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Abstract

Transfer learning holds significant potential in hi-
erarchical RL works. We seek agents that can
decompose problems into subgoals, learn skills to
accomplish those subgoals, then flexibly recom-
bine previously learned skills to solve new prob-
lems. We focus on the challenge of skill reuse
across tasks from a single-task training setup,
which we term Single-Task Skill Generalization
(STSG). We propose a method to represent sub-
goals with an ensemble of classifiers, each en-
coding a distinct hypothesis over features likely
to generalize. Using task reward as a signal, the
agent identifies which subgoal hypothesis best
supports transfer. Past experiments on this STSG
setup have involved the MONTEZUMA’S RE-
VENGE and MINIGRID environments, showing
robust subgoal generalization. In our particular
experiment, we manually collect a dataset of real-
world kitchen images, such as a microwave, a
fridge, and a stove. Preliminary results suggest
that the combination of these embeddings yields
a promising subgoal representation space, one in
which conceptually similar kitchen-related tasks
(e.g., “open fridge,” “put item in microwave”) can
be reused across multiple task configurations.

1. Introduction

Hierarchical Reinforcement Learning (HRL) (Barto & Ma-
hadevan, 2003) promises scalable solutions to complex tasks
by learning reusable skills or options (Sutton et al., 1999).
However, most methods assume either multi-task training
or oracle-like task sampling (Frans & et al., 2017; Barreto
& et al., 2018), which limits real-world applicability. In
contrast, we propose the Single-Task Skill Generalization
(STSG) setting, where an agent must discover skills in a
single task and reuse them in unseen, sequentially presented
tasks. Our method learns multiple hypotheses about gen-
eralizable features for each discovered subgoal and selects
among them using downstream task rewards.

2. Background
2.1. Literature Review

Skill reuse in HRL has been studied under multi-task trans-
fer and continual learning frameworks (Khetarpal & et al.,
2022; Wang et al., 2024). Prior works assume access to
multiple tasks or task distributions (Barreto & et al., 2019;
Frans & et al., 2017), or focus on task-agnostic representa-
tion learning (Higgins & et al., 2017; Nair et al., 2020). In
contrast, our STSG setting considers only a single training
task. Subgoal discovery methods (Pateria & et al., 2021)
help identify termination sets for options, but rarely ad-
dress generalization. Our work integrates ensemble learning
(Pagliardini et al., 2022) to hypothesize transferable features
and leverages reward signals for hypothesis selection.

3. Methodology

3.1. Experiment Setting

Previous experiments on this portable option framework
have been on two environments: MONTEZUMA'’S RE-
VENGE (Bellemare & et al., 2013; Machado & et al., 2018),
a pixel-based sparse-reward platformer, and MINIGRID
DOORMULTIKEY (Chevalier-Boisvert & et al., 2023), a
procedurally generated grid world requiring key-object in-
teractions. In our experiment setting, we work with hand-
collected images of real-world kitchen objects.

3.2. Experiment Procedure

For each discovered subgoal, we train an ensemble of clas-
sifiers using D-BAT (Pagliardini et al., 2022) or random
initialization. Each ensemble member defines a candidate
subgoal; we train a corresponding low-level policy to reach
it (Van Hasselt et al., 2016). A high-level PPO agent (Schul-
man & et al., 2017) then selects among these subgoal poli-
cies to maximize cumulative reward. We analyze classifier
accuracy, policy success, and reward-driven hypothesis se-
lection.

3.3. Results

In MONTEZUMA'’S REVENGE, ensemble-based subgoal
classifiers generalize better than single-head classifiers,
achieving 70% accuracy on unseen ladder configurations.
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In MINIGRID, agents equipped with hypothesized sub-
goals solve the sparse-reward DOORMULTIKEY task with
performance close to an oracle-defined agent. Reward-
maximizing high-level policies consistently prefer ensemble
members aligned with hand-specified subgoals (Shrikumar
et al., 2017). In our real-world dataset, we were able to
achieve over 80% accuracy using CLIP embeddings and
over 70% accuracy using YOLO embeddings.

3.4. CLIP

We conduct seven hyperparameter sweeps to evaluate the ro-
bustness of CLIP-based subgoal embeddings. Each subplot
below visualizes one sweep.
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Figure 1. CLIP subgoal performance under varying batch sizes,
class weights, diversity weights, and ensemble sizes.
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Figure 2. CLIP subgoal performance under varying number of
epochs, learning rates, and L2 regularization weights.

3.5.YOLO

In contrast to CLIP embeddings, which captures both image
and text input, we also explored a YOLO ensemble as an
alternative. At a high level, the YOLO (You Only Look

Once) v5 model has been pretrained on a vast variety of
different objects with the purpose of training for object
detection. The YOLO ensemble consists of the YOLO
embeddings from ultralytics/yolov5 and a stack of linear
layers for each number of heads.

We also conducted the same hyperparameter sweeps to eval-
uate the robustness of our YOLO embeddings on our task;
however, we found that the CLIP model generally performs
better. As an example, we can see that for the learning rate
sweep, the maximum accuracy using CLIP embeddings is
nearly 84%, whereas the accuracy peaks at around 70%
when using YOLO embeddings.
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Figure 3. YOLO subgoal performance under varying batch sizes,
class weights, diversity weights, and ensemble sizes.
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Figure 4. YOLO subgoal performance under varying number of
epochs, learning rates, and L2 regularization weights.

4. Conclusion

We propose a method for learning transferable subgoals in a
single-task HRL setting by generating multiple hypotheses
over generalizing features (Nair & et al., 2018). Our method
outperforms single-classifier baselines and approaches ora-
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cle performance in sparse-reward tasks.

4.1. Future Work

Future directions include improving hypothesis generation
efficiency (Gomez et al., 2022), applying the method to
real-world robotic platforms (Konidaris & Barto, 2007), and
integrating semantic priors into the subgoal classifiers to
reduce reliance on reward feedback. Additionally, we plan
on exploring other vision-based models such as a Faster-
RCNN to see if the corresponding embeddings are more
generalizable. Additionally, we are currently exploring an-
other experiment involving the Towers of Hanoi problem to
see if features such as each object’s shape, size, or orienta-
tion can be learned and reused across new tasks.

4.2. Contributions

Our primary contribution in this project lies in testing the
effectiveness of CLIP and YOLO embeddings as an addi-
tional layer. In addition, we collect thousands of images
of different objects to test the robustness of our different
classifiers.
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