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Chapter 1

Introduction

Rarely can anyone deny the importance of deep learning nowadays: from virtual assistants like

Siri to space exploration missions such as dark matter detection, deep learning is the cornerstone

of various modern technologies. However, as well as it makes the world a better place it can also

facilitate malicious acts. Deepfakes — fake videos of some individual(s) generated using deep learning

— are among the most rampant ones. The recent deepfaked video of Ukrainian President Volodymyr

Zelenskyy [1] asking his army to surrender is a notorious incident where deepfake was used to spread

misinformation that could cause dire consequences.

Based on how the images or frames in a video are modified, deepfake creation can be roughly

divided into three categories: replacement, reenactment, and editing. Replacement refers to the

situation where the content of the source video is replaced with a fake one. Usually, it is the identity of

the person in the video that is replaced with another, a process known as “face swap”. Reenactment

refers to the situation where one or more of the attributes of the person in the source video has been

modified, or “reenacted”. Different from replacement, reenactment involves more subtle facial or

physical attributes manipulation than full identity swapping. These attributes include expression,

gaze, pose, gesture, etc. Adjustment refers to any changes that do not modify the target’s identity

or attributes included in replacement and reenactment. For instance, the target’s clothes [18], age,

weight, or even the lighting condition [35] can be manipulated. Adjustment might not seem to cause

as much damage compared to the first two categories of deepfakes, but this process could still help

people achieve malicious purposes when false persona or contexts are created.

In this thesis, we focus on identity replacement and expression reenactment which are the most

common forms of deepfakes. The former happens often when a video of a “dummy” person whose

identity is replaced with that of a target person such that the target appears to take actions that

were not taken by them. The latter is often used to make the person in the source video express

emotions or say something that they did not mean to.

In light of the potential harm that deepfakes can cause, detection methods that classify videos

as either real or fake have thus been developed to combat these video manipulations. In particular,

deep learning based detection has been the most successful among all. Mainstream deep learning

based detection methods can be grouped into two subcategories according to which aspect of the

source video is examined.
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The first group of methods looks for artifacts within video frames. Since current deepfakes are

done on a frame-by-frame basis and not flawless, they can be detected by breaking down the video

into frames and looking for visual artifacts in those frames. Then a classifier is used to separate real

and fake videos. Nguyen et al. [25] combined VGG19 network and capsule networks with a dynamic

routing algorithm for detecting pose-related manipulations in videos. Besides pose, artifacts are

also commonly present in other features such as eyes, teeth, facial contours, etc. Matern et al. [22]

extracted eyes and teeth feature vectors and used two classifiers, logistic regression and a small

neural network, to detect fake frames.

The second group of methods focuses on temporal features across video frames. Instead of looking

at individual frames, these methods examine the entire video sequence where artifacts in the frames

often manifest themselves as temporal inconsistencies. A recurrent convolutional model (RCN)

that integrates CNN and RNN was proposed by Sabir et al. [29] to identify temporal discrepancies.

Likewise, Guera et al. [8] combined CNN with LSTM to capture temporal information. Physiological

signal anomalies can also be used for detection. Li et al. [20] observed that a deepfaked individual

has a significantly less blinking rate than a real one, so they came up with a threshold and classified

videos into real and fake based on that. Caldelli et al. [2] studied the correlation between optical

flow incoherence and the presence of deepfakes. They assumed that unnatural movements of facial

features generated by deepfakes would give rise to abnormal motion patterns.

Despite considerable efforts that have been put into developing deepfake detection methods, we

assume that with even more advanced technology future deepfakes will be indistinguishable from

real video and thereby nullify current deepfake detection methods. Tolosana et al. [32] describe

a need for improved detection methods as well as different settings that might exploit additional

recordings available at capture time or afterward.

Figure 1.1: The social video verification setting [33].

Tursman et al. [33] posit a social verification setting (Figure 1.1) where a public event, such as

a person speaking, is recorded by multiple devices within a certain time frame and some recordings

may have been deepfaked. A reliable social verification system is supposed to correctly classify each

video as real or fake through the social consensus of those recordings.

The task might seem trivial at first glance: human eyes are good at distinguishing different
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appearances and expressions, so we ourselves can find the largest group of videos that are consistent

with each other and those are exactly the real ones. But imagine, for instance, a group of reporters

broadcasting a live press conference when some of their devices are hacked. A social video verification

system will be able to confirm the validity of these videos in real time before any form of harm can

be done. This, however, cannot be done by an average person. The high-level aim of this system is

thus to prevent the circulation of fake videos by establishing a trustworthy version among different

sources with great accuracy as well as speed.

Under such a setting, Tursman et al., Pikielny, and Meyerowitz (see Section 2.1 and Appendix)

devised Machine Learning and graph based methods, achieving significantly better performances

against a naive LSTM based classifier. But the classification accuracies of these methods are barely

better than random guessing when they try to detect expression reenactment in videos.

One potential reason for the weak performances on expression reenactment is that these methods

do not take full advantage of the high-level information such as semantic facial attributes (age,

gender, emotion, etc.) in the source videos. We thereby leverage the power of deep learning that

allows us to make use of those high-level information to propose a series of methods that attempt

to build a more reliable social verification system.



Chapter 2

Related Work

2.1 Social Video Verification

In the preprocessing step of their approaches, Tursman et al. as well as Pikielny and Meyerowitz

construct a matrix of feature vectors of the frames for each video from the cameras and perform

PCA on those matrices individually. They then represent each camera using a vector of its frames’

Mahalanobis distances between the projections from the feature vectors of those frames and the

center of the PCA subspace.

Hierarchical Clustering To separate the cameras into real and fake subsets, Tursman et al.

turn all cameras into a weighted binary tree using single-linkage hierarchical clustering. The ratio

of the largest weight and the second largest weight in the tree is compared to an empirically derived

threshold to determine if there is any fake. If there is, the tree is clustered again into two subtrees

and cameras in the subtree that has a smaller sum of weights are classified as real.

Graph Cut Pikielny and Meyerowitz instead turn the cameras into a fully connected graph. They

first estimate the distribution of the L2 distances between all real camera vectors using a dip test

and compute for each camera vector pair the probability that a random variable sampled from

that estimated distribution is greater than or equal to the L2 distance between the camera vector

pair. Then they use these probabilities to assign weight to the edges in the graph and look for the

maximum cut that separates the nodes into a real and a fake subset.

2.2 Generative Adversarial Networks (GANs)

First proposed by Goodfellow et al. [7] in 2014, GAN tries to produce outputs according to the

distribution of training data. The backbone of a GAN consists of a generator G and a discriminator

D: G tries to generate fake images from vectors in the latent space, a lower dimension space that

represents training data, to fool D while D learns to differentiate between real images and fake ones

produced by G in an “adversarial” process. Over the years, GANs have developed into one of the
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most popular tools to generate high resolution and photorealistic images for humans, animals, and

objects.

In particular, StyleGAN [15, 16, 14] marks the state-of-the-art in human face generation. Inspired

by style transfer, StyleGAN’s generator architecture consists of a mapping network that draws

styles from a random vector and a synthesis network that generates images by performing affine

transformations on the set of styles as shown in Figure 2.1. StyleGAN allows more control over

image synthesis by modifying the styles on different scales, producing high quality and diverse

results.

Another feature of StyleGAN is its relatively disentangled latent space W . A perfectly disentan-

gled latent space has linear subspaces that each control a factor of variation on the output from the

generator. This means it is possible to modify a single attribute on the output by moving its latent

code along the corresponding subspace. The importance of this feature will be explained later in

Section 3.1.

Figure 2.1: Structure of (a) PGGAN [13], (b) StyleGAN [15], and (c) StyleGAN2[16].

2.3 Human Face Novel View Synthesis

As a major component in mainstream face recognition methods, image synthesis for human

faces has long been a topic of interest in the scientific world [21]. In particular, we have witnessed

breakthroughs in terms of image quality and diversity in human face synthesis achieved by deep-

learning-based approaches such as GANs.

In this thesis, we focus on novel view synthesis for human faces: given an input human face, a

model needs to generate a photorealistic human face (high quality) viewed from a different angle

while preserving the person’s identity (high fidelity).

2D Human Face Novel View Synthesis Due to the high-quality face generation capability of

GANs and/or their inherent latent space, many studies rely on them for latent space editing. This

empowers their networks to manipulate a person’s expression, age, pose, etc.
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InterFaceGan by Shen et al [31] trained SVMs to find the hyperplane in StyleGAN latent space for

each of the facial attributes and used vector arithmetic to achieve conditional attribute manipulation

in Z space. Built upon InterFaceGan, Wang et al. [34] explored the Rate-Distortion tradeoffs between

the image editability and reconstruction quality of StyleGAN’s latent space and achieved high fidelity

in both editing and reconstruction. On the other hand, GANspace by Härkönen et al. [11] performed

unsupervised learning, mainly PCA, on the latent space in StyleGAN as well as feature layers in

BigGAN to find the directions of some editable features.

3D Human Face Novel View Synthesis 3D image synthesis tries to capture the 3D shape or

characteristics of the object in the input image before performing any edits.

Many of this kind of approaches incorporate GANs in their frameworks to leverage GANs’ abil-

ity to generate and edit photorealistic, high-resolution results. FreeStyleGAN by Leimkühler et

al. [17] constructs a camera manifold and a mapping between this manifold and StyleGAN latent

space for free-viewpoint rendering. PiGAN by Chan et al. [4] adopts a sinusoidal representation

network (SIREN) based implicit neural radiance field (NeRF) which produces interpretable and

view-consistent 3D image synthesis. Apart from NeRF, other 3D representation techniques can also

be part of the model architecture. Deng et al. [5] find in 3D space a reduced space consisting of

several isosurfaces which they call radiance manifolds and predicts the color and occupancy for the

intersection points between camera rays and the isosurfaces. StyleSDF by Or-EL et al. [26], on the

other hand, uses an SDF volume renderer to learn explicit 3D geometry and a style-based generator

that outputs high-resolution 2D images.

There are also non-GAN-based deep learning methods. Deng et al. [6] use CNN-based networks

to predict the coefficient for a 3D Morphable Model (3DMM) that uses PCA bases for identity,

expression, and texture and Spherical Harmonics for lumination. The learned 3DMM model is then

able to reconstruct a 3D human face given an input image.
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Methods

Under the social video verification setting, we have a set of N cameras c1, c2, . . . , cN that have

captured the same person in the same time interval. The subset of all the cameras that produce real

videos and those that produce fake videos are denoted by R and F respectively. The jth frame in

the video captured by camera ci is denoted by Ici,j . Note that if |R| ≤ |F | and F consists of a single

type of fakes, the consensus reached by the cameras may lead to an incorrect conclusion. Therefore,

we additionally assume that |R| > |F |.

3.1 Frontalization

Frontalization refers to the process of turning a side-view image I of a person into a frontal-view

image Î while preserving all attributes of the person. In an ideal case, all the frontalized frames with

the same timestamp in the videos from cameras in R should be identical and also different from the

frontalized frames in the videos from cameras in F . That is,

Îx,j = Îy,j ̸= Îz,j ∀j and x, y ∈ R and z ∈ F

We can then use the pixel-wise difference between each frontalized frames to determine whether they

are real or fake. Even if the frontalization is not perfect, it can still be a practical method as long

as the difference between Îx,j and Îy,j is smaller than that between Îx,j and Îz,j .

Naive Latent Code Edit The latent space in many GAN models can be exploited for face

attribute editing. As mentioned earlier, StyleGAN has a relatively disentangled latent space W

where there potentially exists a subspace associated with the viewing angle in the output. If we find

such a subspace, we can manipulate the latent code wci,j in that subspace corresponding to frame

Ici,j to remove variations in the viewing angle. Three approaches are thereby proposed to achieve

this goal.

(1) Hyperplane Projection

Apart from the less entangled latent space of StyleGAN, Shen et al. [31] further argue that for

any binary attribute (e.g. smile, pose, eyeglasses, etc.) there exists a hyperplane in the latent

7
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space such that all latent codes are highly separable on that attribute by the hyperplane. They

proved their argument by successfully training a set of SVMs that can separate testing data

according to pose (equivalent to viewing angle), smile, age, gender, and eyeglasses with high

accuracies.

Using the norm vector of the pose boundary found by Shen et al., we perform an orthogonal

projection of latent code wci,j onto the boundary for all i and j in an attempt to neutralize the

viewing angle, i.e., frontalize all outputs.

(2) PCA Projection

Given that the set of N cameras capture a person from varying angles, we hypothesize that the

viewing angle accounts for the largest variation in Ic1,j , . . . , IcN ,j as well as in the corresponding

latent codes wc1,j , . . . , wcN ,j for all j. We also know that the first principal component (PC1) in

PCA represents the direction along which the data show the maximum variance. So to eliminate

that variance, we can perform an orthogonal projection of wci,j onto the vector orthogonal to

PC1 from PCA of latent codes wci,j for all i. In fact, that vector is the second principal

component (PC2).

(3) Dimension Replacement

Instead of using vector arithmetic, we can directly make changes to the latent codes that would

lead to desired outputs. All w ∈ W are 512-dimensional vectors. We hypothesize that certain

dimension(s) or a combination of some dimensions account for the variations in the viewing angle

of the generated outputs. Under the assumption that the viewing angle accounts for the largest

variation, we aim to find the dimensions that have the largest variance or standard deviation

and replace them with a neutral value.

Specifically, we calculate the standard deviation σ1, . . . , σ512 for each of the 512 dimensions

where σk is computed for dimension k across all w ∈ W and the mean σ̄ as well as the standard

deviation σ̂ of all σ’s. Then we find the set of dimensions S with σi ≥ σ̄ + σ̂, i.e., one standard

deviation or more from the mean, and for each dimension d ∈ S we replace the value with the

mean value in dimension d across all w’s.

Network-based Latent Code Edit Multi-Layer Perception (MLP) serves as the mapping net-

work in a number of architectures [15, 16, 4] to perform vector transformation. We aim to find such

a mapping M : w → ŵ that transforms the latent code w from a human face image to the latent

ŵ that corresponds to the frontal view of that human face. We designed an MLP-based network

(Figure 3.1). Some prominent features of our network include the following:
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Figure 3.1: Structure of our network.

(1) Residual Blocks

Inspired by ResNet [10], we use multiple residual blocks in our MLP. A residual block (Figure

3.2) is able to learn the identity mapping, i.e. f : x → x, so it can be “skipped” by the network.

Hence, instead of manually tuning the total number of layers, the network itself learns which

layers are beneficial for the model accuracy and dynamically sets the number of active layers.

Figure 3.2: Structure of an example residual block [10].

(2) Gradient Penalty

Gradient penalty is a technique used in [9] to enforce the Lipschitz constraint under which the

gradients of the network have a unit norm almost everywhere. We apply gradient penalty to

our network such that the mapping function M transforms the input latent code w as smooth

as possible to ŵ. This is expected to make M learn how to gradually turn a side-view latent

code into a frontal-view one.

(3) Latent to Image Feature Space Conversion
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During training, we discovered that converting the latent codes to feature vectors in the synthesis

network of StyleGAN2 (Figure 2.1(c)) in our loss function helps improve the network perfor-

mance. The latent codes in latent space W are the coarsest representations of the generated

images, while those feature vectors comprise representations in all levels from coarse to fine.

Loss function computed using feature vectors thus places more constraint on both the high-level

and low-level details of the generated images, improving the image fidelity with respect to the

identity of the input side-view image.

The loss function of the network is the weighted sum of the mean-squared-error(MSE) between

the feature vectors and the gradient penalty

L(G) = MSE(G(w∗)), G(ŵ)) + γ · gradient penalty

where w∗ is the latent code for the ground-truth frontal view image, γ is the gradient penalty weight,

and G is the function that takes in a latent code and outputs the set of corresponding feature vectors

in the synthesis network of StyleGAN2.

Frontal View Synthesis by SOTA models As discussed in Section 2.3, 2D and 3D state-of-the-

art (SOTA) models are able to generate high quality and high fidelity human faces given an input

human face. This means that they may be able to achieve good frontalization results. Depending

on the availability of source code and computational complexity, we performed frontalization using

two of the SOTA models.

(1) High-Fidelity GAN Inversion (HFGI)

GAN inversion refers to the process of reconstruction of the input image by the GAN generator.

Proposed by Wang et al. [34], HFGI aims to tackle the problem of accuracy and editability

trade-off in GAN inversion: reconstruction accuracy increases at the expense of lower editing

performance, i.e., the network’s ability to edit the person’s facial attributes in the input images

suffers. Wang et al. argue that the inferior reconstruction accuracy is due to the low dimen-

sional latent codes which are unable to encode image-specific details such as background and

illumination. But increasing their dimension leads to less interpretable latent codes as well as a

higher chance of an overfitting model, reducing the editing performance. In order to make the

latent codes aware of the image-specific details without sacrificing the editing performance, the

authors come up with a novel framework as shown in Figure 3.3.

Figure 3.3: Structure of HFGI [13].
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The loss in image-specific details ∆̃ between the input X and the naive inversion result X̂0 or

the naive inversion result from the edited latent code X̂edit
0 gets projected to a high-dimensional

latent map C through the consultation encoder Ec. The latent codes W of the input or the

edited latent codes W edit are then combined with C through layer-wise fusion, a process called

Distortion Consultation Inversion (DCI), to generate high-accuracy and editable reconstruction.

HFGI is thus able to edit the viewing angle of any frame X by using the hyperplane for the

viewing angle in the StyleGAN latent space found by Shen et al. [31] to get W edit and passing

it through the network to get X̂edit.

(2) Pi-GAN

Periodic Implicit Generative Adversarial Networks (pi-GAN) [4] is a 3D-aware image synthesis

model. It is 3D-aware in the sense that it learns the underlying 3D representation of the

generated image, and specifically, pi-GAN uses a neural radiance field (NeRF) [23] representation

for this purpose (Figure 3.4). Given a 3D coordinate x, a viewing direction d, and a set of

frequencies γ’s and phase shifts β’s (produced by the latent code z and the mapping network),

pi-GAN outputs the density σ and the color c. σ and c are subsequently used in neural rendering

to generate the 2D image. The network also uses a sinusoidal representation network (SIREN)

with feature-wise linear modulation (FiLM) which can represent fine details better and thereby

produce sharper images than previous works such as GRAF by Schwarz et al. [30].

Figure 3.4: Structure of pi-GAN [4].

Given a source image, we can perform an optimization step by freezing all parameters other

than γ and β to find the set of γ’s and β’s with which pi-GAN generates the image that best

matches the source image. Once the radiance field for the source image is learned, we can

perform frontalization by rendering images along the frontal direction.

3.2 3DMM-based Classification

As mentioned in Section 2.3, Deng et al. [6] propose a CNN-based method that predicts 3D

Morphable Model (3DMM) coefficients for 3D face reconstruction. Its overall architecture is shown

in Figure 3.5.



12

Figure 3.5: Structure of the 3D face reconstruction method by Deng et al. [4].

Based on the Basel face model [27] and the FaceWareshouse model [3], this method regresses the

identity α, the expression β, and the texture δ, i.e., the coefficients for a 3DMM face model

S = S(α, β) = S̄ +Bidα+Bexpβ

T = T (δ) = T̄ +Btδ

where Ŝ and T̂ are the average face shape and texture while Bid, Bexp, and Bt are the PCA bases of

identity, expression, and texture respectively. It also regresses the face pose p from the perspective

camera model and the Spherical Harmonics coefficients γ for lighting.

Given a set of video frames Ic1,j , . . . , IcN ,j from the set of N cameras, we extract identity coef-

ficient vector αi,j and expression coefficient vector βi,j for each frame Ici,j . Since in our problem

setup, |R| > |F |, i.e., there are more real videos than fake videos, we can find the outliers among all

videos using respective coefficients.

For instance, with real and fake expression data, we compute the mean expression coefficient

vector β̄i,j for any given i, j and the distances from each βi,j to the mean, d1,j , . . . , dN,j , normalized

by dividing the max distance such that the range is [0, 1]. For each camera i, we calculate the mean

distance of all di,j ’s, d̄i. These mean distances are compared against a threhold t. If d̄i ≤ t, camera

i is classified as real; otherwise it is classified as fake. The same process is applied on fake identity

data. Additionally, the way to determine t is explained in Section 4.2.2.
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Experiments

4.1 Settings

4.1.1 Dataset

We use two datasets that both contain multi-view videos of human speakers and are used in

different methods discussed in Section 3.

Tursman et al. [33] dataset The dataset consists of videos of 24 speakers set against a black

background curtain. Six cameras are set up in an arc of 65◦ facing a seated speaker. To induce

natural head and facial movement, speakers are prompted to answer random questions.

DeeperForensics [12] dataset The dataset consists of videos of 100 speakers set against a dark

green background curtain. Seven cameras are set up in an arc of 120◦ facing a seated speaker.

Speakers are requested to speak naturally with 8 target expressions.

4.1.2 Fake Data Generation

Fake Identity data We retrain a model [24] on CelebA-HQ [13] and FFHQ [15] datasets from

scratch based on FaceShifter by Li et al. [19] and modify the identity of 15 individuals in each video

frame from the DeeperForensics dataset.

Fake Expression Data We mainly consider the scenario where the visemes are altered, i.e. the

speaker’s mouth movement is modified such that they appear to say something else. To generate the

fake viseme data, we take both datasets and use LipGAN by Prajwal et al. [28] that takes a video

of a human speaker and arbitrary audio to generate the edited face with corresponding visemes.

4.1.3 Image to Latent

Before analyzing and manipulating the latent codes for frontalization, we need to convert the

source frame to the corresponding latent code in StyleGAN latent space. We use the inverse projec-

tion method by Karras et al. [16] that performs an optimization step to find the latent code which

13
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generates the output image that best matches the source frame. In particular, we get rid of the

noise regularization in the optimization so that inverse projection deterministically outputs a latent

code given a source frame.

4.2 Results

4.2.1 Frontalization

Naive Latent Code Edit We experiment with different methods described in Section 3.1 on the

DeeperForensic dataset. We use synchronized real videos of the same subject to see if these methods

can perform proper frontalization. Five consecutive frames from each video are included as inputs to

make sure frontalization does not produce drastically different results across frames from the same

video. One typical set of results from the experiments is presented below.

(1) Original Frames

Figure 4.1: Frames from cam1 (top), cam2 (middle), and cam5 (bottom) of the same subject.

(2) Hyperplane Projection

Figure 4.2: Frames from cam1 (top), cam2 (middle), and cam5 (bottom) of the same subject.
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(3) PCA Projection

Figure 4.3: Edited frames from cam1 (top), cam2 (middle), and cam5 (bottom) of the same subject.

(4) Dimension Replacement

Figure 4.4: Edited frames from cam1 (top), cam2 (middle), and cam5 (bottom) of the same subject.

It can be observed that PCA projection achieves the best frontalization results in terms of both

angle adjustment and identity preservation. This means our hypothesis that the viewing angles

of the ith frames from all cameras account for the largest variation in their corresponding latent

codes is valid. However, the frontalization by PCA projection still does not adequately preserve the

identity of the subject in the original frames. Overall, naive latent code edit is unable to perform

ideal frontalization.

Network-based Latent Code Edit To confirm if our MLP-based network can potentially per-

form frontalization as intended, we first train the network on a constrained frontalization task: given

a side-view image of a person from a pre-determined angle, frontalize the image.

Using the Adam optimizer with an initial learning rate 5×10−5 and a cosine annealing schedule,

we train the network for 400 epochs with different gradient penalty weight γ. Training data come
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from video frames captured by one of the side-view cameras along with those captured by the frontal-

view camera as training labels in the Tursman et al. dataset. Test data come from video frames

captured by the camera that has a similar side-view angle in the DeeperForensics dataset. The

training and test results are shown in Figure 4.5 rows 1-6.

The performance of the model is measured by the pixel-wise difference between the output

images and the corresponding ground-truth images. Alternatively, a good performance can be

indicated by no visual difference between the output and ground-truth images. We can see that

without gradient penalty, the network cannot even generate photorealistic images despite performing

relatively well on the training data. Among the networks that were trained using gradient penalty,

the one with gradient penalty weight γ = 1 has the best performance on the training data. But

overall, performance on the test data is far worse than that on the training data. This suggests that

the network might have memorized each input-output pair without truly learning how to frontalize

an image.

This problem may be solved by using training data that consist of video frames from multiple

side-view cameras. This makes memorizing input-output pairs much more difficult and thereby

forces the network to learn the frontalization method which can be applied to images that are not

from the training data. At the same time, it lifts the constraint on the frontalization task, which

means the network could take images from any viewing angle.

Using four side-view cameras in Tursman et al. dataset, we train the network under the same

settings as before with γ = 1. The training and test results are shown in Figure 4.5 row 7 and Figure

4.6. We can see that the network is indeed able to generate photorealistic frontal-view images from

a random viewing angle and preserve some attributes of the person in the ground-truth image such

as expressions and areas around the eyes. However, the identity of the person is not preserved and

completely different identities are generated from the same person in the ground-truth images. In

other words, our network fails to capture all relevant features of the person in the input image, and

thus the frontalization performed by our network has good quality but lacks fidelity.
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Figure 4.5: Rows 1-7 (from top to bottom): ground-truth side-view images, ground-truth frontal-
view images, output images without gradient penalty, output images with γ = 100, output images
with γ = 1, output images with γ = 0.01, output images with multi-view training data. Columns
1-4 (from left to right): video frames of subjects in training data. column 5: video frame of subject
in test data.

(a) (b) (c)

Figure 4.6: (a)(b)(c): Ground-truth side-view images of the same subject (left) and output images
from our network (right).
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Frontal View Synthesis by SOTA models We leverage the novel view synthesis power of the

two SOTA models mentioned in Section 3.1, HFGI [34] and pi-GAN [4], to edit the viewing angle.

Frontalization results on the Tursman et al. dataset are shown below.

(1) HFGI

Figure 4.7: Columns 1,3,5 (from left to right): Ground-truth frames captured by different cameras
at the same time from Tursman et al. dataset. Columns 2,4,6: Frontalized outputs from HFGI.

The results from HFGI show noticeable visual artifacts, especially when the subject wears eye-

glasses. The frontalized outputs from original frames with varying viewing angles for the same

individual also differ considerably.

(2) Pi-GAN

Figure 4.8: Column 1 (from left to right): Ground-truth side-view images. Columns 2-5: Novel
views generated by pi-GAN.

Due to our machine’s limited computational capacity, we were only able to set the output

resolution to 64 × 64 for a reasonable training time. But the fact that the outputs are not

photorealistic, especially around the eye areas, is not caused by the low resolution. It is instead

because the 3D coordinate x and the viewing direction d required by pi-GAN are difficult to
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know exactly. Our estimation was most likely not good enough for the network to produce high

quality results.

4.2.2 3DMM-based Classification

To confirm the method by Deng et al. [6] could potentially work, we first analyze if the frames

from the real and fake videos are separable using the relevant 3DMM coefficients. As mentioned in

Section 3.2, the coefficients are for the PCA bases used by the 3DMM face model, so we could focus on

the coefficients for the first two principal components which account for the largest variations in the

corresponding attribute. We thereby extracted identity coefficients αi,j and expression coefficients

βi,j for each frame Ici,j and then made 2D scatter plots of the first two coefficients for each attribute.

From Figure 4.9 and Figure 4.10, we can see that the identity coefficients for the frames from real

and fake identity videos are perfectly separable while the expression coefficients for the frames from

real and fake identity videos are overlapping each other. Although not separable, the distributions

of the latter do differ between those from real videos and those from fake videos. This means that

it is still possible to distinguish between real and fake expression data.

(a) (b)

Figure 4.9: 1st (x-axis) and 2nd (y-axis) identity coefficient of frames from (a) 2 real videos and 1
fake identity video (b) 4 real videos and 2 fake identity videos of the same subject.

Figure 4.10: 1st (x-axis) and 2nd (y-axis) expression coefficients of frames from 3 real videos and 1
fake expression video of the same subject.
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We then devise the approach described in Section 3.2. Before mixing fake identity and expression

data in F , we first deal with an easier situation where only one type of fake data is present. This

is also in line with the assumption in previous works, which makes makes performance comparison

and analysis more convenient. To find the optimal threshold t, we

(1) Randomly select a subject from the DeeperForensic dataset and a set of real cameras R and

another set of fake identity or expression cameras F for that subject such that |R| > |F | and
|F | ≥ 0.

(2) Compute the mean distance d̄i for the identity or expression coefficient vectors of all frames

from each camera i.

(3) For each threshold in [0.00, 0.01, 0.02, . . . , 0.99, 1.00], classify all cameras and compute the clas-

sification accuracy = number of correctly classified cameras
|R|+|F | .

and repeat all steps multiple times to get the average accuracy for each threshold (Figure 4.11).

Note that in the social video verification setting, true positive rate and true negative rate are equally

important since misclassifying either real or fake would cause comparable confusion. Classification

accuracy is thus the first metrics we use for evaluation.

We also notice that the optimal thresholds become smaller (Figure 4.12) when |F | is limited to

be nonzero, i.e. |F | > 0. This difference arises from the case when |F | = 0 where the classification

accuracy for larger thresholds would be 1, as long as the threshold is greater than the max mean

distance to the mean coefficient vector of all real cameras. This explanation is supported by the fact

that there is a significant decrease in mean accuracy for the larger threshold values when |F | > 0.

(a) (b)

Figure 4.11: threshold v.s. accuracy plot with |F | ≥ 0 when (a) fake identity data can be present
(b) fake expression data can be present.



21

(a) (b)

Figure 4.12: threshold v.s. accuracy plot with |F | > 0 when (a) fake identity data can be present
(b) fake expression data can be present.

To see how well the optimal thresholds perform under different real and fake camera combinations,

we calculate their classification accuracies and compare them with those from other methods. Apart

from previous works introduced in Section 2.1, we also include a baseline approach: given that there

are more real cameras than fake ones, one way to “cheat” the system is to classify all cameras as

real and it would be consistently better than random guessing. Results are shown in Table 4.1 and

Table 4.2.

Method

(#real, #fake)
(6,0) (6,1) (5,2) (4,3)

Baseline 1.000 0.857 0.714 0.571

Hierarchical Clustering 0.724 0.975 0.891 0.818

Graph Cut 0.930 0.919 0.962 0.890

Our Method with t = 0.31 0.870 0.989 0.971 0.735

Our Method with t = 0.27 0.778 0.962 0.959 0.756

Table 4.1: Accuracies of different methods when fake identity data can be present.

Method

(#real, #fake)
(6,0) (6,1) (5,2) (4,3)

Baseline 1.000 0.857 0.714 0.571

Hierarchical Clustering 0.490 0.644 0.209 0.065

Graph Cut 0.110 0.275 0.501 0.572

Our Method with t = 0.58 1.000 0.849 0.719 0.578

Our Method with t = 0.26 0.767 0.751 0.716 0.707

Table 4.2: Accuracies of different methods when fake expression data can be present.
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Compared to previous works and the baseline approach, our 3DMM-based classification performs

very well in detecting fake identity data when |R| >> |F |, but not so much when |R| ≈ |F |. This

may suggest that the variance of identity coefficient vectors causes the mean distances of real and

fake cameras to get mixed up sometimes, especially when more fake cameras are present, hurting

the classification accuracy.

On the other hand, 3DMM-based classification significantly outperforms previous works in de-

tecting fake expression data. But with t = 0.58, our method has nearly identical accuracies as the

baseline approach. This is mainly because the difference in mean distances of real and fake cameras

on expression coefficients is generally smaller than that on identity coefficients. A large threshold

like 0.58 would often classify all cameras as real so our method behaves almost the same as the

baseline. With a smaller threshold, our method has relatively consistent performance across all

camera combinations and beats the others by a large margin when |R| ≈ |F |.
Overall, our method shows a solid improvement in classification accuracy over previous works,

but it still fails to outperform the naive “all real” approach in every situation. This is especially the

case with fake expression data, a problem we had foreseen since fake expression is by nature more

subtle and thus harder to detect than fake identity.



Chapter 5

Discussion

5.1 Limitations and Future Work

Among different methods proposed in this thesis, 3DMM-based classification shows the most

promising results. To potentially improve its classification accuracy, we will look for better means

to calculate distances that take advantage of the fact that some coefficients correspond to more

crucial principal components from the PCA bases. Metrics such as precision and recall should also

be included for a more holistic performance evaluation. Most importantly, we plan to adapt our

method for the general case where both identity and expression manipulations can be present.

On the other hand, perfect or even decent frontalization is a challenging, if not impossible, task to

accomplish, since it is trying to recover complete information (frontal view) from partial information

(side view). Even SOTA models are unable to produce satisfactory results. Our own MLP-based

network suffers from overfitting and there is no panacea to tackle the issue. With millions of trainable

parameters, training and tuning our model can be time-consuming. Nonetheless, we will try out

different ways to enhance its robustness such as adjusting the model size or applying more constraints

in training.

Another important aspect to consider is the overall social video verification setting. The as-

sumption that there are always more real videos than fake ones is not very applicable in a real-world

context — videos that are edited in different ways may well outnumber unedited videos. Ideally,

our model needs to maintain its performance under any situation as long as the real videos have a

higher count than any set of videos that are edited in the same way.

5.2 Conclusion

Results of the experiments in this thesis demonstrate that deepfake detection under the social

video verification setting is a non-trivial task. The proposed deep learning based methods are able

to combat deepfakes to various extents, but there has not been one that excels in every possible

situation. Hopefully, this will not be the case by the time when, sooner or later, deepfakes become

flawless.
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