
CSCI 1430 Final Project Report:
Solving Geoguessr using Deep CNNs and Transfer Learning

Hungry HOGs: William Beakley, Paul Jeong.
TA name: Eric Tang. Brown University

Abstract

Geoguessr is an online game where the player is given
a random location via Google Streetview and must guess
where the Streetview image was taken. Skilled players are
able to figure out what country they are in nearly instantly,
taking in clues from various memorized infrastructure, as
well as a subjective feel that they get from certain areas.
Our project focused on figuring out whether deep CNNs can
learn these subjective qualities in order to beat Geoguessr.
We used pretrained object detection weights from VGG16,
and we trained dense layers totalling 26 million trainable
parameters. Our testing showed that deep CNNs can learn
subjective traits characteristic of different locations around
the globe.

1. Introduction
In our project, we will attempt to have a learning algo-

rithm recognize features in Google Streetview images that
are indicative of certain locations. This is a hard problem
to solve, as it requires many hours of practice for humans
to even approximate this skill, and many of the techniques
involved would be incredibly tough to teach an algorithm
without thousands of GPU hours. We cannot take advan-
tage of reading signs, or recognizing certain languages and
brands of cars. Solving this problem would not have much
of an impact on anything in the real world, but answering
this question may have implications for the abilities of deep
learning algorithms in general.

2. Related Work
We strayed away from tutorials and other guides when

making this project, while they do exist. We did, however,
look at one implementation of a Geoguessr AI, and took
away from it the tile prediction method of classification. This
was from Nirvan S P Theethira’s Geoguessr AI on GitHub
[1]. In terms of software, we used a couple of datasets, plu-
gin’s, and GIS software applications to get to our finished
product. We used Mapillary’s places dataset. For the pur-

poses of creating demos, we used the Jupyter Google Maps
plugin. We analyzed the dataset and its drawbacks in the
open source GIS platform QGIS. We attempted to expand
and refine our image dataset with Mapillary’s API, but we
did not end up using this in the final product. We used the
Google Maps API for the purposes of creating demos as
well.

3. Method

Our goal was the be able to feed a streetview image to our
model and have it give us the location the streetview image
is from. This is a very hard task, so in order to do it, we
started small. We first created a relatively small dataset only
containing images from Berlin and San Francisco. Simply
applying binary classification, using VGG16 weights, and
setting up the following head produced 95% accuracy:

1 self.head = [
2 Flatten(),
3 Dense(512, kernel_initializer='

uniform', input_shape=(512,)),
4 Dropout(0.5),
5 Dense(100, kernel_initializer='

uniform', input_shape=(512,)),
6 Dropout(0.5),
7 Dense(2, activation='softmax',

kernel_initializer='uniform',
input_shape=(100,)),

8 ]

We then tested the model on Streetview images, and it
appeared that the model was having a decently tough time
adapting to the format of Google Streetview as opposed
to the Mapillary dataset. However, it was still predicting
significantly better than chance, so we assumed that the
dataset would be able to adapt to general features rather than
simply features present in the dataset. In order to create a
better dataset, we turned to Mapillary’s API. First we tried
using Mapillary’s function to get images close to a point in
order to get data that was spread out. However, it turned out
that there was no way to use this function in order to get

1

https://www.mapillary.com/dataset/places


images that were spread out. If we queried the API to get
images close to a point in San Francisco, it would return 60
thousand image URLs in a 1km radius, which took around a
minute.

Figure 1. 60k points from San Francisco in a 1km radius.

There was no limit parameter built into the Python API,
so we had to grapple with this runtime issue. There was a
radius feature built into this function, so we tried to query
the API using small radii to reduce runtime, but this resulted
in similar runtime and unpredictable results, as sometimes
the query would take a minute and not return any images.
We realized that the API was built off of ”tiles”, which were
essentially spatial indices. However, these tiles were small,
but contained way too many images for our purposes, as our
goal was to spread out our training data, as to not have our
algorithm memorize certain buildings.

In order to get around these difficulties, we turned to
creating grid tiles using QGIS. The goal was to populate one
image per grid tile, as to be certain buildings were not in
multiple images.

Figure 2. Grid created in portugal.

Mapillary’s API had a function to use bounding boxes
to query images. We figured we would use each bounding
box we had created to query images. We would then grab
only one image from each bounding box in order to create

this dataset. Howevever, it turned out that the bounding box
function in the API would query all of the tiles intersecting
the bounding box. As such, we were essentially asking the
API for every single image in Portugal. If we wanted to
apply this methodology globally, we would have to query
every single one of Mapillary’s 1.8 billion images, which
is certainly infeasible. Battling the API documentation took
up a large chunk of our time, and we eventually gave up on
using it. Reflecting on the issues that the dataset created, it
would have been better to simply deal with the long runtimes,
and create a better dataset. Another option we could have
used is using our Google Cloud coupon, and the free trial of
Google cloud to create a dataset. Google Cloud has a feature
where it simply returns one Streetview image close to a lat
and lng, which was perfect for our purposes. We could have
done this without spending any money, but we were afraid
that it would have been a dead end. The issues with our
dataset lay in the fact that the images were in sequences of
Streetview images. The dataset was offered to train computer
vision algorithms to figure out how the images fit together.
As such, when we randomly split the images into train and
test images, some of the test images would be very similar to
the train images. This created erroneously high test accuracy.
However, we underestimated the problems this would cause
with overfitting.

We then proceeded to adapt our 2 city classification model
to a 24 city classification model, using all 1.2 million of the
images in our dataset. We used python scripts to adapt our
dataset into the directory structure expected by Keras’ flow
function. In order to identify more features complex features,
we added dense layers.

1 self.head = [
2 Flatten(),
3 Dense(1024, kernel_initializer='

uniform', input_shape=(512,)),
4 Dropout(0.5),
5 Dense(512, kernel_initializer='

uniform', input_shape=(512,)),
6 Dropout(0.5),
7 Dense(100, kernel_initializer='

uniform', input_shape=(512,)),
8 Dropout(0.5),
9 Dense(24, activation='softmax',

kernel_initializer='uniform',
input_shape=(100,)),

10 ]

After many hours of training, we achieved a 90% test
accuracy on our dataset. We incorporated our model into a
Jupyter notebook, so that we could query our model with
Streetview images from our clipboard, and from the Google
Maps API, both for the purposes of building demos and for
sanity checking our results. We noticed that the model was



having a hard time identifying images that were outside of
the range of our training dataset. Even a road one away from
a road it was trained on would not be identified correctly.
However, we did notice that the algorithm was clearly pick-
ing up on some of the features of certain areas. If we showed
model an image of Austin TX, it would either predict Austin
TX or Phoenix AZ, which is a very human way to classify
Austin TX. Limited on time we could use for perfecting
our dataset, we chose to proceed with latitude and longitude
prediction for images.

We adapted the keras model to use raw labels rather than
class labels. We used Pandas to create a dataframe with
1.2 million labels lat-lng labels in the correct formats. We
quickly noticed that our model could not learn lat-lng la-
bels on a global scale, so we switched to predicting lat-lng
labels within one city. We chose Budapest, as we had the
most images from it. We used the same training head, switch-
ing the final dense layer to two outputs instead of 24, and
changed the activation to linear rather than softmax. We
changed the loss function to mean squared error rather than
sparse categorical error. Our model was able to make some
predictions correctly, but it was clearly biased towards the
center of the city. We used the Google Maps API to draw the
predicted latitude and longitude contrasting with the actual
coordinates.

Figure 3. Erroneous prediction by our model using an image from
streetview.

Unsatisfied by these results, we decided to implement
grid tile prediction instead of direct latitude and longitude
prediction. We got this idea from a project titled Geoguessr
AI on GitHub [1].

We used a 10 x 10 grid for the purpose of predicting
the latitude and longitude. We used the same head as our
first model, changing the number of outputs to 97, as there

Figure 4. The grid used. The heatmap shows our dataset’s coverage.

were 97 grid tiles represented in our dataset. We used Pandas
to create grid labels based on the latitude and longitude of
the images. This prediction method was less biased then our
direct latitude and longitude prediction methods. It seemed to
pick up on some of the more human features of the images. If
the image looked more suburban, it would generally predict
grid squares farther from the center of the city. We used
the Google Maps API to draw the predicted grid square in
addition to the actual location.

Figure 5. Drawn prediction from our third model.

Having created these three models, we then refined our
models into an interactive Jupyter notebook for the purposes
of creating a demo.

4. Results

Displayed below is an example of the predictions (Figures
7, 8, and 9) of the 3 CNNs on an image of Budapest (Figure
6). The corresponding LIME explainer images are included
as well.



Figure 6. Initial image from Budapest.

Figure 7. Top: Our CNN’s prediction of the image’s city. Bottom:
Corresponding LIME explainer image.

As shown by the images, the city CNN correctly predicts
the image as being from Budapest. While the latitude and
longitude and city grid predictions are not as accurate, both
CNNs seem to pick up on the fact that the location shown
in the image is within the vicinity of the center of Budapest.
Within all three LIME explainer images, it can be observed
that all three CNNs consider the blotch in the sky and the
front of the car in the bottom right corner to be telling of

Figure 8. Top: Our CNN’s prediction of the image’s latitude and
longitude. Bottom: Corresponding LIME explainer image.

Figure 9. Top: Our CNN’s prediction of the image’s location via
grid square. Bottom: Corresponding LIME explainer image.



Metric of Prediction Accuracy Measure

Latitude & Longitude MSE: 0.05992
City Categorical Accuracy: 90.20%
Grid Square Categorical Accuracy: 74.64%

Table 1. Accuracy results for our three different models.

Budapest.
By testing various Google Streetview images and using

the LIME explainer, it was observed that the CNNs tended
to look to patterns in the sky or the texture of the road/streets
as indicators of a scene’s location in the world.

We assessed the performance of our CNNs in two dif-
ferent ways: categorical accuracy for city and grid square
prediction and mean squared error for latitude and longitude
prediction (Table 1).

While the models reached relatively high and satisfactory
accuracies with the testing dataset, when asked to evaluate
images that were screenshotted from Google Streetview, the
three CNNs exhibited moderate performance. A specific
behavior displayed by the CNNs was that with images that
did not have a clear view of the road, the CNNs would rarely
predict the correct city displayed in the image, let alone the
latitude and longitude. Because the images in the dataset
often displayed the road as they were taken from a car, it
is likely that the models were trained to perform well on
images with roads and would be confused on images that
lacked roads.

Because the weights for our CNNs are pretrained, predict-
ing the city/latitude and longitude/grid square of an image
requires negligible computer performance.

4.1. Technical Discussion

One aspect of our program that was not thoroughly con-
sidered until the towards the end of the project was the use
of VGG-16 weights pretrained on ImageNet. Because the
base of all of the CNNs is the pretrained VGG-16 weights,
the CNNs are predisposed to pick up on objects in the scene
that would be helpful for classifying images from ImageNet,
which contains classes that may not be helpful for determin-
ing location of an image with many details and elements.
This choice could have had a huge impact on the accuracy
performance of the CNNs. One alternative would have been
to train a CNN built from scratch. While this approach would
have been more time consuming, it would have produced a
model that would be more tailored to examining scenes of
the outside world.

Dataset curation was another issue that was faced. Within
our dataset from Mapillary, it was found that images were
very condensed around roads and streets and some images
were extremely close in proximity to other images. This
could explain why the test accuracy was extremely high for

city prediction, while showing moderate performance for
random images taken from Google Streetview.

4.2. Socially-responsible Computing Discussion via
Proposal Swap

We believe that the first concern that Geoguessr content
creators will be displaced by our CNN is somewhat invalid.
Geoguessr content creators attract consumers because they
are entertaining and/or because the level of skill needed to
become extremely proficient at the game is laudable and
impressive. While a Geoguessr bot that achieves high ac-
curacy at the game would be extraordinary, it is unlikely
that it would displace Geoguessr content creators due to the
fact that having a computer perform well at Geoguessr is
not as impressive or as entertaining as a human who per-
forms well at Geoguessr. It is possible that a “Geoguessr
AI” can bolster the popularity and social media presence of
Geoguessr content creators as the other team has mentioned,
and AI can even be used to improve at Geoguessr by uncov-
ering what features to look for in a scene, further boosting
the game’s popularity. In the end, having a CNN negatively
impact content creators seems unlikely.

We believe that the second concern about the geolocation
CNN infringing on privacy is a valid concern. Certainly if
computers were able to accurately determine the location
of the scene based off an image and such a program were
accessible to the public, it would compromise the privacy of
many of those who post pictures online which could result in
some using such a model for malicious purposes. One way
to combat this issue would be to limit the use of the program
to only organization/people who are trustworthy and will not
abuse the power. However, such a task is not simple and it is
likely that people will find ways to use the program anyways.
An alternative would be to advise people not to share photos
or videos of their surroundings if they do not want others to
discover their location.

We believe that the third concern about the existence of
bias within machine learning is fair. In fact, a considerable
amount of bias was encountered when working on the project.
We found that the grid square CNN tends to predict central
locations within Budapest as most of the data is concentrated
within that area. One method of mitigating this bias is to
create a more representative and balanced dataset. If the
training and test datasets could both contain images equally
spread across the world and with similar frequencies, it could
account for certain areas of the world being excluded from
recognition. Another way to minimize bias within the AI
is to use analysis tools like the LIME explainer to obtain a
better understanding of why the model is biased and what
specifically the model is biased towards.



5. Conclusion
Our project aimed to answer the question of whether

neural networks can reliably use subjective features in order
to predict the location of Streetview images. In the end, our
work showed that this prediction is very possible. While our
project did not produce the most satisfying results, it is safe
to say that CNNs can get a feel for certain locations. In order
to make a very powerful Geoguessr bot, the dataset would
need to be much robust. It would need to have noise filtered
out, and it would need to have a well monitored test dataset in
order to curb overfitting. This work was outside the scope of
our project, and we are proud of what we created. Our visuals
created a nice demo, generating interesting conversations
in our poster presentation, made our work explainable, and
makes it possible for others to pick up where we left off. It is
possible that AIs like this one will be able to create content
for Geoguessr content creators. Aside from that, we think
our project only has minimal and positive impacts on the
world and the field of computer vision.

References
[1] Nirvan S P Theethira. Geoguessr ai, 2020. Grid identification.

Supplied as additional material. 1, 3

Appendix
Team contributions

William Beakley William generated many of the creative
ideas used in the project, such as training a CNN on grid
squares of latitude and longitude and having the CNNs
predict based on screenshots off of Google Streetview
for our presentation demo. Much of the visual presenta-
tion work to display the predictions of the CNNs was
coded by William. William has also worked on building
the model architecture for the city prediction and grid
square CNNs while also training the CNNs on his GPU.
William also used GIS applications in order to build
visuals and conduct analysis.

Paul Jeong Paul has done work on obtaining the data used
for the CNN as well as splitting up the data for training
and testing. Preprocessing was handled by Paul, ensur-
ing that the dataset images and class labels were in a
format that was able to be read by the program. Paul
worked on building the model architecture for the city
and latitude and longitude CNNs and designed most of
the poster.


