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Depth estimation is fundamental to 3D perception. This study investigates
whether unsupervised deep neural networks (DNN) might display the same
biases as humans when predicting the sign of curvature and depth of surfaces
under different viewing conditions (field of view) and surface parameters
(slant and texture irregularity). To this end, we trained both unsupervised
and supervised DNN models on the renderings of slanted surfaces with
random Polka dot patterns and analyzed their internal latent representations.
The results demonstrated that the unsupervised models replicate human
biases well across all experiments, while supervised DNN models do not
exhibit similar biases. The latent spaces of the unsupervised models can be
linearly separated into axes representing field of view and optical slant. For
supervised models, this ability varies substantially with model architecture
and the kind of supervision (continuous slant vs. sign of slant). These findings
suggest that unsupervised DNN models can share similar predictions to the
human visual system, leading to potential use in generating and analyzing
hypotheses about depth and slant perception for future human testing.
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1 INTRODUCTION
Deep neural networks have achieved success in a wide range of
applications, such as image and speech recognition, natural language
processing, and game playing. Since deep neural networks were
originally inspired by the structure and function of the human brain,
comparing deep neural networks to the human cognitive system
has been an area of interest for researchers in the field of artificial
intelligence and cognitive science.
The human visual system is a complex network of biological

structures with remarkable but imperfect capabilities. Some works
have tried to evaluate convolutional neural networks (CNN) as ex-
planatory models for human vision using simulated psychophysical
studies. A recent study by Storrs et al. [2021] considered the ambi-
guity between the perception of glossiness and surface curvature,
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where low-gloss high-curvature surfaces look the same as high-
gloss low-curvature surfaces. They found that unsupervised neural
networks made similar predictions to the human visual system in
gloss perception: unsupervised networks were able to reproduce
specific patterns of success and failure in distinguishing high and
low gloss images commonly made by humans. Supervised networks
trained to predict high or low gloss did not share this property.

Does the finding that unsupervised networks can exhibit human-
like biases hold in visual tasks other than gloss perception?We try to
answer this question in the context of depth perception, specifically
in the task of estimating the perceived slant of textured surfaces. We
consider simple Polka dot textures. Even with no other depth cues
like disparity or shading, human beings can estimate surface slant
because the texture deforms under perspective. Such a setting lets
us investigate three additional factors influencing the estimation of
slant from texture: the field of view (FOV), the sign of the surface
curvature (concave or convex), and texture pattern regularity.

With regard to depth perception, it is well-documented in vision
science that humans are prone to bias [Campagnoli et al. 2022;
Domini and Caudek 2003; Johnston 1991; Langer and Siciliano 2015;
Liu and Todd 2004; Todd et al. 2007;Watt et al. 2005]. In judging slant
from texture, previous research by Todd et al. [2005] found evidence
for four biases. First, the perceived sign of curvature of a surface
became ambiguous when the FOV was small. Second, an increase
in FOV produced a corresponding increase in the magnitude of the
perceptual gain (i.e., the judged slant divided by the ground truth).
Third, humans perceive more depth from convex surfaces than from
concave surfaces. Finally, there is a greater perceptual gain when
the surface texture pattern is more regular.

To test whether unsupervised deep neural networks share these
biases, we followed the psychophysical experiment settings in Todd
et al. [2005], and generated synthetic renderings depicting surfaces
with concave or convex dihedral angles, varying physical slant,
random Polka dot textures, and a varying FOV. Then, we trained
unsupervised generative models capable of reconstructing input
images of such surfaces to learn the statistical regularities in the
training data. From analyzing the learned network latent spaces, our
study reveals that unsupervised models can reproduce human-like
biases. They exhibit a higher error in judging the sign of curvature
when FOV is smaller, perceive greater slant when FOV is increased,
perceive more slant in convex surfaces than concave surfaces, and
when texture regularity level is increased. These results are con-
sistent with the findings in human depth perception research, and

, Vol. 1, No. 1, Article . Publication date: May 2023.

HTTPS://ORCID.ORG/0000-0003-2218-2899
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn


115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

2 • Yuanhao Wang, Qian Zhang, Celine Aubuchon, Jovan Kemp, Fulvio Domini, and James Tompkin

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

suggest a similarity in the predictions made between the unsuper-
vised deep neural networks and the human visual system (to say
nothing of the mechanisms for those predictions). Across four differ-
ent neural network architectures, we find some variation but overall
similar trends in bias.
For the evaluated deep neural network models trained with su-

pervision of the signed continuous-valued surface slant, we discover
that models do not exhibit bias on test stimuli. When considering
the latent space separation of curvature sign, physical slant angle,
and FOV, we find more significant differences across architectures
than in unsupervised models, with some architectures leading to
good factor separation and others not. Further, we also train a set
of models with weaker supervision only of the sign of the surface—
concave or convex. This mirrors the ‘binary’ high/low gloss choice
in the work of Storrs et al. [2021]. With weaker supervision, models
still do not exhibit bias on test stimuli, and the models’ latent factors
are less well separated for all architectures. This suggests that latent
space visualizations must be read carefully and not independently—
supervised models with appropriate architectures and labels can still
factor physically-meaningful variables even if their predictions are
unbiased, and that models trained on impoverished labels (continu-
ous slant vs. sign of slant) may lead to false assumptions about the
ability of an architecture and training routine to factor variation.

2 BACKGROUND

2.1 Human perceptual biases in depth estimation
Understanding the mechanism of human depth perception is es-
sential in 3D vision research. Humans integrate many sources of
information to estimate depth, including binocular disparity, tex-
ture, shading, defocus, and motion, ultimately forming a three-
dimensional percept of an object. A body of research has emerged to
study human perceptual biases in depth judgment, and these biases
can be categorized based on their associated visual cues.
For disparity, despite retinal and extra-retinal cues often provid-

ing sufficient information to achieve veridical perception, the visual
system still produces errors. Johnston et al. [1991] showed that the
veridicality of human perception depends on the distance, with ob-
jects appearing elongated at a close viewing distance and flattened
at a far distance. Ambiguities also exist within focus/de-focus cues:
the sign of depth is ambiguous [Watt et al. 2005], and increasing blur
gradient away from fixation point increases perceived slant [Langer
and Siciliano 2015]. Liu et al. [2004] reported that participants ex-
hibited biases in shape from shading as they misperceived convex
surfaces as deeper. In addition, adding more sources of information
from shading (i.e., specular highlights and cast shadows) increased
perceived depth for convex surfaces. When using motion as a cue,
the perceived depth depends on the deformation component of the
optic flow field. This information is ambiguous and can lead to biases
in depth perception [Domini and Caudek 2003]. Although increas-
ing the number of available cues can potentially disambiguate depth
information and lead to veridical perception, it has been shown that
adding cues increases perceived depth without necessarily making
it more accurate [Campagnoli et al. 2022].
The cue that is important to our study is texture. Studies have

found that texture regularity, the field of view, and the sign of surface

curvature can lead to perceptual biases in judging slant from texture.
For instance, humans tend to perceive more slant from regular
textures or textures with discrete elements. Compressing elements
along one direction also increases perceived slant ([Todd et al. 2005,
2007]). Convex surfaces appear to elicit greater slant responses than
concave surfaces, and large fields of view produce greater amounts
of perceived slant than small fields of view. Additionally, humans
are more prone to making errors in judging the signs of surface
curvature when the FOV is small.

2.2 Unsupervised models may predict human perception
Many of the key ideas in machine learning took inspiration from
the biological findings in the human brain. Most notably, neural
networks mimic the design of interconnected biological neurons
that send electrical signals to each other in a brain, and the con-
volutional neural network (CNN) was inspired by the hierarchical
structure of the ventral visual pathway. Naturally, evaluating deep
neural networks (DNN) as a model of the visual system has been
a research area of interest. Many studies have found that DNNs
trained for object recognition are good at predicting the representa-
tions of images in high-level ventral visual areas of the human and
nonhuman primate brain [Kubilius et al. 2019; Lindsay 2021; Ponce
et al. 2019; Schrimpf et al. 2018; Xu and Vaziri-Pashkam 2021].
The work most relevant to our methodology is that of Storrs et

al. [2021]. The authors investigated the connection between inter-
mediate representations in unsupervised models and the patterns
of ‘success’ and ‘failure’ in human perception of gloss. They trained
a variational auto-encoder (VAE) on a synthetic dataset consisting
of renderings of bumpy surfaces with either high or low specular
reflectance and found disentanglement of distal scene properties in
the model’s latent space. Then, they trained a linear support vector
machine classifier to generate quantitative gloss predictions. The
authors found that, surprisingly, the latent codes of the unsuper-
vised generative model could be used to predict human bias of gloss
perception better than supervised networks or other control models.
In our work, we try to test if unsupervised generative networks
could also predict human bias related to slant estimation as well.

3 METHOD
To test whether unsupervised models exhibit human-like perceptual
biases for slant estimation from texture cues, we first rendered a
dataset of stimuli images. Next, we trained unsupervised generative
deep neural network models to implicitly learn the statistical dis-
tributions of the data, along with supervised equivalent models for
comparison. Then, we analyze the internal latent representations of
each model to a) evaluate how stimuli are laid out within it, and to
b) assess whether simple distance measures from linear classifiers
on the latent space can produce biased outcomes.

3.1 Synthetic data
Weproduced an in silico replica of the real-world human psychophys-
ical experimental setup of Todd et al. [2005] (Fig. 1a). We used a
surface with concave or convex dihedral angles that were bilaterally
symmetrical about the vertical axis; whether the surface is concave
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Fig. 1. Reproducing slant psychophysical experiments in silico. (a) A schematic top-view representation of the physical scene geometry used to depict
the stimuli in the human psychophysical study (reproduced from Todd et al. [2005]). (b) Random dot pattern projected onto a flat surface for reference. (c)
Examples of our synthetic reproduction of the stimuli with a consistent optical slant of 60◦ and different dihedral angles and field of view (FOV). (d) Examples
of grid textures with varying regularities. Images have variance levels from 1 to 4.

or convex is referred to as the sign of curvature. The virtual perspec-
tive camera was positioned at the center front of the surface, and
its distance was adjusted to capture the entire width of the surface.
Note that, in this setting, the surface slant (𝜌 in Fig. 1a) is directly
correlated with the relative depth of the scene. For consistency and
clarity, we choose to use the term slant for the rest of the paper. For
a human being to successfully estimate the physical slant, they must
be able to separate the effects of varying view angles and slants on
the deformations of the textures as no other cues exist.

We generated stimuli with control over two parameters: the field
of view (FOV), and the optical slant at the center of each surface
(𝜎𝑐𝑒𝑛). FOV ranged between 5◦ and 60◦, and the values of 𝜎𝑐𝑒𝑛
ranged between 25◦ and 60◦. The ranges of optical slants for the
concave and convex surfaceswerematched (maximumvalue𝜎𝑚𝑎𝑥 =

𝜎𝑐𝑒𝑛 +𝐹𝑂𝑉 /4, minimum value 𝜎𝑚𝑖𝑛 = 𝜎𝑐𝑒𝑛 −𝐹𝑂𝑉 /4). However, the
physical slants (𝜌) defined as 𝜌 = 𝜎𝑐𝑒𝑛+𝐹𝑂𝑉 /4 for concave surfaces,
and 𝜌 = 𝜎𝑐𝑒𝑛 − 𝐹𝑂𝑉 /4 for convex surfaces had mismatched range.
For each combination of FOV, 𝜎𝑐𝑒𝑛 , and curvature sign, we gen-

erated 10 random black and white Polka dot textures (Fig. 1b). The
dots were uniformly distributed with no overlaps and had the same
size. We mapped each pattern onto the surface and rendered the
scene using a perspective camera. The dataset consisted of 2000
images each of 256×256 pixels, and all images were generated using
Python. Figure 1c shows stimuli of different convexity and FOV.
To further examine the impact of surface texture regularity on

perceived slant from texture, we also generated stimuli with different
Polka dot regularity (Fig. 1d). We began with a grid of uniform dots.
Then, we shifted the center of each dot by 𝛼 , where 𝛼 ∈ 𝑅2, 𝛼 ∼
𝑈𝑛𝑖 𝑓 𝑜𝑟𝑚(−𝑏, 𝑏)2. This allowed us to manipulate the regularity of
the texture by adjusting 𝑏. In our experiments, we used 5 levels of
variances/irregularities, ranging from level 0 (perfect grid) to level 4
(most irregular). As before, we mapped the surface dot patterns by
the dihedral angles.We used FOV values in the range between 5◦ and
60◦, and 𝜎𝑐𝑒𝑛 values between 25◦ and 60◦. This dataset comprised
10,000 images each of 256×256 pixels.

3.2 Unsupervised generative model
Unsupervised generative models are a class of neural networks
trained to reproduce high-dimensional inputs. When trained on a
large number of data points sampled from a distribution, their low-
dimensional latent vectors are forced to encode the distribution as
efficiently as possible. We trained generative models to reconstruct
input 2D images. Our models are all auto-encoders (Fig. 2a): an en-
coder compresses the input image to a low-dimensional latent space
(often called a bottleneck), and a decoder restores the original input
from the latent space. We evaluated several variants to investigate
whether the study’s findings were architecture-independent, with
the primary architecture being the common U-Net [Ronneberger
et al. 2015]. The model architectures are:

(1) VGG-based auto-encoder (VGG-AE): An auto-encoder
that uses the VGG16 architecture [Simonyan and Zisserman
2014]. The encoder uses max pooling to downsample, and
the decoder uses bilinear upsampling.

(2) Variational auto-encoder (VAE): We use the VAE pro-
posed by Kingma et al. [2013]: Instead of passing the latent
vector directly to the decoder, we add to the latent vector
random Gaussian noise with learned distribution parame-
ters (Fig. 2b). Storrs et al. [2021] used PixelVAE, a variant to
address blurry samples, but the principle is the same.

(3) U-Net [Ronneberger et al. 2015]: This auto-encoder adds
residual connections between equivalent-spatial-sized layers
of the encoder and the decoder networks. This lets high-
resolution information pass directly from the encoder to the
decoder, bypassing the bottleneck.

(4) U-Net-: This model removes the residual connections be-
tween the encoder and the decoder, so that all the informa-
tion passed to the decoder is contained in the latent vector.

3.3 Supervised model
We conducted experiments with supervised DNN models using
two different architectures, namely the ResNet ([He et al. 2016])
with 18 layers and a U-Net-based model that utilized the encoder
of the U-Net. We augmented both architectures with an additional
dense layer preceding the final layer, and treated its output space
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Fig. 2. Schematic illustration of neural network models: (a) auto-encoder and (b) variational auto-encoder.

as the latent space similar to that of the unsupervised model. The
models were trained using both stronger supervision, with ground
truth physical slant labels, and weaker supervision, with ground
truth sign of curvature labels. This allowed us to not only compare
the behaviors of the supervised and unsupervised models, but also
examine the impact of different architectures and training objectives
on the outcomes of the supervised models.

3.4 Network training and losses
The unsupervised objective was to reconstruct the input images.
We penalize an L2 reconstruction loss, i.e., the sum of the squared
difference between each pair of matching pixels in the reconstructed
and input images. For supervised models, we have two settings. 1)
We ask the network to predict the signed physical slant of the surface,
as humans do in Todd et al. [2005]; and 2) We ask the network just
to predict the sign of the physical slant of the surface; this mirrors
the ‘binary’ high/low gloss choice in the work of Storrs et al. [2021].

Data are split into training and testing images with a 80/20% split.
We train each model for 100 epochs using the Adam optimizer, with
a learning rate of of 5 × 10−4, 𝛽1 = 0.5, and 𝛽2 = 0.999. As model
training can show variability, we train an ensemble of 10 instances of
each model and average their outputs. After training, we fed unseen
test images to the trained encoder to extract the latent vectors.
3.5 Methods of analysis

Sign of curvature prediction. Unsupervised generative models can-
not make predictions given stimulus. However, it is possible to
define a classifier upon the latent space. This assumes that a genera-
tive model can arrange stimuli in the latent space according to their
statistical properties. For example, stimuli with the same sign of
curvature may form clusters. Ideally, the physical properties form
simple continuous arrangements. This would allow boundaries to
be drawn using a linear classifier such as a Support Vector Machine
(SVM); it being linear allows only simple arrangements in the latent
space to lead to meaningful interpretation. If stimuli are misplaced
in the latent space, such as a concave stimulus being within convex
stimuli, we can interpret this as an ‘error’ in judging convexity.

Magnitude of perceived slant. How far the latent code of a stimulus
lies from the decision boundary can potentially be used as a measure
of perceived slant. We compute the Euclidean distance of each latent
code to the decision hyperplane, which we term the “latent distance”.
We suppose that the latent distance is positively correlated with the
magnitude of the perceived slant, and that stimuli with latent vectors

lying on the decision boundary may be considered by the model
as flat. A larger latent distance indicates that the model perceives
the surface as more slanted, so that the model is more confident at
predicting its sign of curvature. Although the numerical value of
the latent distance does not have physical meaning, we will use it to
compare the perceived slants of different stimuli within the test set.

4 EXPERIMENTAL FINDINGS

4.1 Physical factors are disentangled in unsupervised
model latent spaces

We are interested in the extent to which the unsupervised model
can learn to disentangle our physical factors of interest in its latent
representation—sign of curvature, field of view, optical slant, and
texture regularity. First, we trained models on the dataset with-
out texture irregularity discrepancies. After compressing the la-
tent vectors to 2D using principal component analysis (PCA) and
t-distributed stochastic neighbor embedding (tSNE), we observed
grouping of concave and convex surfaces when choosing a suitable
latent dimension (Fig. 3a). However, entanglement would occur if
the latent dimension was too small or too large. Furthermore, FOV
and optical slant values varied smoothly within each cluster along
two linearly separable axes, suggesting that both variables were
well-disentangled in the latent space of the model.

Next, we trained the unsupervisedmodel on the dataset with vary-
ing levels of texture irregularities and visualized the latent spaces of
all four models in Fig. 3b. Notably, the U-Net model was unable to
disentangle texture irregularity levels in its latent space. However,
the same model could learn to disentangle texture irregularity if the
residual connections between the encoder and the decoder were
removed. In fact, all the unsupervised models without residual con-
nections tested (U-Net-, VGG-AE and VAE) exhibited discernible
clusters based on the irregularity levels in the latent space. Images
with less regular textures tended to concentrate in the middle region
of the latent space, while images with more regular textures were
more dispersed, indicating that the models were more capable of
distinguishing input images with more regular textures.
We conducted a quantitative analysis on latent space clustering

effects. Representational similarity analysis [Nili et al. 2014] showed
that, for unsupervised models, pairs of images with the same con-
vexity were represented by more similar vectors in the latent space
than pairs of images with different convexity (Fig. 3c; T-test com-
paring average Euclidean distances between same-convexity versus
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Fig. 3. Unsupervised model captures all physical factors in the latent space. (a) Unsupervised latent space visualizations. We visualize the latent
space of the U-Net using PCA (first two principal components) and tSNE for dimensionality reduction (rows). Data points are color-coded by the FOV and
optical slant values (columns). The unsupervised latent space disentangles surface convexity, FOV, and optical slant successfully. (b) Unsupervised latent
space visualizations when trained on the dataset with varying texture irregularities. We visualize the latent spaces of all four unsupervised models, with
data points color-coded by the texture irregularity level. All three alternative models disentangle texture irregularity levels, while the U-Net fails to do so. (c)
Representational dissimilarity matrices showing mean distances between all pairs of latent vectors, grouped by the sign of curvature, FOV, optical slant
values, and texture irregularity levels. Distances are defined as 1 − 𝑐𝑜𝑟𝑟 , normalized to the range from 0 to 1, where 𝑐𝑜𝑟𝑟 is the Pearson correlation coefficient.
Notably, the bottom right matrix uses U-Net- while the rest uses the default U-Net. With the exception of U-Net with texture irregularity, the unsupervised
models exhibit strong clustering by all factors.

Table 1. Correlations between FOV, optical slant and the first two principal
components of the latent vectors.

Optical slant FOV FOV (concave) FOV (convex)

1st P.C. 0.819 0.078 -0.190 0.239
2nd P.C. 0.480 0.252 0.551 -0.342

different-convexity image pairs: 𝑡 = −200.20; 𝑃 < 0.001; Cohen’s
𝑑 = −0.71; 95% confidence interval (CI) of difference, -21.50 – -21.09).
Regarding FOV and optical slant, it was observed that images with
similar FOV or optical slant values tended to have smaller latent
distances; however, the dominant trend was that the latent repre-
sentations became more diverse as FOV or optical slant increased
(strong correlations between the FOV/optical slant and the aver-
aged representational dissimilarity: 𝑟 = 0.979 for FOV and 𝑟 = 0.956
for optical slant). Moreover, the latent representations were more
dissimilar when textures were more regular, which corroborated
our prior observations from examining the latent spaces.

To quantify the ‘smoothness’ of latent space variations, we com-
puted the strength of correlation between FOV, optical slant and
the first two principal components of the latent vectors. There was
strong correlation between the optical slant and the first principal
component (𝑅 = 0.819), and moderately strong correlation between
FOV and the second principal component when divided into concave
and convex groups (Tab. 1; concave: 𝑅 = 0.551, convex: 𝑅 = −0.342).
These results suggest that the unsupervised latent space smoothly
captures FOV and optical slant variations.

4.2 The sign of curvature is ambiguous
when the field of view is small

The linear SVM lets us determine the judged sign of curvature for
each test instance to calculate a classification accuracy. The overall
accuracy across the 10 instances of the unsupervised model is 96.4%
(±0.91%). The model can predict the sign of curvature perfectly
when the FOV is greater than 25◦, but shows more errors when the
FOV is smaller (Fig. 4a). The accuracy also increases with the optical
slant. We found moderately strong correlation between FOV and
the mean classification accuracy (𝑟 = 0.674 ± 0.028), and stronger
correlation between the optical slant and the mean classification
accuracy (𝑟 = 0.813±0.027). These findings are consistent with those
from Todd et al. [2005] (Fig. 4b). Like humans, unsupervised models
were more likely to misjudge the sign of curvature when the FOV
was small. All supervised models were able to make classifications
with 100% accuracy. Hence, no such bias could be inferred.

4.3 Unsupervised models perceive more slant with greater
FOV, optical slant and convex surfaces

We use latent distance as a proxy for the magnitude of the per-
ceived slant (Sec. 3.5). Experiments showed that the latent distance
had a strong linear correlation with the FOV (𝑟 = 0.998 ± 0.001;
Fig. 4a (lower left)), meaning the model perceived more slant as
the FOV increased. Again, this is in line with the human percep-
tual bias (Sec. 2.1). Furthermore, the averaged latent distance was
also positively correlated with the optical slant for each FOV value
(𝑟 = 0.980 ± 0.002; Fig. 4a lower right).

For the human bias that perceives more slant from convex sur-
faces than concave surfaces, we observed a similar bias: the unsu-
pervised model exhibited a systematic bias towards perceiving more
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Fig. 4. Unsupervised models reproduce human biases in convexity and slant prediction. (a) Unsupervised model mean sign of curvature prediction
accuracy and mean latent distance (rows) as functions of FOV and optical slant per FOV (columns). The mean prediction accuracy is 100% when the FOV is
above 25◦ and increases with FOV and optical slant when the FOV is below 25◦. The mean latent distance increases with both FOV and optical slant. (b)
Results from human psychophysical study ([Todd et al. 2005]). Humans accuracy in judging the sign of curvature also increases with both FOV and optical
slant. (c) The pseudo perceptual gain as a function of the FOV per irregularity level for each tested model. With the exception of the U-Net, all other models
produce greater pseudo perceptual gains with more regular textures. (d) Top row: unsupervised model’s latent distance as a function of the physical slant in
concave and convex cases; bottom row: human psychophysical study results from [Todd et al. 2005]. Both the unsupervised model and the human obtain
larger perceptual gains from convex surfaces than from concave surfaces.

slant from convex surfaces than concave surfaces. The predicted
latent distance in the convex cases was generally larger than that
in the concave cases (Fig. 4d), suggesting that the model perceived
more slant from convex surfaces (cf. equivalent figure from Todd
et al. [2005] reproduced beneath). Our qualitative observation is
supported by the T-test results on the mean difference of the la-
tent distance between the convex and concave groups, where the
physical slant was between 26.25◦ and 58.75◦ (𝑡 = 30.32, 𝑃 < 0.001).
To better understand the effect of each variable, we computed

generalized linear models [Nelder and Wedderburn 1972] separately
on the set of concave and convex instances, using physical slant
and FOV as independent variables and latent distance as the de-
pendent variable. In both groups, physical slant and FOV are posi-
tively correlated with the latent distance with high pseudo R values
(Tab. 2). Three-way analysis of variance (ANOVA) showed that FOV,
convexity, and physical slant have statistically significant impacts
on the latent distance (FOV: 𝐹9,721 = 12.6, 𝑝 < 0.001; convexity:
𝐹1,721 = 41.7, 𝑝 < 0.001; physical slant: 𝐹6,721 = 39.0, 𝑝 < 0.001).
We conducted correlation analyses to identify the particular at-

tributes of texture upon which the model’s slant judgments were
based. We considered several variables including the length, width,
area, and vertical density of the Polka dots. For each variable, we
calculated the minimum, maximum, median values, and the range
of values. Subsequently, we computed the correlation coefficients
between each of the above-mentioned measures and the latent dis-
tance (Tab. 3). Results show strong correlations between the latent
distance and multiple texture statistics, suggesting that the unsu-
pervised model may use these attributes to represent the data.

4.4 Unsupervised latent spaces
disentangle texture regularity

[Todd et al. 2005] demonstrated that more regular textures led to a
greater perceptual gain, defined as the human judged slant divided
by the ground truth slant (Fig. 4d). Does a similar effect of texture
regularity on the slant perception exists in the context of unsu-
pervised learning? We trained both supervised and unsupervised

Table 2. Generalized linear model results. The independent variables are
physical slant (P.S.) and FOV, and the dependent variable is latent distance.

Convexity Variable Coeff. S.t.d. err. P-value Pseudo R

Concave P.S 0.043 0.007 <0.010 0.844FOV 0.125 0.010 <0.001

Convex P.S 0.056 0.005 <0.001 0.740FOV 0.075 0.005 <0.001

Table 3. Correlation coefficients (R) between texture attributes and the
model’s judged slant (latent distance).

Length Width Area Spatial Density

Minimum value 0.924 0.852 0.835 -0.858
Median value 0.911 0.739 0.843 0.939

Maximum value 0.852 0.353 0.609 0.945
Range -0.904 -0.908 -0.819 0.950

models using a dataset consisting of synthetic renderings of polka
dot patterns with varying degrees of irregularities. Subsequently,
we analyzed the models’ responses to subsets of the dataset that
corresponded to each level of irregularity.

In Sec. 4.1, we showed that unsupervised models that lack resid-
ual connections between the encoder and decoder were able to
disentangle texture irregularity levels in the latent spaces. Further
investigations have revealed that these models also exhibit a percep-
tual bias comparable to that of humans. To facilitate the comparison,
we define pseudo perceptual gain as the normalized latent distance
divided by the normalized physical slant. The pseudo perceptual
gain is greater at lower irregularity levels for U-Net-, VGG-AE and
VAE, while no such disparity was observed in U-Net (Fig. 4c). With-
out bypassing the latent bottleneck, unsupervised models produce
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Fig. 5. Effects of unsupervised model architecture. (a) The reconstruction results of the unsupervised models. Significant differences in reconstruction
quality across different models. (b) Latent space visualizations for the unsupervised models. Data points were color-coded by FOV and optical slant values
(rows) for all 4 unsupervised models (columns). Sign of curvature, FOV and optical slant are disentangled by all models. (c) Latent space trend comparisons.
Each row depicts a plot of a particular parameter against another, with the first row showing the FOV vs. sign of curvature prediction accuracy, the second
row the FOV vs. the latent distance, and the third row the optical slant vs. the latent distance per FOV. In each column, the plots are arranged from left to
right to correspond to the models U-Net, U-Net-, VGG-AE, and VAE. The general trends are consistent across all models.

greater perceptual gains from more regular textures. Despite dif-
ferences in the experimental settings, the prediction patterns of
humans and unsupervised models are related.

4.5 The effects of model architecture
In the previous section, the experimental results differed signifi-
cantly for models with different architectural designs (with or with-
out residual connections). To evaluate the generalizability of our
findings to a broader class of unsupervised models, we replicate the
previous experiments using four architectures (Sec. 3.2).
We observed a significant variation in reconstruction quality

across models. U-Net achieved good quality, VGG-AE and VAE suf-
fered from blurriness and artifacts, and U-Net- failed to reconstruct
finer details (Fig. 5a). The superior performance of the U-Net can be
attributed to the residual connections that allowed direct passage
of information to the decoder, allowing the bottleneck to ignore
high-frequency information. Without residual connections, U-Net-
lacked detailed stimuli reconstruction capabilities.
Despite differences in reconstruction, all models were capable

of disentangling the sign of curvature in their latent spaces. The
latent spaces of U-Net-, VGG-AE and VAE models formed distinct
clusters for concave and convex surfaces, albeit without the "V"
shape in the PCA plots observed in the case of the U-Net model
(Fig. 5b). Additionally, the three alternative models also learned to
disentangle FOV and optical slant in their latent spaces. Comparable
to the baseline U-Net model, images with lower FOV or optical slant
values tended to be located closer to the classification boundary
in the latent spaces. Subsequent analysis revealed that differences
in same-convexity and cross-convexity representational similarity
were statistically significant, but their clustering effects were weaker
than those observed in the U-Net model (U-Net-: 𝑡 = −187.57, 𝑃 <

0.001, Cohen’s 𝑑 = −0.67; VGG-AE: 𝑡 = −30.34, 𝑃 < 0.001, Cohen’s
𝑑 = −0.15; VAE: 𝑡 = −80.81, 𝑃 < 0.001, Cohen’s 𝑑 = −0.29).

Further analyses indicated that the alternative unsupervised mod-
els display comparable trends to the U-Net in predicting the sign of
curvature and the perceived slants, despite underlying latent spaces
being less well-structured. They all achieved high overall accuracy
in surface convexity prediction: 84.0% (±1.2%) for U-Net-, 98.0%
(±0.1%) for VGG-AE, and 94.7% (±0.2%) for VAE. Fig. 5c shows that
all three unsupervised models exhibit high accuracy when the field
of view (FOV) is large, and relatively lower accuracy when the FOV
is small. Additionally, the average latent distance increases linearly
with FOV and optical slant in all models. Although the optical slant
vs. latent distance curves are less smooth for the U-Net-, VGG-AE
and VAE due to the sub-optimal behavior of their learned latent
spaces, the general trends are still observable. Moreover, T-tests
show that the alternative unsupervised models are systematically
biased towards perceiving more slant from convex surfaces (U-Net-:
𝑡 = −30.46, VGG-AE: 𝑡 = −35.5, VAE: 𝑡 = −33.7; 𝑝 < 0.001 in all
cases). In conclusion, all the perceptual biases observed in the U-Net
hold true for the alternative models.

4.6 Supervised models produce unbiased outcomes, but
the latent behaviors depend on the training setting

Supervised models with the objective to predict the provided la-
bels are unbiased when successfully trained. In our experiments,
we found that when supervised with sign of curvature labels, our
models were able to make class predictions with 100% accuracy.
Additionally, when trained with ground truth physical slant labels,
the predicted slants did not have a statistically significant mean
difference from the ground truth slants (𝑝 = 0.688), nor was there a
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Fig. 6. Effects of supervised model architecture and training objective. (a) UNet-based supervised model latent space visualizations. We trained the
model using the sign of curvature labels (top row) and physical slant values (bottom row). Data points are color-coded by the FOV and optical slant values (see
legend). The latent space of the UNet-based supervised model captures FOV and slant regardless of the training objective, and the clustering effect is more
substantial with stronger supervision (slant values). (b) For ResNet18, when trained with curvature sign labels, there is a far separation of concave and convex
stimuli in the latent space, but FOV and optical slant are entangled; when trained physical slant labels, optical slant is well disentangled and FOV is also better
separated. (c) Plots of the latent distance against the FOV for both training objective (rows) and model architectures (columns). U-Net-based supervised
model has smoother curves, indicting a more structured latent space. (d) The pseudo perceptual gain as a function of the FOV per irregularity level for each
supervised model (columns) and training objective (rows). Under both training settings, the supervised U-Net disentangles texture irregularity level and the
ResNet fails to do so.

statistically significant mean difference in predicted slants between
concave and convex images (𝑝 = 0.394).
We examine the supervised latent spaces under different archi-

tectures and training settings. Figures 6a and 6b depict the latent
space visualizations for the U-Net-based and ResNet-based models,
respectively. They were trained using either sign of curvature la-
bels or ground truth physical slant labels. Results indicate that both
models, when supervised by the sign of curvature, exhibited a signif-
icant separation of concave and convex clusters in their respective
latent spaces (U-Net: 𝑡 = −1036.07, 𝑃 < 0.001, Cohen’s 𝑑 = −3.66;
ResNet: 𝑡 = −1461.17, 𝑃 < 0.001, Cohen’s 𝑑 = −5.17). However, in
the ResNet-based model, the FOV and optical slant appeared to be
fully entangled (FOV: 𝑡 = −18.07, 𝑃 < 0.001, Cohen’s 𝑑 = −0.09;
Slant: 𝑡 = −4.27, 𝑃 < 0.001, Cohen’s 𝑑 = −0.02), whereas the U-Net
disentangled them (FOV: 𝑡 = −90.96, 𝑃 < 0.001, Cohen’s 𝑑 = −0.46;
Slant: 𝑡 = −58.76, 𝑃 < 0.001, Cohen’s 𝑑 = −0.29).
On the other hand, model latent spaces were better structured

when supervised by ground truth physical slant labels. This en-
abled both models to accurately cluster the optical slant (U-Net:
𝑡 = −258.48, 𝑃 < 0.001, Cohen’s 𝑑 = −1.27; ResNet: 𝑡 = −86.29, 𝑃 <

0.001, Cohen’s 𝑑 = −0.43), a variable directly related to physical
slant, and to achieve better results at separating out FOV in the case
of ResNet (𝑡 = −40.77, 𝑃 < 0.001, Cohen’s 𝑑 = −0.20). The FOV
vs. latent distance plots (Fig. 6c) indicate that the latent distance
first increases with FOV and then becomes flat in all cases, but the
curves are smoother for the U-Net, indicating better latent space
disentanglement. When trained on textures with different irregu-
larities, the U-Net can disentangle texture irregularity under both
training objectives, and the pseudo perceptual gain is greater at
lower texture irregularity levels (Fig. 6d). However, the ResNet fails
at identifying texture irregularities in its latent space.
Across model architecture differences, supervised models show

stronger clustering with their supervised properties and weaker
clustering with other properties, and their latent spaces can better
capture trained and untrained factors with stronger supervision.

5 DISCUSSION
How the human visual system learns to process and integrate visual
depth cues to form a 3D percept remain unresolved in vision re-
search. Notably, the human visual system exhibits various biases in
depth perception, resulting in systematic deviations of the human
predictions of depth from the ground truth under specific conditions.

Unsupervised DNNs can learn statistical distributions from high-
dimensional inputs and compactly store information in latent rep-
resentations. We have demonstrated that unsupervised DNNs are
capable of replicating human biases in a range of tasks related to
judging slant from texture. Specifically, unsupervised models made
more errors in determining the sign of surface curvature when the
FOV is smaller (Sec. 4.2), and perceived more slant when (a) FOV is
greater (Sec. 4.3), (b) surfaces are convex rather than concave (Sec.
4.3), (c) the surface texture patterns are more regular (Sec. 4.4). In
comparison, no bias was observed when models were supervised by
the ground truth. Physical properties that were not trained on were
also entangled in some supervised model latent spaces, whereas all
factors were well-disentangled in the unsupervised latent spaces.

We found that modifying common design choices in DNN archi-
tectures (depth, width, convolution kernel size, activation functions)
did not substantially affect the main conclusions of our study, de-
spite impacting image reconstruction quality. One exception was the
residual connections between the encoder and the decoder used in
the U-Net. We empirically found that adding these additional paths
that bypass the latent space bottleneck resulted in more structured
latent spaces. Despite preserving other perceptual biases, this modi-
fication impaired model ability to disentangle texture irregularity.
Further investigation is required to validate and explain this effect.
These results also have implications for the study of 3D human

perception. Todd et al. [2007] show that the patterns of biases dis-
cussed above can emerge if observers rely solely on image-level
changes, such as measuring the scaling difference in the projected
texture elements. Unsupervised shape from texture deep learning
models can give a signal that is highly related to the shape of the
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surface, even though it does not produce the veridical estimate,
and with an internal representation that is also highly correlated to
geometric scaling measures of texture (Tab. 3). Beyond predictive
capability, that neural networks find a good optimum under their
training mechanism, and that they are found to represent the tex-
ture information similarly when feedback on the veridical structure
is impossible, may suggest further study into a potential deeper
connection to the human mechanism of slant perception.
Finally, the psychophysical study by Todd et al. [2005] showed

the impact of different texture types—plaids, regular and irregular
contours and blobs—on human perception of depth. Future work
could study the effect of texture types in the context of DNNmodels.
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