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Introduction

Functional magnetic resonance imaging (fMRI) is a fundamental neuroimaging technique used
to non-invasively measure whole-brain activity. A primary research goal with fMRI is to
characterize statistical relationships in the activity between brain regions, i.e. functional
connectivity. Unlike structural connectivity which describes physical axonal connections between
neurons, functional connectivity is a data-driven description of co-active brain areas. Currently
the leading techniques to identify functional brain networks largely depend on correlative
measures. While these techniques have successfully identified robust brain networks such as
the default mode network (DMN), there are potentially more complex functional connectivity
patterns that are shared across individuals, and reveal interactions between regions that are
missed by correlation based measures.

The goal of this project was to perform unsupervised learning with state-of-the-art deep learning
architectures to identify fMRI based functional networks.

Methods

Data
We chose to use the developmental fMRI dataset from the python package nilearn, sourced
from the paper “Development of the social brain from age three to twelve years” (Richardson et
al., 2018). This dataset contains the fMRI results from patients of varying ages after they
watched the movie short “Partly Cloudy”. 155 subjects in total were recorded, 122 children
between the ages of 3 and 12 and 33 adults. We used the preprocessing available with the
nilearn package. Raw fMRI blood oxygen level dependent images were skull-stripped, and
normalized for head movement, intensity, and time. The raw voxels of the scan were then
mapped to an anatomical atlas of 39 brain regions. This kind of preprocessing is standard for
neuroscience datasets. The resulting data represents scans of all 155 subjects across about
150 time points. We loaded the data via the package, and then split it for training, testing, and
validation purposes across subjects rather than across sections of the movie.
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Architecture
For this project, we focused on two tasks: 1) learning low dimensional representations of fMRI
data, and 2) comparing these representations–functional networks of brain activity– across the
latent dimensions of each architecture. For these tasks we chose to use autoencoders with
differing encoder/decoder structures.

In choosing the candidate models to be compared for this project, we considered several
factors. First, all the models selected had a demonstrated applicability to fMRI data for
evaluating functional connectivity in some population. This ensured that we were able to obtain
a reasonable level of performance with that model. Second, each model had distinct attributes
in the model architecture that justify inclusion in the comparison. These were not simple
changes in hyperparameters, but rather more fundamental differences in the modeling
techniques or calculations used.

Several variants of autoencoders were included. The critical distinction between each model
was the architecture of the encoder/decoder layers. Since fMRI consists of multidimensional
time series data, the architectures we assessed included 1) feed forward networks, 2) LSTM, 3)
Mamba/SSM’s (Gu & Dao, 2023).

Figure 1: Model architecture overview
This diagram displays a visualization of one encoder/decoder block of each of the architectures
we evaluated.

Dense
We used our dense layer model as a baseline for comparison to the performance of our other
models. Our autoencoder had one encoder block with three hidden layers of sizes 100, 50, and
25, and one decoder block with increasing sizes of the same step.

LSTM
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We chose to test an LSTM architecture because of its superior performance on time-series data
compared to dense neural networks. Our LSTM architecture had one encoder block and one
decoder block, each with two layers.

Mamba/SSM
We sourced our Mamba architecture from the paper “Mamba: Linear-Time Sequence Modeling
with Selective State Spaces” (Gu & Dao, 2023). This architecture seeks to combine the benefits
of the selective state space model (SSM) and the multi-layer perceptron block of a transformer
to improve performance and training time on sequence data. Its main advantage is the ability to
handle very long sequences of data in comparison to previous architectures via memory
efficiency. Our Mamba architecture had one encoder block and one decoder block. Each
encoder/decoder block includes two linear projections. The first linear projection leads into a
convolution layer, followed by a sigmoid activation, followed by a state space model. The
second linear projection leads to a sigmoid activation. These two paths are combined via
multiplication before being linearly projected back to the original dimensions. Our SSM state
expansion factor was 16, our local convolution width was 4, and our block expansion factor was
2.

For further comparison, we tested a range of values for the learning rate, hidden layer size, and
weight decay of this model. Plots of these tests can be found in Figure 5.

Results
Our first goal was to apply the previously established PCA based methods for extracting brain
(eigen) networks from fMRI data (Friston et al., 2014). The brain networks identified by PCA
correspond to the loadings on the principal components. Figure 1 shows an example of the full
39 dimensional fMRI time series, where each dimension corresponds to a distinct brain region.
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Figure 1: Resting state fMRI time series taken from developmental dataset
An example of the fMRI time series used in this study is shown. Raw voxel activity from every
subject in the developmental dataset was mapped to 39 predefined brain regions using a
reference anatomical atlas.

After applying PCA to the full dataset, we assessed the degree to which the dimensionality of
the dataset could be reduced, providing a baseline to compare our autoencoder architectures
to. As shown in Figure 2, the first 16 principal components account for 80% of the variance
explained. Given that the recordings correspond to a 39 dimensional time series, this suggests
that the dataset is not easily reduced to a lower dimensional representation through correlation
based methods like PCA.



Figure 2: Dimensionality reduction of fMRI time series by PCA
Applying PCA to the full developmental dataset demonstrates that 80% of the variance
explained is accounted for by 16 principal components.

Figure 3 shows the eigen networks extracted from the first 2 principal components. The first
eigen network (Figure 3 left) explains the highest amount of variance in the dataset, and
indicates a brain wide network with nodes primarily in the parietal and prefrontal cortex. Further,
all of the nodes are positively (red) correlated with each other, as indicated by the edges. This is
contrasted with the second principal components (Figure 3 right), where there are two distinct
clusters in visual cortex, and prefrontal cortex. Within the clusters, the brain regions are
positively correlated with each, but across the clusters the brain regions are negatively (blue)
correlated.

Figure 3: Eigen networks extracted from PCA
The eigen networks corresponding to the first two principal components PC1 (left) and PC2
(right).



With the PCA baseline established, we then compared the autoencoder architectures by
assessing their reconstruction error with respect to the bottleneck dimensionality. As shown,
none of the deep learning architectures beat PCA with respect to dimensionality reduction, with
the LSTM architecture performing substantially worse. The Mamba autoencoder did achieve
marginally lower reconstruction errors on the training set, however, it performed identically as
PCA on the test set (assessed via 5 fold cross validation with an 80/20 train/test split).

Figure 4: Comparison of autoencoder architectures on reconstruction loss

Given the high performance of the mamba architecture, we then tuned the hyperparameters to
identify the best performing model before extracting brain networks from the learned
representations. As shown in Figure 5, the optimal hyperparameters were a learning rate of
10e-4, a weight decay of 0.0, and a hidden size of 100 units.

Figure 5: Hyperparameter tuning on Mamba autoencoder



Next we extracted brain networks from the mamba autoencoder to compare directly to the eigen
networks identified via PCA. Specifically, we took the decoder network from the autoencoder
and probed each hidden unit in the bottleneck layer separately. The variance of the outputs was
used to assess which brain regions were sensitive to changes in each bottleneck unit, i.e. the
brain network encoded by that dimension of the bottleneck layer. To compare the brain networks
between mamba and PCA, we calculated the correlation coefficient between the eigen
network’s values (loading on each PC), and the sensitivity (variance) of each brain region to the
Mamba decoder’s bottleneck dimension. As shown in Figure 7 (left), the two approaches learn
largely dissimilar brain networks, with the highest correlation between two networks being
r=0.165. Figure 7 (right) plots the most similar brain networks identified by PCA and Mamba. As
shown, both networks exhibit a cluster of positively correlated regions in the visual cortex, with a
left lateralized collection of brain regions in the prefrontal and sensorimotor cortex.

Figure 7: Comparison between brain networks identified by Mamba autoencoders and PCA

Challenges: What has been the hardest part of the project you’ve encountered so far?

The challenges we encountered during the project largely fell into three broad categories. First,
finding an appropriate dataset was a nontrivial task. Due to the cost of collecting large amounts
of fMRI data and the potential privacy concerns associated with the use of health data, freely
available fMRI datasets that include enough data to train deep learning models are relatively
scarce. We originally chose a dataset with preprocessed BOLD data that was collected from an
interesting experiment related to movie watching. However, this dataset was compressed using
a deprecated python package, making it incompatible with the other tools we were using to run
the analysis. We ultimately decided to use data made available through the nilearn python
package which includes BOLD data collected from 155 subjects.

The next challenge we faced was fully understanding the steps needed to appropriately
summarize the fMRI data in terms of a set number of brain regions. While many of the
necessary steps, such as skull stripping the images, had already been taken, there were several



steps required to process the voxel-level data into region-specific time series data. Each of
these steps, like registering the data to a common template, involves decisions that determine
which transformations are applied to the data. Individual judgment is needed to ensure that the
signals present in the unprocessed data are still present at the end of the preprocessing
pipeline. This required substantial efforts to make sure that, when considering the models we
were using, we were undertaking the steps that would yield reasonable results.

A third set of challenges we encountered related to the computational demands of other models
we were interested in implementing. Specifically, we intended to compare the models for which
results are shown with variational autoencoder architectures that would be applied to the
voxel-level data instead of the region-level data used for the other models (Qiang et al., 2021).
Because of the level of summarization present in the region-level data, these alternative models
could have the benefit of retaining more of the information that was originally present in the
data, which could allow us to uncover networks present between subregions that we would not
be able to identify with the region-level data. Additionally, using the region-level data makes the
implicit assumption that summarizing based on brain regions is appropriate in this setting. While
there are strong reasons to believe that this will lead to viable results, the use of voxel-level data
would allow the model more flexibility in identifying regions most relevant to functional
connectivity, which could yield interesting results.

Ultimately, implementing the architectures based on voxel-level data presented computational
needs that we could not meet using the tools available to us, even when taking steps to
minimize the model size and batch size. It is possible that some intermediate processing steps
could have been taken that would reduce the computational burden of training these models
without relying on complete region-level summarization, but exploring this option was left for
future work.

Discussion:

We have a fully trained autoencoder, one with fully connected network encoders/decoders as
well as Mamba based encoders/decoders. We’ve split our data such that our validation set has
completely different subjects to our training and test data, and our models are still able to make
correlations. This indicates we’re finding connections between entirely different brains, which is
encouraging. Further, quantitative comparison between autoencoder based and correlation
(PCA) based connectivity identifies a small number of overlapping networks. However, these
two approaches appear to primarily identify disjoint sets of functional networks, potentially
suggesting that the autoencoder is learning nonlinear interactions unaddressed by correlation
based approaches.

Reflection

Overall, our project was a success, potentially surpassing our stretch goal of identifying novel
functional networks. For our baseline, our Mamba autoencoder successfully identified
low-dimensional representations of fMRI data. Using this autoencoder, we successfully



characterized functional networks, discovering a set that is distinct from those found using PCA.
This intriguing result suggests that the autoencoder is learning novel networks.

However, we were equally surprised to find that PCA performed just as well as our best
autoencoder in terms of loss and dimensionality reduction. This could be because the
dataset/model size was insufficient for a deep learning task, or more complex relationships did
not exist in the data (or we removed important information in the preprocessing step). In terms
of our biggest surprises, we were most surprised by the difficulty of the preprocessing step. We
found it difficult to successfully train a Variational Autoencoder using raw voxel-level data as it
would require substantial computing costs. However, in preprocessing, we were potentially
removing meaningful information from the data.

Our approach mainly changed in our choice of dataset. At first, we used a dataset with
preprocessed BOLD data that was compressed using Python2 (Busch et al., 2021), which
prompted us to change the dataset to a dataset from the nilearn package. If we could do this
project again (and given more time/computation), we would experiment with training a VAE on
voxel-level data without the extensive preprocessing.

Undertaking this project was an incredibly valuable experience for us. It provided a high-level
understanding of the challenges associated with fMRI data and the practical applications of
identifying functional networks. At a more detailed level, it allowed us to gain firsthand
experience of the complexities of data preprocessing and the instances where deep neural
networks may not outperform simpler methods like PCA. This project has undoubtedly enriched
our knowledge and skills in the field.
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