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A B S T R A C T

3DMM-conditioned face generation has gained traction due to its well-defined control-
lability; however, this comes at a cost of lower sample quality. Previous works such as
DiscoFaceGAN and 3D-FM GAN have showed a significant FID gap when compared to
the unconditional StyleGAN, suggesting a trade-off between quality and controllability.
This thesis challenges the conventional wisdom and proposes a new model that effectively
removes the quality tax between 3DMM-conditioned face GANs and the unconditional
StyleGAN. We mathematically formalize the issue of 3DMM-conditioned face generation
to pinpoint previous challenges, and devise simple solutions within our proposed frame-
work. The results demonstrate that quality and controllability can coexist, opening new
possibilities for 3DMM-conditioned face generation.
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1
I N T R O D U C T I O N

The field of computer vision and graphics has witnessed a surge of interest in face im-
age generation owing to its broad scope of applications. Among different works in this
area, neural generative modeling approaches, notably generative adversarial networks
(GANs) [1], have proven especially effective in generating high-quality, photorealistic face
images [2, 3]. However, these models provide limited explicit control over their output,
relying instead on latent space manipulation due to their unsupervised nature [4]. On
the other hand, parametric models such as 3D Morphable Models (3DMMs) embed facial
attributes in a disentangled parameter space, but their results lack photorealism [5].

In light of this, researchers have attempted to build models that can synthesize high-
resolution novel face images with control by combining 3DMM with generative model-
ing [6–10]. Existing approaches can be roughly divided into two categories: rigging and
conditional generation. Rig-based methods align the 3DMM parameter space with the lat-
ent space of a pre-trained generative model [8, 9]. These methods maintain high sample
quality but limit controllability due to the completeness and disentanglement of the latent
space [11]. In contrast, conditional generation methods use the 3DMM when training the
generative model [6, 7, 10]. They offer improved controllability yet compromised sample
quality since additional constraints are imposed upon the generated samples for 3DMM
consistency and disentanglement.

This thesis aims to investigate the family of 3DMM-conditional GANs. Deng et al. state
that the quality drop in conditional models is an inevitable tax that we pay for control-
lability [6]. What causes this tax? We hypothesize that it is caused by overconstraint: that
is, to achieve consistency with the 3DMM conditioning and disentanglement among lat-
ent variables, current methods have unnecessary side effects that compromise quality. We
challenge the claim of an inherent “quality tax” and show that it can be largely eliminated
if the overconstraints can be identified and resolved. To this end, we formalize 3DMM-
conditioned face generation and identify minimal solutions that satisfy both controllability
and disentanglement.

In practice, we implement a differentiable 3DMM renderer [12], which by construction
enables differentiable 3DMM parameter estimation from images. Using this, we can dir-
ectly minimize the mutual information between the distribution of 3DMM parameters
and the distribution of images conditioned upon these parameters. Once trained on a Styl-
eGAN2 base, this results in a 3DMM-conditioned model that: (1) achieves significantly
better FID scores than two state-of-the-art methods (4.51 vs. 12.2), nearly matching the
unconditioned StyleGAN2 baseline (3.78); and (2) obtains comparable or superior disen-
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Figure 1.1: 3DMM-conditioned GANs show reduced image generation quality as a “tax” for their
added control. This tax is not inevitable. Our approach produces images of almost equivalent
quality to unconditional generation while being at least as disentangled for control.

tanglement scores to two state-of-the-art methods on two proposed metrics. Our findings
effectively eliminate the quality tax of 3DMM-conditioned GAN models.

Our key contributions are threefold:

• We propose a mathematical framework for 3DMM-conditioned face generation, uni-
fying existing methods within this formulation. This allows us to rigorously analyze
the consistency and the disentanglement behavior.

• We derive novel methods for achieving consistency and disentanglement from our
mathematical framework. We evaluate the limitations of existing methods, and
demonstrate that our approaches are both theoretically sound and practically favor-
able when compared to previous work.

• We showcase a StyleGAN2-based model, trained by our methods, that achieves state-
of-the-art FID while preserving the full controllability of 3DMM.

This thesis is a collaborative effort of co-authors Yiwen Huang, Zhiqiu Yu, Yue Wang, and James
Tompkin. It is mainly adapted from our conference paper submission for ICCV 2023.



2
R E L AT E D W O R K

In this section, we discuss a relevant slice of work that explains 3DMM-conditioned GANs,
given the specificity of our contributions.

2.1 gans and disentangling for face generation

Generative Adversarial Networks (GANs) [1] are widely used to generate photorealistic
images. In 2017, the introduction of PGGAN [13] marked a significant milestone in gener-
ating high-resolution images. Since then, Karras et al.’s StyleGAN family [2, 3, 14] has been
the state-of-the-art in single-domain image synthesis. One natural subsequent task in this
field is controlled generation of photorealistic images using StyleGAN. However, achiev-
ing both high image quality and controllability remains challenging, primarily due to the
lack of tractable semantics in StyleGAN’s latent spaces. Despite numerous attempts [11,
15–17], this issue remains unresolved.

2.2 3d prior for face modeling and generation

Numerous 3D methods for face generation exist. Among these, 3D Morphable Models
(3DMMs) [5, 18] constitute a statistical approach that embeds human faces into a parameter
space consisting of a set of principal components that represent factors including identity,
expression, illumination, and pose. In contrast, Neural Radiance Fields (NeRFs) [19] gener-
ate photorealistic 3D scenes by leveraging a learned neural network to model the implicit
3D geometry and appearance of the target. While a number of 3D-aware models [20, 21]
have incorporated NeRFs to synthesize facial images with pose variations, this approach
is very computationally expensive.

2.3 3dmm-conditioned stylegan

The semantic interpretability of 3DMM offers the potential for controllable generation of
faces. Proposed works combine 3DMM and StyleGAN to try to gain both semantic control
and image quality. One type of such work [6, 7, 22] conditions their model training on the
3DMM parameter space, but the added control constraints the output quality. In contrast,
another type of work [8] rigs the StyleGAN latent space, producing higher quality results
but restricting control.

3
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2.4 disentangled representation learning

Disentangled representation learning (DRL) [23] aims to represent and disentangle the con-
stitutional factors lying in the data of interest. Many studies have sought to apply DRL to
GAN for disentangled face synthesis. In particular, InfoGAN [24] and its variants [25, 26]
attempt to maximize the mutual information between latent codes and generated samples
to enforce disentangling. Peebles et al. [27] design a regularization term that encourages
the Hessian of a model with respect to its input to be diagonal, thereby minimizing the
interdependence of target factors.



3
P R O B L E M F O R M U L AT I O N

We define face images in a dataset x̂ ∈ X . We also define a 3DMM code vector by p =

{zid, zexp, zillum, zangle, ztrans}, a noise vector z, and a generator model G(p, z) : P ×Z → X .
The goal of conditional generation is to create photorealistic face images x according to
p and z. Toward this goal, we concern ourselves with effective conditioning via 3DMM
parameters p only; we leave open the disentangling of factors with no supervision. For our
goal, we can form two related yet distinct objectives: consistency and disentanglement. But
first, we explain why p is a difficult conditioning space.

3.1 3dmm representation

While p itself is an option for the consistency objective and conditioning G, previ-
ous studies show that the 3DMM parameter space P is suboptimal compared to a
more image-based representation [7, 10]. Why is this? Given each component of p =

{zid, zexp, zillum, zangle, ztrans}, zid and zexp determine the shape S and texture T of a face
as follows [6]:

S = S + Bids zids + Bexpzexp and T = T + Bidt zidt

where S and T denote the average shape and texture, and Bids , Bexp, and Bidt are the
PCA bases of shape identity, facial expression, and texture. The definition of zid and zexp

depends on external factors such as Bids,t and Bexp. Similarly, zillum depends on the spher-
ical harmonic basis SH. Without informing G of the external factors that each zi ∈ P is
defined upon, conditioning G directly on p imposes a challenge upon G to decipher the
information encoded in p.

Tewari et al. noticed that using p as part of the optimization objective also leads to
inferior results [8, 28]. They hypothesize that this is due to each zi ∈ P having different
perceptual effects in the image space. Since each zi is defined w.r.t. different bases, the
same magnitude of variation in different zi might lead to different magnitudes of variation
in image space. If we optimize the consistency object w.r.t. p directly, we gain consistency
in P but not in the image space.

5
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3.2 consistency

This objective requires that x is semantically consistent with p, i.e., p dictates the corres-
ponding semantic factors in x. We follow the formulation in InfoGAN [24] and formalize
the consistency objective as maximizing the mutual information I(p; x) between p and x:

I(p; x) = H(p)− H(p | x)

= Ex∼G(p,z)

[
Ep′∼P(p|x)

[
log P(p′ | x)

]]
+ H(p)

= Ep∼P(p),x∼G(p,z) [log P(p | x)] + H(p) (3.1)

The posterior P(p|x) is not tractable in general GAN training, but Chen et al. show that
P(p|x) can be approximated by its variational lower bound [24]. As H(p) does not depend
on x, H(p) is not optimizable and so is a constant.

For 3DMM-conditioned face generation, the posterior becomes tractable when the gen-
erative distribution Pg becomes sufficiently close to the distribution of real face images.
In such case, the posterior is exactly represented by a pretrained face reconstruction
model [12] that can accurately predict p given x, allowing I(p; x) to be directly optimized.

Past works propose proxy objectives instead of directly maximizing I(p; x). These ob-
jectives maximize I(p; x) up to some deterministic transformation on p. Deng et al. use im-
itative learning to enforces consistency on different components of p, using a combination
of identity loss, landmark loss, spherical harmonic coefficient discrepancy for illumination,
and skin color loss for albedo [6]. Further, Liu et al. proposed a consistency loss that min-
imizes the pixelwise difference between x and the image representation of p produced by
a differentiable renderer [7].

We show that directly optimizing the mutual information objective is better than op-
timizing proxy objectives. Further, as the assumption that Pg is sufficiently close to the
real image distribution does not hold in general early in training, we also introduce a
progressive blending mechanism.

3.3 disentanglement

Changing one semantic factor should not interfere with other semantic factors. Let P ∪
Z = {z0, z1, . . . , zn} where zi denotes the latent code for an independent semantic factor.
We formally define disentanglement following Peebles et al. [27]:

∂2G
∂zj∂zi

= 0 ∀ i ̸= j (3.2)

Suppose we define a subset of latent factors that control 3DMM factors; zi ∈ P . For these,
disentanglement is achieved by construction via the consistency objective. The remaining
problem is to disentangle unsupervised factors zj ∈ Z from zi ∈ P . For example, 3DMM
can control facial expression but not head hair; we must ensure that facial expression in
p via zi does not affect head hair length as controlled by zj. Finally, as noted, the disen-
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tangling of unsupervised factors zj ∈ Z from each other is an open question [29, 30] and
does not relate to 3DMM conditioning.

In the simplest case where G is a scalar function and each semantic factor zi is also a
scalar, Eq. 3.2 indicates that the Hessian matrix HG is diagonal. In such case, disentan-
glement can be directly encouraged by a Hessian penalty. A fast finite difference approx-
imation of the penalty and a generalized version for vector-valued functions were also
proposed [27]. However, it is observed that a Hessian penalty has a strong negative impact
on image quality (measured by FID [31]) [27] and a solution to this problem is not yet
clear.

As we found for consistency, disentanglement is also approximated by proxy objectives
in previous work. Deng et al. proposed contrastive learning to approximate ∂2G/∂zi∂zexp =

0 ∀ i ̸= exp and ∂2G/∂zhair,id∂zillum = 0 [6]. Liu et al. introduced disentangled training as an
approximation of ∂2G/∂zid∂zi = 0 ∀ i ̸= id [7]. We notice that all such approximations are
restrictive; they degrade image quality and rely on hand-designed rules that only work
for certain zi, or attempt to encourage disentanglement through losses rather than through
the construction of the network architecture.

To this end, we propose an alternative approach to the disentanglement problem. We
neither attempt to directly penalize the non-diagonal entries of HG [27] nor rely on proxy
objectives to approximate a Hessian penalty [6, 7]. We show in the following section that,
in practice, disentanglement can be achieved for free without any optimization via the
inductive bias of a carefully designed network.



4
M E T H O D

4.1 consistency via p rendering & estimation

We maximize Eq. 3.1 to enforce semantic consistency between p and x. However, there
remains a design space of deterministic transformations on p to obtain a more amenable
representation for conditioning and optimizing G. To this end, we use a differentiable
renderer RDR [12] to derive a 3DMM representation that aligns with the image space
perceptually, and is independent of external factors. Specifically, we let RDR output the
3DMM rendered image r from p, the Lambertian albedo a, and the normal map n:

r, a, n = RDR(p) (4.1)

We define our 3DMM representation “rep” as the Cartesian product of r, a and n: rep(p) =
r × a × n.

Given the new 3DMM representation, we update Eq. 3.1:

I(rep(p); x) = Ep∼P(p),x∼G(rep(p),z) [log P(rep(p) | x)] + C (4.2)

where C is the constant term H(rep(p)).

4.1.1 Consistency Loss

Given a pretrained face reconstruction model FR [12] : X → P , we rewrite Eq. 4.2 as
follows:

Lconsistency = Ep∼P(p),x∼G(rep(p),z)

[
∥rep(FR(x))− rep(p)∥p

p

]
(4.3)

The choice of p depends on our assumption about the functional form of the posterior. We
follow common assumptions and assume Gaussian error, which leads to p = 2 [32].

Liu et al. proposed an image-space consistency loss [7]:

LLiu et al.
consistency = Ep∼P(p),x∼G(r(p),z)

[
∥x − r(p)∥2

2

]
. (4.4)

We show in our ablation study that this formulation of the consistency loss leads to signi-
ficant quality degradation. Eq. 4.4 penalizes photorealism and encourages mode collapse:
∀ z given a fixed p, Eq. 4.4 pushes all xz towards a single solution r(p), therefore hinder-

8
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Figure 4.1: We illustrate our overall model architecture (left), a detailed breakdown of feature injec-
tion (top right) and our training scheme (bottom right).

ing the diversity of samples produced by G. Furthermore, there is a domain gap between
x and r as r is not photorealistic. A photorealistic face image often contains objects or
phenomena (indirect illumination, eyeglasses, etc.) not modeled by the 3DMM. Eq. 4.4 is
agnostic to such a domain gap and pushes x away from the real image distribution, thus
compromising photorealism.

Our use of FR alleviates both problems. FR essentially functions as a filter that removes
all factors in x which are irrelevant to the 3DMM. As a result, these factors remain free
variables and are not affected by our consistency loss.

4.1.2 Progressive Blending

The posterior P(p|x) can only be represented by FR when Pg is sufficiently close to the real
image distribution. In early training with Eq. 4.3, x is not a realistic image and so FR(x) is
nonsensical. This leads to instant collapse from ill-behaved Lconsistency that is magnitudes
larger than the adversarial loss, and from the consistency loss diverging in the first few
training steps. To circumvent this problem, we introduce a progressive blending variant of
Eq. 4.3, following the intuition that r is always a close enough approximation of the real
face for FR:

L∗
consistency = Ep∼P(p),x∼G(rep(p),z) [d] (4.5)

d = ∥rep(FR(αx + (1 − α)r(p)))− rep(p)∥2
2

where α is a scalar that grows linearly from 0 to 1 in the first k training images. This initial-
izes the input of FR to r, then the input gradually fades into x as the training progresses.
We empirically find that this simple strategy is sufficient to solve the intractable posterior
problem early in the training.



4.2 structurally disentangled conditioning 10

4.2 structurally disentangled conditioning

Next, we discuss in detail how we use rep(p) to condition G. We generate per-layer con-
ditioning feature maps c = {c1, . . . , cl} using an encoder E, and inject each ci into the
corresponding layer of the synthesis network as an auxiliary input. We show that our
conditioning method approximates Eq. 3.2 without supervision [6, 7], achieving disentan-
glement for free as an inductive bias of the network architecture.

4.2.1 Conditioning Feature Maps

We demonstrate our approach upon the common StyleGAN2 architecture [2]. We follow
their architecture design and split E into different resolution stages. For each resolution
stage ei of E, we produce two sets of feature maps c2i and c2i+1 to condition the two
synthesis layers of the corresponding resolution stage of the synthesis network:

ei =

E0(rep(p)) i = 0

Ei(ei−1) i ̸= 0

c2i = toFeat2i(ei)

c2i+1 = toFeat2i+1(ei)

(4.6)

We implement Ei as a sequence of a transition layer and two residual blocks (Fig. 4.1).
“toFeat” is implemented by a 1 × 1 convolution [33] with optional downsampling [14] and
leaky ReLU activation [34].

4.2.2 Feature Injection

We extend each synthesis layer li to take an auxiliary input cn−i where n is the number
of layers in the synthesis network. The synthesis layer in [2] is implemented by a styl-
ized convolution where each channel f j of the input feature maps f is scaled by sij. The
per-layer scaling vector si = {sij ∀j} is computed from the style vector wi via an affine
transformation. We note that the injected feature maps cn−i need to be handled separately
for stylization. This is because cn−i is essentially an embedding of P while wi is an em-
bedding of Z . It is clear that P is not controlled by Z and therefore cn−i should not be
subject to wi. For this purpose, we simply fix the scaling of each channel of cn−i to 1 for
stylization.

In contrast to our feature injection-based conditioning, existing conditioning methods
often involve manipulating the style vectors w+. This can be done either by providing
additional conditioning to the mapping network [6] or directly injecting conditioning to
the W+ space [7]. Such style-based conditioning is problematic in two aspects:

1. There is no structural distinction between P and Z since both are encoded in W+.
This necessitates additional disentanglement training objectives to decouple variation
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in P from variation in Z . The disentanglement objectives are often ad hoc [6] and
can compromise sample quality [6, 7].

2. The expressiveness of the W+ space is limited by its comparative low dimensionality.
Encoding “rep” in W+ requires high compression that might lead to information loss.
We occasionally notice obvious discrepancies between x and r in previous work [7],
and information loss might be a cause.

Our conditioning method avoids both problems. We show in the following section that
feature injection gives us disentanglement for free. In our method, c is a feature pyramid
and each ci has the same spatial dimensions as the input of the synthesis layer. Thus, we
encode rep in c in high fidelity.

4.2.3 Disentanglement Analysis

To simplify analysis, we omit various details from the StyleGAN2 [2] generator (weight
demodulation, noise injection, equalized learning rate, etc.). We formulate each layer li of
the synthesis network as:

li(p, z) = Wi ∗ [cn−i(p); si(z)⊙ σ(li−1(p, z))] + Bi (4.7)

Wi is the weight tensor of li, Bi is the bias tensor of li, ∗ denotes convolution, ⊙ denotes the
Hadamard product, and σ is the activation function. There are two terms in li that depend
on p: cn−i and σ(li−1). First, we analyze disentanglement w.r.t. cn−i:

∂2li
∂z∂cn−i

=
∂

∂z

(
∂

∂cn−i
(Wi ∗ [cn−i; si ⊙ σ(li−1)] + Bi)

)
=

∂

∂z

(
Wi ∗

∂

∂cn−i
[cn−i; si ⊙ σ(li−1)]

)
=

∂

∂z
(Wi ∗ [I; 0])

= 0 (4.8)

We see that variation in cn−i is perfectly disentangled from variation in z, therefore any
non-zero ∂2li

∂z∂p
must be the result of variation in σ(li−1):

∂2li
∂z∂p

=
∂2li

∂z∂σ(li−1)

∂σ(li−1)

∂p

=

(
Wi ∗

[
0;

∂si

∂z

])
∂σ(li−1)

∂p

(4.9)

We examine the behavior of variation in p:

∂σ(li−1)

∂p
=

∂σ(li−1)

∂li−1

∂li−1

∂p

=
∂σ(li−1)

∂li−1

(
Wi−1 ∗

[
∂cn−i+1

∂p
; si−1 ⊙

∂σ(li−2)

∂p

]) (4.10)
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id exp illum angle

Figure 4.2: Finite difference approximation of the partial derivative of the injected 3DMM render
features w.r.t. the 3DMM parameters ∂c

∂p . We can see that the derivative maps are sparse, with the
variation in c depicted in small white regions, indicating that disentanglement is mostly successful.

This analysis on ∂σ(li−1)
∂p applies recursively to ∂σ(li−2)

∂p ; thus, ∂2G
∂z∂p → 0 if ∀ i. ∂ci

∂p → 0.
In practice, we empirically find that small variation in p does lead to little total variation

in c. Variation in c tends to be highly localized to small affected regions dictated by p,
with little variation otherwise (Fig. 4.2). This is likely the combination effect of localized
variation in rep w.r.t. p and the inductive bias of locality of a convolutional encoder. We
do not consider ∂2G

∂p∂z as disentanglement in this direction is automatically enforced by
Lconsistency when pairing each p with a set of different z’s.

4.3 implementation details

We implement our model on top of the official StyleGAN2 [2] and the PyTorch release
of Deep3DRecon [12]. FR and RDR are both part of Deep3DRecon [12] and G and D are
part of StyleGAN2 [2]. We use the dataset tool provided in Deep3DRecon [12] to realign
FFHQ [14] so that image x aligns with 3DMM representation rep.

4.3.1 StyleGAN2 Backbone

We follow the latest findings in StyleGAN3 [3] and omit several insignificant details to
simplify StyleGAN2 [2]. We remove mixing regularization and path length regularization.
The depth of the mapping network is decreased to 2, as recommended by Karras et al. It
is also noticed that decreasing the dimensionality of z while maintaining the dimensions
of w is beneficial [35]. Therefore, we reduce the dimensions of z to 64. All details are oth-
erwise unchanged, including the network architecture, equalized learning rate, minibatch
standard deviation, weight (de)modulation, lazy regularization, bilinear resampling, and
exponential moving average of the generator weights.

4.3.2 Face Reconstruction and Differentiable Renderer

We use the pretrained checkpoint provided by Deng et al. [12] for FR. This updated check-
point was trained on an augmented dataset that includes FFHQ [14] and shows slight
performance improvement over the TensorFlow release of Deep3DRecon. We use the dif-
ferentiable renderer RDR that comes with the checkpoint for FR from the same code
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Figure 4.3: The detailed breakdown of a general stage of E.

repository. This renderer uses the Basel Face Model from 2009 [36] as the 3DMM paramet-
ric model for face modeling, and nvdiffrast [37] for rasterization. We modify RDR so it
outputs a and n along with r. The renderer is otherwise unchanged.

4.3.3 Encoder Architecture

Figure 4.3 depicts the internal structure of a general stage (every stage other than the
highest resolution stage and the 4 × 4 stage) of our encoder E. Following recent advances
in network architecture [38, 39], our ResNet [40] design of E differs from the architecture
of D [2] in several ways.

general stage We notice that the two architectural changes in [38] that lead to most
performance boost are separate downsampling layers and fewer activations. Thus, we
move the skip branch of the transition residual block up to the stem as a transition layer,
and remove all activations in the residual block unless they are between two consecut-
ive convolutional layers. We use leaky ReLU activation with α = 0.2, and bilinear down-
sampling instead of strided convolution [2, 14]. We use the 1-3-1 bottleneck residual block
as it is more efficient than the 3-3 block [40]. The final convolutional layer (marked by *) in
the residual block is initialized to 0 [41], and this eliminates the need for normalization or
residual rescaling [2]. We apply equalized learning rate to all convolutional layers.

specialization We remove bilinear downsampling from the transition layer of the
highest resolution stage; it is otherwise identical to a general stage. Since the 4× 4 stage of
the synthesis network contains only one synthesis layer, we place one toFeat layer without
leaky ReLU in the 4 × 4 stage of E accordingly.
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4.3.4 Training Procedure

Following the StyleGAN family [2, 3, 14], we adopt the non-saturating loss [1] and R1
gradient penalty [42] as the loss function for GAN training. We additional append our
Lconsistency, resulting in the following objectives:

LD = −Ep,z [log(1 − D(G(rep(p), z)))]−

Ex [log(D(x))] +
γ

2
Ex

[
∥∇D(x)∥2

2

]
(4.11)

LG = −Ep,z [log(D(G(rep(p), z)))] + λLconsistency (4.12)

We closely follow the training configurations of the baseline model in Karras et al. [43] and
set γ = 1. The batch size is set to 64 and the group size of minibatch standard deviation is
set to 8. We empirically set λ = 20 and the length of progressive blending to k = 2 × 106.
The learning rate of both G and D is set to 2.5 × 10−3. We train our model until D sees
25M real images [2, 3, 14].

Instead of approximating the distribution P(p) using a VAE [6], we simply use its empir-
ical distribution when sampling p ∼ P(p) and find this to be sufficient given our 3DMM
representation.



5
E X P E R I M E N T S

5.1 experimental setup

data We use FFHQ [14] at 256 × 256 resolution to generate our training data. To pre-
process the data, we follow the method of Deng et al. [12]: We detect facial landmarks in
all FFHQ images with MTCNN [44] and perform face alignment based on the landmarks
detected. We derive 3DMM coefficients for each image. In the training stage, we use the
aligned images as inputs and the corresponding 3DMM coefficients as training labels.

baselines We compare model performance against baselines in terms of generation
quality and semantic disentanglement for editing. We use StyleGAN2 and two state-of-the-
art 3DMM-based generative models, DiscoFaceGAN (DFG) [6] and 3D-FM GAN [7], along
with other frontalization methods [45–49]. As the leading SOTA method 3D-FM GAN does
not have public code or models, comparison is difficult. Where possible, we took results
from their paper, but some quantitative metrics could only be computed for our model
and for DiscoFaceGAN.

5.2 qualitative comparison

5.2.1 Controlled Generation

Our model achieves highly controllable generation while preserving StyleGAN’s ability to
generate highly photorealistic images (Fig. 5.1). We can see that our model can produce
photorealistic faces with diverse races, genders, and ages. It also shows effective control
over each of the 3DMM attributes. Particularly, we use the same three persons as our base
images for all attribute edits; this verifies that our model can perform robust generation
with high quality.

Our model also demonstrates high consistency when varying either p or z, while holding
the other constant. Fig. 5.2 left compares the images generated by our model conditioned
on the same p but different z’s. The identity, expression, pose, and illumination are pre-
served while all other attributes can be modified. This means there is little overlap between
attributes controlled by p and z, and our model gains control over target attributes. On the
other hand, when we vary p with fixed z as in Fig. 5.2 right. We can see that despite the
drastic change in the facial attributes from different p’s, the background and clothes re-

15
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Identity Variation Expression Variation

Illumination Variation Angle Variation

Figure 5.1: Generated face samples with control as output from our model. To attempt to reduce
any impression of cherry picking, we use the same three input faces for each 3DMM attribute across
five edit (columns). While some unwanted variation remains, identity, expression, illumination, and
angle are controlled with high fidelity and no apparent visual artifacts.

ReferenceResampling 𝑧 for Fixed 𝑝 OutputResampling 𝑝 for Fixed 𝑧

Figure 5.2: Left. Resampling the noise vector z with the same set of 3DMM coefficients p shows high
facial consistency while other unsupervised factors such as hair, hat, eyeglasses, and background
vary. Right. Resampling p with the same z shows high consistency in unsupervised factors while
the face completely changes.

main largely consistent with the same z. This is another proof that the z vector has a good
control of the attributes that are not controlled by p.

5.2.2 Real Image Inversion and Editing

Following [7], we test our model’s ability to embed real images into its latent space and
perform disentangled editing (Fig. 5.3). On zooming, we see that our model produces the
sharpest images and that they align closely with the target references from the 3DMM
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Figure 5.3: Left. Competitive real face editing performance demonstrated by our model in both in-
version and individual attribute edits, generating faithful iamges to 3DMM renderer outputs and
the original image. Right. Reference-based generation results. We extract the expression, illumin-
ation, and angle coefficients from the reference images (first row) and apply them to randomly
generated images (first column).

Input PIM 3D-FM GANTP-GAN DR-GAN Hassner Qian DFG Ours

Figure 5.4: Face frontalization comparisons with DiscoFaceGAN (DFG), 3D-FM GAN and other
models on LFW images [50]. Our model achieves a good balance between image fidelity and frontal
pose positions.

renderer. While DiscoFaceGAN completely collapses on this input, 3D-FM GAN gives
blurry and sometimes non-photorealistic outputs (e.g., under pose change).

We also compare on the task of face frontalization by simply rotating the 3DMM camera
to identity (Fig. 5.4). Our model significantly improves frontalized quality against most
methods, and compared with the state-of-the-art face manipulation models [6, 7], our
model produces better identity-preserved faces in a more precise frontal view.

5.2.3 Feature Granularity

To inspect the impact of feature variability across the layers of the decoder, we inspect the
impact of swapping features across images with the same p. In Fig. 5.5, we randomly pick
a 3DMM coefficient vector p and randomly sample z’s to generate three images (the same
images for Source A and Source B). Following StyleGAN [14], we replace some of the style
vectors w+ of images from Source A by the corresponding style vectors of images from
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Figure 5.5: Style mixing results at different scales. Using the same three images for Source A and
Source B, we replace the style vectors of images from Source A by the style vectors of images from
Source B at coarse resolutions (4×4 - 8×8), middle resolutions (16×16 - 32×32), and fine resolutions
(64×64 - 256×256).

Source B at coarse, middle, and fine scales. As p is the same, the overall face region will
not change significantly.

At coarse scale, there is no visible change to the images from Source A. This is expected
as the high-level attributes of the image are supposed to be determined by the p vector.
At middle scale, the images from Source A remain mostly unchanged except finer facial
features such as the hair now resemble those in the image from Source B. At fine scale,
the images from Source A undergo more significant changes where the color scheme that
affects the background, clothes, hair color, and skin color now resembles those in the image
from Source B. This experiment indicates that each subset of the style vectors w+ controls
a different set of features in the generated image. We also notice that attributes controlled
by p remain unchanged at any scale, which means our model’s p space and z space are
well separated.

5.3 quantitative comparison

We evaluate the performance of our model in terms of quality and disentanglement. For
image quality, we compute the Fréchet inception distance (FID) [31] and Precision and
Recall (P&R) [51, 52] against the entire FFHQ dataset as a measure of the generation
quality. Our model outperforms the two state-of-the-art baselines, yielding an FID much
closer to the original StyleGAN trained on 256 × 256 FFHQ dataset (Tab. 5.1). Precision
and recall indicate that our model has achieved near-StyleGAN-level image generation
results while controlling and disentangling facial attributes.
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Table 5.1: Our conditioning provides control and almost equivalent quality to unconditioned
baseline StyleGAN2. Two baseline 3DMM conditioning approaches do not produce comparable
quality in terms of FID. P&R were introduced after StyleGAN1 and thus these numbers are miss-
ing from DiscoFaceGAN (built on StyleGAN1).

Method FID↓ Precision↑ Recall↑
StyleGAN2 3.78 0.692 0.431
Ours 4.51 0.574 0.485
DiscoFaceGAN 12.9 - -
3D-FM GAN 12.2 - -

5.3.1 Disentanglement Score

Introduced in DiscoFaceGAN, disentanglement score quantifies the disentanglement efficacy
of each of the four 3DMM-controlled identity, expression, illumination, and angle attrib-
utes. Due to ambiguity in the derivation of this score [6], please see supplemental for
details.

For attribute vector ui ∈ {zid, zexp, zillum, zangle}, we first randomly sample 1K sets of
the other three attribute vectors, denoted by u{j} = {uj : j = 1, ..., 4, j ̸= i}. Then, for
each set of u{j}, we randomly sample 10 ui. In total, we have 10K 3DMM coefficients and
hence generate 10K images. Then, we re-estimate ui and u{j} using the 3D reconstruction
network [12]. For each attribute, we compute the L2 norm of the difference between each
u and the mean u vector and get the mean L2 norm in each of the 1K sets. We then get σui

and σuj ’s by averaging the corresponding mean L2 norm over the 1K sets and normalize
them by the L2 norm of the mean u vector computed on the entire FFHQ dataset. Finally,
we compute the disentanglement score:

DS(ui) = ∏
j,j ̸=i

σui

σuj

(5.1)

A high DS indicates that when an attribute vector is modified, only the corresponding
attribute is changed on the generated image while all other attributes remain unchanged.
Our model outperforms DiscoFaceGAN by large margins in identity, expression, and pose
(angle) control (Table 5.2).

Table 5.2: Disentanglement Score comparisons with DiscoFaceGAN.

Method DSid ↑ DSexp ↑ DSillum ↑ DSangle ↑
DiscoFaceGAN 0.371 1.64 47.9 829
Ours 1.02 3.22 48.7 1245



5.4 ablation study 20

5.3.2 Disentanglement, Completeness, and Informativeness

DCI is a metric introduced in StyleSpace [11]. Given a set of attributes and a latent space,
disentanglement measures the extent to which each latent dimension controls at most one
attribute, completeness measures the extent to which each attribute is controlled by at most
one latent dimension, and informativeness measures how well attributes can be correctly
predicted from a given latent representation.

To calculate DCI, we first sample 35K 3DMM coefficient vectors from FFHQ and generate
corresponding images using both models conditioned on these vectors. We then annotate
the images by 8 binary classifiers trained on CelebA [14] that can be controlled by 3DMM
coefficients and train a gradient boosting classifier to predict the 3DMM coefficient vectors
from the annotations.

Our model outperforms DiscoFaceGAN (Table 5.3). DCI indicates that our model es-
tablishes a better one-to-one relationship between the attributes and 3DMM coefficients,
leading to a more disentangled 3DMM parameter space.

Table 5.3: DCI metric comparisons.

Method Disentanglement↑ Completeness↑ Informativeness↑
DiscoFaceGAN 0.66 0.73 0.98
Ours 0.83 0.78 0.99

5.4 ablation study

We modify our model in three different ways to investigate the effect of our proposed
methods. We denote our untouched model as Config-A. All ablation experiments are con-
ducted on the 128 × 128 version of FFHQ [14], and all ablation models are trained on 5M
real images.

config-b : conditional discriminator The 3DMM condition p or rep(p) can be
used to condition the discriminator D similarly to G. However, all past works [6, 7, 10] do
not condition D; it is unclear whether this is an intentional design choice. To our surprise,
conditioning D leads to significantly worse FID [31], contradicting the common belief that
conditioning is always beneficial [53]. We experiment with various conditioning methods,
all of which degrade FID considerably. This might be the result that the conditional distri-
bution is undersampled. Unlike traditional class conditional generation where thousands
of samples are available for a single condition, we essentially have one real sample for
each p. The scarcity of samples might outweigh the benefit of extra condition information.
Nevertheless, this config has improved disentanglement performance.

config-c : alternative consistency loss We swap our consistency loss with
Eq. 4.4 proposed by Liu et al. [7]. As expected, this change leads to inferior FID. We notice
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Table 5.4: FID and Disentanglement Score comparisons between all ablation experiments.

Method Quality Disentanglement Score

FID↓ id↑ exp↑ illum↑ angle↑
Config-A 8.73 1.07 3.19 49.5 1402
Config-B 17.5 1.14 5.97 57.2 1964
Config-C 10.9 0.694 2.71 29.2 1142
Config-D 13.3 0.412 1.25 23.2 690

that our model converges faster early in the training using this alternative consistency loss,
but the FID quickly plateaus and is later surpassed by Config-A. The initial quick conver-
gence is likely due to the lack of progressive blending, which results in a stronger learning
signal early on. However, the overconstrained nature of Eq. 4.4 eventually impedes the
model from further improving.

config-d : one-layer feature injection We remove feature injection from all
synthesis layers except the layer in the 4 × 4 stage. This allows our model to emulate the
behavior of a traditional conditional generator [2, 53]. We observe drastic performance
drop in disentanglement compared to Config-A, indicating that our per-layer feature in-
jection is crucial to disentanglement. Interestingly, we also observe a degradation in FID
and poor adherence to p early in the training. Without per-layer injection, G has to rely
exclusively on the global features cn−1 that we inject to the first synthesis layer, and any
subtle variation in cn−1 will be amplified by each layer afterwards, resulting in poor dis-
entanglement. The degradation in FID is likely due to the lack of a feature pyramid, that
some of the network capacity of the synthesis network is wasted on decoding the highly
compressed cn−1.

5.5 interactive visualization

We develop an interactive program to visualize the controllable face generation and se-
mantic disentanglement of our model. Given an index from the FFHQ dataset, the pro-
gram retrieves the corresponding 3DMM coefficients p and randomly samples a noise
vector z to generate a face image using our trained generator G and a 3DMM reference us-
ing RDR. Users can then edit the generated face image in real-time, manipulating identity,
expression, illumination, and angle through a user-friendly interface. While the 3DMM
angle coefficients are highly interpretable and can be directly modified using a 3D angle,
the identity, expression, and illumination coefficients require indirect modifications. The
program offers two ways to edit these facial attributes: users can either scale the facial
attribute coefficients or replace them with those from a reference image.

coefficient scaling To modify the identity, expression, and illumination coeffi-
cients, users first specify a scaling factor between -1 and 2 using a slider bar. The program
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Figure 5.6: Our interactive tool visualizes controllable face generation and editing, demonstrating
the semantic disentanglement of our model. Users can manipulate identity, expression, illumina-
tion, and angle on the generated faces, and resample either p or z, while keeping the other fixed.

then applies the scaling factor to the corresponding facial attribute and re-generates the
face image using the perturbed p and the same z. This approach enables users to visualize
a smooth transition of facial attributes. Specifically, increasing the scaling factor magnifies
the existing facial attributes, deviating further from the mean FFHQ face, while decreas-
ing the scaling factor shifts the facial attributes closer to the mean face. Negative scaling
factors push the facial attributes further towards the opposite direction.

coefficient referencing To modify the identity, expression, and illumination of
generated faces, users can also replace the existing coefficients with those from a reference
image. Given another index from the FFHQ dataset, the program retrieves the correspond-
ing 3DMM coefficients for the chosen facial attribute and re-generates the face image using
the partially replaced p and the same z. Compared to coefficient scaling, which may rep-
resent unrealistic or unnatural facial attributes, referencing real face coefficients results
in more realistic changes. Furthermore, the program includes a feature that interpolates
between the base and reference facial identity coefficients, highlighting the continuity and
smoothness of the 3DMM parameter space.

p and z resampling In addition to coefficient editing, the program also allows users
to resample either the 3DMM coefficients p or the noise vector z, while holding the other
variable fixed. This demonstrates the disentangled control between p and z, as discussed in
Section 5.2.1: while p controls identity, expression, illumination, and angle, z controls other
attributes such as background and hair that are not part of the 3DMM parametrization.
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C O N C L U S I O N A N D F U T U R E W O R K

We present a novel conditional model derived from a mathematical framework for 3DMM-
conditioned face generation. Our model shows strong performance in both quality and
controllability, effectively eliminating the trade-off between these two factors and thereby
making control “tax free”. Furthermore, our mathematical framework can be applied to fu-
ture explorations in conditional generation, allowing future investigators to analyze other
parametric models in a rigorous manner.

While our proposed model generates photorealistic and controllable deepfake faces, the
early work of this project aims to develop a deepfake detection system for social verific-
ation settings, where multiple recordings of a public event are analyzed to identify fab-
ricated videos [54]. Prior research has explored frame-by-frame frontalization and 3DMM-
based classification for this task, both of which require a well-defined latent or parameter
space. In contrast, our model simultaneously incorporates a latent space and a 3DMM
parameter space during training, making frontalization and 3DMM coefficient classific-
ation natural byproducts. The potential of our model offers new avenues for deepfake
detection, particularly upon GAN inversion, where a more sophisticated latent code that
provides meanings in both W+ and the 3DMM parameter space can be obtained.

Despite the strengths of our model, there are certain limitations that should be con-
sidered. Specifically, our model is not explicitly designed for image editing, unlike the
3D-FM GAN [7]. As a result, the faces generated by our model exhibit a trade-off between
inversion accuracy and editability, same as what has been observed in StyleGAN [2, 3, 14].
To address this issue, future work could explore image editing techniques that achieve
a more optimal balance between inversion accuracy and editability for our model. This
would further enhance the interpretability of the latent space and hence our model’s cap-
ability to detect deepfakes.
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