously referred to as the augmented training regime as in

https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2


Figure 7. Generated Results on Latent Image of Star with Caption
of “Hexagon”

Figure 4. In this new strategy, we would give the model
a shape image matching its provided caption on only half
the training pairs. On all other pairs, we would lie to the
model about the shape actually depicted in its input image,
yet expect the model to give us the shape described in the
caption. For instance, as in Figure 4, we would supply it
with an image of a star, but caption it as a hexagon, and
calculate the mean squared error of its output with respect
to the image of the hexagon. These results were much more
encouraging, as shown in Figure 7. Not only was the model
able to learn to replicate the shape described, irrespective
of the actual shape input, but the images generated from
random latent image data were more impressive, as shown
in Figure 8. It also performed quite well on latent images
taken from actual shape images that it hadn’t seen before,
shown in Figure 9. We think it may have performed even
better on randomized latent images if we had restricted its
latent image space — the augmented training was performed
on the full 1024-dimensional model, and so the latent image
space was surely too big, but we ran out of time to re-train it.

We were also able to form images from randomized text
embeddings of the given shape, which often resembled in-
teresting intermediates of the other training shapes. One odd
thing we noticed was the consistent underperforming on
“Triangle” inputs, and we really don’t know how to explain
this. Given a randomized latent image and caption input
of “Triangle”, only occasionally did the the output images
resemble any sort of shape at all — the example given in
Figure 8 was the best result we found.

4.1. Future Work

Given the success of the augmented training regime, we
believe we could apply it to real-world photo data given a
slightly altered task. If the caption embedding instead was
only a list of nouns from a given set, describing the objects
present in the image, we might prepare a dataset of paired
images where one object in each pair is different in the
two images, but expect the resulting image to always match
the provided caption. This might be able to produce novel
images of the objects from randomized latent image data, if
the training dataset had enough coverage.

Figure 8. Generated Results on Randomized Latent Images (cap-
tions from top left: “Heptagon”, “Heptagon”, “Square”, “Square”,
“Star”, “Star”, “Star”, “Star”, “Star”, “Triangle”)

Figure 9. Generated Results using Latent Images from Unseen
Shape Data, given caption “Star”

4.2. Societal Discussion

One of the potential ethical concerns talked about in the
swap critique is that we could potentially destroy the jobs of
professional artists since the model could create the wanted
art instead. While this can be true, the current state of the
model is far from destroying jobs. On the other hand, this
model can be used as a complementary equipment for artists
to use to create simple shapes or objects to save time. Since
this project is inspired from DALL·E, another ethical con-
cern that was discussed was a privacy issue. What happens
if the image of a face that is generated by DALL·E actually
exists in real life? How can we prevent this from happening?
We were not sure about how it can be prevented entirely.
However, we could have an approved database of faces of
individuals who consented to their faces being use in third



parties. If such a face does not appear in the database, the
generated image can be scrapped before the end-user can see
the image. Apart from faces, people are also concerned with
generating fake news using this generator mechanism. To
prevent this from happening, this generator could be limited
to certain trusted parties where we have some level of guar-
antee that they are not using this generator to create fake data.
The news come from people who are not from the trusted
parties, we would err to believing that they are spreading
fake news. Lastly, in the swap critique, we were asked if this
model was trained on any dataset apart from COCO. We did
do this by creating our own Shapes dataset. Since shapes
don’t hold any discriminatory value, other concerns of racial
bias (which is present in DALL·E 2) is not applicable here.

5. Conclusion
To create a cost-saving text-to-image generation model,

we design a residual auto-encoder and train our model on
our 2500-image dataset, which consists of various shapes in
different colors, backgrounds, and position. By creating a de-
cent text-to-image shape generator model, we are able to see
that it is possible to have a good model that is 99.9% times
smaller than the large DALL·E model. Further, it is possible
on this dataset to have the model learn shape information
only from the caption embedding, suggesting similarly sep-
arated learning might be possible on real-world photo data.
The impact of this project is to further the direction of gener-
ating plausible images with as few data examples and model
size as possible.

References
[1] Armen Aghajanyan, Bernie Huang, Candace Ross, Vladimir

Karpukhin, Hu Xu, Naman Goyal, Dmytro Okhonko, Mandar
Joshi, Gargi Ghosh, Mike Lewis, and Luke Zettlemoyer. Cm3:
A causal masked multimodal model of the internet, 2022. 1

[2] Ming Ding, Zhuoyi Yang, Wenyi Hong, Wendi Zheng, Chang
Zhou, Da Yin, Junyang Lin, Xu Zou, Zhou Shao, Hongxia
Yang, and Jie Tang. Cogview: Mastering text-to-image gener-
ation via transformers, 2021. 1

[3] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial networks, 2014. 1

[4] Shuyang Gu, Dong Chen, Jianmin Bao, Fang Wen, Bo Zhang,
Dongdong Chen, Lu Yuan, and Baining Guo. Vector quan-
tized diffusion model for text-to-image synthesis, 2022. 1

[5] Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bour-
dev, Ross Girshick, James Hays, Pietro Perona, Deva Ra-
manan, C. Lawrence Zitnick, and Piotr Dollár. Microsoft
coco: Common objects in context, 2014. 1

[6] Alex Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav
Shyam, Pamela Mishkin, Bob McGrew, Ilya Sutskever, and
Mark Chen. Glide: Towards photorealistic image generation
and editing with text-guided diffusion models, 2022. 1

[7] Aaron van den Oord, Oriol Vinyals, and Koray Kavukcuoglu.
Neural discrete representation learning, 2017. 1

[8] Jordi Pont-Tuset, Jasper Uijlings, Soravit Changpinyo, Radu
Soricut, and Vittorio Ferrari. Connecting vision and language
with localized narratives. In ECCV, 2020. 1

[9] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen
Krueger, and Ilya Sutskever. Learning transferable visual
models from natural language supervision, 2021. 1

[10] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu,
and Mark Chen. Hierarchical text-conditional image genera-
tion with clip latents, 2022. 1

[11] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray,
Chelsea Voss, Alec Radford, Mark Chen, and Ilya Sutskever.
Zero-shot text-to-image generation, 2021. 1

[12] Ming Tao, Hao Tang, Fei Wu, Xiao-Yuan Jing, Bing-Kun Bao,
and Changsheng Xu. Df-gan: A simple and effective baseline
for text-to-image synthesis, 2020. 1

[13] Tao Xu, Pengchuan Zhang, Qiuyuan Huang, Han Zhang, Zhe
Gan, Xiaolei Huang, and Xiaodong He. Attngan: Fine-grained
text to image generation with attentional generative adversar-
ial networks, 2017. 1

[14] Hui Ye, Xiulong Yang, Martin Takac, Rajshekhar Sunderra-
man, and Shihao Ji. Improving text-to-image synthesis using
contrastive learning, 2021. 1

[15] Han Zhang, Jing Yu Koh, Jason Baldridge, Honglak Lee, and
Yinfei Yang. Cross-modal contrastive learning for text-to-
image generation, 2021. 1

[16] Yufan Zhou, Ruiyi Zhang, Changyou Chen, Chunyuan Li,
Chris Tensmeyer, Tong Yu, Jiuxiang Gu, Jinhui Xu, and Tong
Sun. Lafite: Towards language-free training for text-to-image
generation, 2021. 1

[17] Minfeng Zhu, Pingbo Pan, Wei Chen, and Yi Yang. Dm-
gan: Dynamic memory generative adversarial networks for
text-to-image synthesis, 2019. 1



Appendix
Team contributions

We both contributed equally in the project. While we pri-
marily did the following individually, for all the “individual”
tasks, we discussed and brainstormed our issues together.

Person 1 This person primarily worked on conducting lit-
erature reviews, writing progress and final reports, as
well as comparing models present within the literature
reviews (for instance, see Figure 1)

Person 2 (capstone student) This person worked on de-
signing, implementing, and training the model dis-
played earlier, porting it to GCP, and adapting it to
the COCO dataset (see Figure 3). They also wrote the
pre-processing code to handle incremental generation
of COCO data via a Python iterator in a manner com-
pliant with the Tensorflow/Keras API, and in such a
way that only a small portion of the images are loaded
into memory at any given time. For their capstone, this
person decided to also create the dataset and code for
the augmented training regime, and to analyze the per-
formance of the model on this regime compared to the
initial regime.


