Project Report:
Consumer Cloud Storage Providers as Solid Pods

Lauren McKeon, Brown University ~ Oren Kohavi, Brown University

Abstract

In this paper, we introduce Google Drive Pod (GDP) a
proof-of-concept application designed to enforce
decentralized data management within the healthcare sector
and demonstrate the feasibility of building a secure
non-trivial application which uses Google Drive as a data
store. Currently, data management in the healthcare space is
inadequate; information is often fragmented, dispersed, and
lacks proper security measures. A specific challenge
involves the transfer of medical records to new healthcare
providers, ensuring data privacy during the transfer process,
and establishing the right to delete information once a
patient has discontinued services with a provider. Public
confidence in organizations responsible for storing and
sharing health information has reached an all-time low [1];
to improve this process it is crucial to introduce greater
transparency and user control.

GDP provides a centralized place to store user data with
fine-tuned data-sharing abilities. The GDP serves as a
simple interface between healthcare providers' and patients'
personal health records. Using the GDP Interface users host
all their medical data in a Google Drive folder and can
fine-tune the sharing permissions associated with data
points within the interface. Each medical provider is given
a unique Google Drive link with access to their specially
tailored medical data in the form of a JSON. To
demonstrate functionality in this proof of concept, we store
and retrieve a set of general health data formatted in a
common health format, and show that this data is both
secure and theoretically interoperable with any medical
system.

1. Introduction and Background

1.1. Motivation: Solid

The Solid paper introduces the concept of decoupling user
data from applications, presenting a unique approach to
data ownership and interoperability. Solid is a framework

for social web applications that introduces the idea of
storing data in a pod as opposed to directly in the web
applications themselves. The primary goal of the Solid
framework is to put users back in control of their data and
to break down the data silos that currently exist.

However, Solid has not seen widespread adoption. From the
user perspective, a significant challenge arises due to the
limited number of available POD providers, all of which
provide subpar usability and access control. Additionally,
despite privacy being a main goal of Solid, the current
protocol has gaps in its security and privacy methods that
make Solid incompatible with high-security data such as
medical information. Specific shortcomings of the Solid
protocol include lack of fine-grained access controls, and a
lack of correct and effective use of cryptography to ensure
“confidentiality, authenticity and/or integrity of data when
stored and/or exchanged.” [2]

1.2. Our Solution: Leveraging Google Drive

We propose the viability of using consumer-grade cloud
storage as an alternative for POD providers, hoping to
alleviate the shortcomings of pods. Google already has a
strong reputation surrounding data privacy and fine-grained
access control, which can be leveraged to create a
user-friendly “POD” secure enough to be used for users'
medical data.

1.2.1 The Google Drive API

Firstly, Google Drive’s high-quality access control and rich
API make it ideal for this purpose. In GDP we leverage
both the general Google Drive API and the Google Picker
APIL. Upon logging into the GDP, a new folder named
Google Drive Pod is created in the user's Google Drive.
Using specific developer scopes we ensure that our
application can “See, edit, create, and delete only the
specific Google Drive files you use with this app.” This
ensures that our application only has access to data that the

user provides and the user is made aware of this upon
logging into the application.

1.2.2 HIPAA Compliance for Medical Data

The Health Insurance Portability and Accountability Act of
1996 (HIPAA) is a federal law that requires the creation of
national standards to protect sensitive patient health
information from being disclosed without the patient's
consent or knowledge. All health apps that handle or
process personal health data must be HIPPA compliant. The
second reason why Google Drive is ideal for this purpose is
that it can support HIPAA compliance. Our proof of
concept does not include the HIPPA compliance
functionality; however, in future work, this is a feature that
would need to be implemented before integrating our
application with medical providers.

1.2.2 GDPR Compliance

The General Data Protection Regulation (GDPR) is a set of
regulations designed to protect the privacy and security of
personal data, including personal health records. The global
reach of Google has mandated Google Cloud, functioning
as a data processor, to align with GDPR regulations.
Google commits to processing all customer data in
compliance with GDPR and provides additional security
features and documentation that help both developers and
individuals protect their personal data.

Article 9(A): Processing of Special Categories of
Personal Data

Article 9 prohibits the processing of highly personal data
data revealing racial or ethnic origin, political opinions,
religious or philosophical beliefs, or trade union
membership, and the processing of genetic data, biometric
data for the purpose of uniquely identifying a natural
person, data concerning health or data concerning a natural
person’s sex life or sexual orientation unless explicit
consent is provided by the data subject.

Article 17: Right to Erase

Article 17 expresses the data subject's right to be forgotten,
stating that a data subject has the right to request that a data
controller erase all personal data attached to the subject.
Deletion abilities must be implemented in modern day
applications to be in compliance with this article.

Article 20: Right to Data Portability

The concept of data portability aligns with the GDPR's
objective to shift control of personal data from businesses
to the data subject. The right of data portability ensures that
individuals have the right to extract the information an

organization has collected on them to simply obtain or
reuse for their own purposes.

1.2.4 Users Trust

Another reason why Google Drive is ideal for this situation
is the pre-existing trust that users have in Google; Most
users already trust Google with a significant portion of their
digital data, relying on services like Gmail, Google
Calendar, and Google Photos. The seamless integration of
these services and the convenience they offer have
contributed to a sense of reliability and dependability
among users. This established trust becomes a compelling
reason for users to consider Google Drive as a preferred
option when it comes to storing and managing their
medical data.

Additionally, Google's commitment to robust security
measures, continuous updates, and user privacy enhances
the overall credibility of Google Drive.

1.4 Key Limitations

The key limitations of this work stem largely from its
position as a first draft proof of concept for the more
general concept of storing sensitive data in an
application-managed segment of a user’s Google Drive.
Notably, the personalized sharing link that is given to the
medical provider currently has the ‘anyone can access’
permission attached to it — This means that if the link is
leaked, privacy is not preserved. Future development should
convert this link to one which is restricted to a specific set
of email addresses, further relying on Google’s robust
security systems to enforce privacy. Another limitation is
that the sharing links produced do not automatically update
when a patient’s master record changes, and therefore new
data must be proactively shared with every medical
provider.

2. Google Drive Pod Design

Google Drive Pod is designed to use Google Drive’s robust
permissions system in order to enforce privacy. Google
Drive’s privacy and security have been deployed and
iterated upon for over a decade, which imputes a high
degree of confidence that they are correct. GDP first creates
a folder structure within the user’s Google Drive, and as
medical data is imported, creates JSON-formatted files
within this structure to store both the medical data itself —
formatted in the common FHIR JSON format — and
metadata about sharing permissions.

When data is requested to be shared with a medical
provider, GDP creates a separate file in the user’s Google
Drive which contains only the selected subset of

information. Creating a separate file simplifies privacy,
since if the file creation operation is correct (i.e. does not
include information into the file that should not be there),
then all subsequent operations are guaranteed to use only
the selected subset of information since they rely on the
newly-generated file.

The Google Drive Pod interface is a web-based application
which accesses the Google Drive API directly and performs
all computations locally — This contributes to the privacy of
GDP, as local data processing eliminates the server as a
potential point of failure.

This application is broken down into two core pieces; a
patient view and a doctor view. For demo purposes, users
can toggle between these two views using the nav bar
across the top of the application. These views are entirely
isolated from each other in terms of data sharing: the only
data the doctor view can access is that which is provided
through a sharing link.

2.1. Patient View

The patient view consists of a single page featuring three
primary components. The leftmost panel holds six user
action buttons. From top to bottom, they are Google Login,
Load from Drive, Load Specific File, Load from URL, Save
to Drive, and Delete Data. These buttons interface with
Google Drive and allow users to upload data to their
accounts. The middle panel, titled My Health Data, serves
as a visual tool summarizing and presenting the user's
medical information as text. The rightmost panel, titled My
Data Sharing, allows users to selectively choose which data
attributes from their uploaded medical data they want to
share with each of their medical providers. This panel has a
Doctor Name text box, a Select Data to Share dropdown,
and a Share with Provider button.

The components in each panel work together to provide a
seamless user experience.

2.1.1 General Login & Account

The top button, Google Login, interfaces with Google Auth,
allowing the user to log into their account using their
Gmail. During this login process, the user will be prompted
with the security implications of linking their Google
account with GDP; the GDP can “See, edit, create, and
delete only the specific Google Drive files you use with this
app.” If Google authentication is successful a new Google
Drive folder titled DrivePod will be automatically created
in the user's Google Drive. When the user logs in to GDP
Upon creation this Google folder will be empty. Generally
speaking, this folder will hold all of the user's medical data
that is accessed within the GDP in the form of JSON files.

The next section will discuss in detail how data is uploaded
and stored within GDP.

2.1.2 View and Upload Personal Health Data

The second, third, and fourth buttons in the left panel are
responsible for viewing and uploading personal health data
into the GDP application. The third button, Load Specific
File opens the Google Picker interface, allowing the user to
import an existing medical record from anywhere in their
drive. The fourth button, Load from URL, allows a user to
load from an external hosted JSON link from somewhere
on the web. In our Proof of Concept, we use git to host
sample FHIR JSON files. After a file is uploaded into the
application using either Load from Drive or Load from URL
a summary of the data uploaded is shown to the user in the
Middle panel, My Health Data. The buttons upload the
medical data into the application but do not save the record
to the user's account. The fourth button, Save to Drive,
enables this functionality. If the user wants to save the
health record to their account for future use, they must click
the Save to Drive button after uploading. Under the hood
in the DrivePod folder, anytime a new file is uploaded and
saved back to drive, the information is added to a master
record.json file that holds all of the user's medical data that
is stored in the GDP. The second button, Load from Drive
allows users to see a summary of the medical data that they
have stored in GDP and even showcases to users what data
has been recently updated to the user.

2.1.3 Data Sharing Options

The rightmost panel in the patient view takes care of the
Data Sharing capabilities. After the user logs in and
uploads some data, the Select Data to Share dropdown will
auto-populate to represent each data attribute that exists in
the user's master record.json file. From here users simply
enter a health provider's name in the Doctor Name text box
and select exactly what data attributes the user wants to
share with that specific doctor. As an example, let's say my
master records have my Name, Address, Blood Type,
Dental X-ray Results, and Foot X-ray results. These are all
in my master record.json file and come up as options to
share with my Dentist but I can select that my Dentist can
only see the Name, Address, Blood Type, and Dental X-ray
Results. Once the attributes are chosen the user clicks the
Share with Provider button and the user is provided with a
link to share with that specific provider, in my example
above the dentist. This link will point to a newly created
JSON file in the DrivePod folder that contains the chosen
subset of the master record.json data. If the user changes
their mind about sharing a specific attribute, they can
re-enter the doctor's name and change the selected
attributes, the link will remain the same and the data in the
file will automatically be updated.

2.1.4 The Right to Delete

The Google Drive pod interface makes it easy to exercise
the right to delete. Firstly, the bottom button on the left
panel, Delete Data will clear the data in memory and
subsequently clicking Save to Drive, deletes all of the user's
medical data stored within GDP, meaning it wipes the
master record.json file and any tailored doctor JSON files
stored within the DrivePod folder. Currently, the interface
lacks more granular deletion capabilities. However, users
can still manage this functionality directly within Google
Drive. If a user wants to revoke data access to a specific
provider, the user can delete that specific JSON record
directly from the DrivePod folder. For example, continuing
from our dentist example above, if the user changes
dentists, she can delete the dentist.json file to revoke data
access from her old provider.

2.2. Doctor View

The doctor's view is very simple, having only one
functionality point. There is a search bar that allows the
doctor to search for their users' personalized data records.
Pasting in the link provided by a patient allows the doctor
to view the data points shared.

3. Implementation

Our project was implemented using the next.js framework
using Javascript and CSS. The frontend of our patient view
is in patientPage.js file and the frontend of our doctor view
is in the doctorPage.js file.

Our core backend functionality of our implementation
consists of two primary components, the integration with
Google Drive and the data parsing capabilities. To test our
implementation we use a test set of medical data.

3.1. Google Drive Integration

To integrate Google Drive into our application, we first had
to create a new Google Project in the Google Developer
Console. To enable Google Authentication within our app,
we created a new Oauth Client, giving us a Client ID to use
in our application when implementing authentication
services. Next, we enabled both the Google Drive API and
Google Picker API, providing us with an API key to use
when implementing the file uploading/downloading from
drive functionalities.

The gdrive.js file holds all of the functions that interface
with Google Drive. We use the Axios get, post, and fetch
requests to retrieve and send data back and forth between
Google Drive.

3.2 Data Parsing

The data parsing functionality is implemented in the
parsing.js file. This file is responsible for parsing, merging,
summarizing, and creating subsets of the FHIR-formatted
JSON data stored in Google Drive.

3.3 Dummy Medical Records

In order to test the functionality of our implementation, we
hosted sample FHIR medical data on a GitHub pages site to
use for testing purposes. There are three primary files that
we used for functionality testing: FHIR Reference,
OnlyMeds, and WithMeds. FHIR Reference is taken from
the HL7 specification website [3], and OnlyMeds and
WithMeds are medication data and a union of medication
data plus FHIR Reference, respectively.

4. Evaluation

4.1 Functionality

In terms of functionality, our proof of concept met
expectations; we were able to create an application
performing a secure, non-trivial computation with Google
Drive as a data store, while delivering better privacy and
access control than Solid Pods.

4.2 Usability: Security

Security for Google Drive Pods is largely offloaded to
Google’s competent access control system — by storing data
as files in a user’s drive, Google’s robust access control
mechanisms can protect them (both from modification and
also from unauthorized access by impersonation of the
account owner).

Additionally, security measures were implemented to
ensure compliance with the GDPR data protection laws.
Figure 1 illustrates which interface features support each
GDPR Articles mentioned.

GDPR Article Article 17 Article 20
Article 9(A)
Supporting | Select Delete Data masterRec
Features ? ;ta 2 + Save to ord.json
are Drive OR feature
dropdown i s

deletion in

DrivePod

Folder

Figure 1

4.2 Usability: Runtime Analysis

To get an overview of the runtime of the system, we
performed runtime analysis on select user-facing action
buttons. We evaluated the runtime performance of user
elements that have status load indicators; Save to Drive,
Load From Drive, and Share with Provider. The runtime for
each button for three different scenarios, each scenario was
tested 4 times. The average for each scenario (el, e2 & e3
on the graph) is shown on the graphs. Scenario 1 (labeled
as el on the graphs) tests the runtime of the buttons when
no data is loaded into the application, serving as a base case
or error case scenario. Scenario 2 (e2), evaluates the
runtime while uploading, saving a user's initial health
record, in this case, the FHIR Reference dataset. For the
sharing data with the Provider graphs, e2 represents making
the first doctor record. Scenario 3 represents adding
additional data to the initial record, in this example we
added the Meds record to the existing FHIR_Refrence data.
For the sharing data with the Provider graphs, e3 represents
adding these additional attributes to the doctor's existing
record.

Load From Drive

el
e

e3

Figure 2

Save to Drive

el
e?

e3

(]

1 2 3 4

Figure 3

Share with Provider

e2

e3

Figure 4

From this analysis, it can be concluded that further
optimization of this system needs to be conducted before
launching to production. Loading from Drive takes over a
second in each scenario and Saving to Drive and Sharing
with Provider both take over 2 seconds in each scenario.
For each button, the runtime sees a noticeable increase
from scenario 2 to 3, indicating that as the data stored in
GDP increases the runtime of these actions will also
increase. Given the added Meds records only added one
additional data point to the overall record, this causes some
concern for the scalability of this system.

Individual Contributions
Overall, a good partnership.

Oren: Took the lead on the data parsing and merging
section. Collaborated on Google Drive Integration.

Lauren: Took the lead on the overall design, UI/UX, and
Button functionality. Collaborated on Google Drive
Integration.

References

[1] Platt JE, Jacobson PD, Kardia SLR. Public Trust in
Health Information Sharing: A Measure of System Trust.
Health Serv Res. 2018 Apr;53(2):824-845. doi:
10.1111/1475-6773.12654. Epub 2017 Jan 18. PMID:
28097657; PMCID: PMC5867170.

[2] Esposito, C.; Horne, R.; Robaldo, L.; Buelens, B.;
Goesaert, E. Assessing the Solid Protocol in Relation to
Security and Privacy Obligations. Information 2023, 14,
411. https://doi.org/10.3390/info 14070411

[3] https://build.fthir.org/patient-example.json.html

